Defining parameters
Level: | \( N \) | \(=\) | \( 154 = 2 \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 154.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(154, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 16 | 40 |
Cusp forms | 40 | 16 | 24 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(154, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
154.2.e.a | $2$ | $1.230$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(-3\) | \(-2\) | \(-5\) | \(q-\zeta_{6}q^{2}+(-3+3\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\) |
154.2.e.b | $2$ | $1.230$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(-1\) | \(0\) | \(5\) | \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\) |
154.2.e.c | $2$ | $1.230$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(-1\) | \(0\) | \(-1\) | \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\) |
154.2.e.d | $2$ | $1.230$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(3\) | \(4\) | \(-5\) | \(q+\zeta_{6}q^{2}+(3-3\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\) |
154.2.e.e | $4$ | $1.230$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | None | \(-2\) | \(2\) | \(4\) | \(-2\) | \(q+\beta _{2}q^{2}+(1+\beta _{1}+\beta _{2})q^{3}+(-1-\beta _{2}+\cdots)q^{4}+\cdots\) |
154.2.e.f | $4$ | $1.230$ | \(\Q(\sqrt{-3}, \sqrt{7})\) | None | \(2\) | \(0\) | \(-2\) | \(0\) | \(q+(1+\beta _{2})q^{2}+(\beta _{1}+\beta _{3})q^{3}+\beta _{2}q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(154, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(154, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 2}\)