Properties

Label 154.2.c.a
Level $154$
Weight $2$
Character orbit 154.c
Analytic conductor $1.230$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 154 = 2 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 154.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.22969619113\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12745506816.1
Defining polynomial: \( x^{8} + 23x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_{2} q^{3} - q^{4} + \beta_{6} q^{5} - \beta_{3} q^{6} + (\beta_{7} + \beta_{3} - \beta_1) q^{7} - \beta_1 q^{8} + (\beta_{5} - \beta_{4} - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} - \beta_{2} q^{3} - q^{4} + \beta_{6} q^{5} - \beta_{3} q^{6} + (\beta_{7} + \beta_{3} - \beta_1) q^{7} - \beta_1 q^{8} + (\beta_{5} - \beta_{4} - 1) q^{9} + \beta_{7} q^{10} - \beta_{5} q^{11} + \beta_{2} q^{12} - \beta_{3} q^{13} + ( - \beta_{6} - \beta_{2} + 1) q^{14} - 2 q^{15} + q^{16} + ( - \beta_{7} + \beta_{3}) q^{17} + ( - \beta_{5} - \beta_{4} - 3 \beta_1) q^{18} + ( - \beta_{7} - 2 \beta_{3}) q^{19} - \beta_{6} q^{20} + (\beta_{5} + \beta_{4} + \beta_{3} + 4 \beta_1) q^{21} + (\beta_{4} + \beta_1 - 1) q^{22} + 4 q^{23} + \beta_{3} q^{24} + ( - \beta_{5} + \beta_{4} - 1) q^{25} + \beta_{2} q^{26} + (2 \beta_{6} + 4 \beta_{2}) q^{27} + ( - \beta_{7} - \beta_{3} + \beta_1) q^{28} + (\beta_{5} + \beta_{4} + 4 \beta_1) q^{29} - 2 \beta_1 q^{30} + ( - 3 \beta_{6} - \beta_{2}) q^{31} + \beta_1 q^{32} + (\beta_{7} - \beta_{6} + 2 \beta_{3} - 3 \beta_{2}) q^{33} + (\beta_{6} - \beta_{2}) q^{34} + ( - \beta_{7} + \beta_{5} + \beta_{4} - 2 \beta_1) q^{35} + ( - \beta_{5} + \beta_{4} + 1) q^{36} + (\beta_{5} - \beta_{4}) q^{37} + (\beta_{6} + 2 \beta_{2}) q^{38} + ( - \beta_{5} - \beta_{4} - 6 \beta_1) q^{39} - \beta_{7} q^{40} + ( - 3 \beta_{7} + \beta_{3}) q^{41} + (\beta_{5} - \beta_{4} - \beta_{2} - 2) q^{42} + ( - 2 \beta_{5} - 2 \beta_{4} - 4 \beta_1) q^{43} + \beta_{5} q^{44} + (3 \beta_{6} + 2 \beta_{2}) q^{45} + 4 \beta_1 q^{46} + ( - 3 \beta_{6} + \beta_{2}) q^{47} - \beta_{2} q^{48} + (2 \beta_{6} + 2 \beta_{2} + 5) q^{49} + (\beta_{5} + \beta_{4} + \beta_1) q^{50} + (\beta_{5} + \beta_{4} + 8 \beta_1) q^{51} + \beta_{3} q^{52} + ( - \beta_{5} + \beta_{4} - 8) q^{53} + (2 \beta_{7} + 4 \beta_{3}) q^{54} + (3 \beta_{7} - 2 \beta_{6} + \beta_{3} - \beta_{2}) q^{55} + (\beta_{6} + \beta_{2} - 1) q^{56} + ( - 2 \beta_{5} - 2 \beta_{4} - 10 \beta_1) q^{57} + (\beta_{5} - \beta_{4} - 2) q^{58} + \beta_{2} q^{59} + 2 q^{60} - 3 \beta_{3} q^{61} + ( - 3 \beta_{7} - \beta_{3}) q^{62} + (\beta_{7} + \beta_{5} + \beta_{4} - 5 \beta_{3} + 3 \beta_1) q^{63} - q^{64} - 2 \beta_1 q^{65} + ( - \beta_{7} - \beta_{6} - 3 \beta_{3} - 2 \beta_{2}) q^{66} + ( - \beta_{5} + \beta_{4} - 4) q^{67} + (\beta_{7} - \beta_{3}) q^{68} - 4 \beta_{2} q^{69} + (\beta_{6} + \beta_{5} - \beta_{4} + 4) q^{70} + 2 q^{71} + (\beta_{5} + \beta_{4} + 3 \beta_1) q^{72} + (5 \beta_{7} - \beta_{3}) q^{73} + ( - \beta_{5} - \beta_{4} - 2 \beta_1) q^{74} + ( - 2 \beta_{6} - 5 \beta_{2}) q^{75} + (\beta_{7} + 2 \beta_{3}) q^{76} + ( - \beta_{7} - 2 \beta_{6} - \beta_{4} + 2 \beta_{3} + \beta_{2} - \beta_1 + 1) q^{77} + ( - \beta_{5} + \beta_{4} + 4) q^{78} + 4 \beta_1 q^{79} + \beta_{6} q^{80} + ( - \beta_{5} + \beta_{4} + 9) q^{81} + (3 \beta_{6} - \beta_{2}) q^{82} + (5 \beta_{7} + 4 \beta_{3}) q^{83} + ( - \beta_{5} - \beta_{4} - \beta_{3} - 4 \beta_1) q^{84} + ( - \beta_{5} - \beta_{4} + 6 \beta_1) q^{85} + ( - 2 \beta_{5} + 2 \beta_{4}) q^{86} + ( - 2 \beta_{7} - 8 \beta_{3}) q^{87} + ( - \beta_{4} - \beta_1 + 1) q^{88} + (4 \beta_{6} + 4 \beta_{2}) q^{89} + (3 \beta_{7} + 2 \beta_{3}) q^{90} + (\beta_{5} - \beta_{4} - \beta_{2} - 2) q^{91} - 4 q^{92} + (\beta_{5} - \beta_{4} + 2) q^{93} + ( - 3 \beta_{7} + \beta_{3}) q^{94} + ( - \beta_{5} - \beta_{4}) q^{95} - \beta_{3} q^{96} + ( - 4 \beta_{6} - 6 \beta_{2}) q^{97} + (2 \beta_{7} + 2 \beta_{3} + 5 \beta_1) q^{98} + (2 \beta_{5} - \beta_{4} + 10 \beta_1 - 10) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{4} - 16 q^{9} + 4 q^{11} + 8 q^{14} - 16 q^{15} + 8 q^{16} - 4 q^{22} + 32 q^{23} + 16 q^{36} - 8 q^{37} - 24 q^{42} - 4 q^{44} + 40 q^{49} - 56 q^{53} - 8 q^{56} - 24 q^{58} + 16 q^{60} - 8 q^{64} - 24 q^{67} + 24 q^{70} + 16 q^{71} + 4 q^{77} + 40 q^{78} + 80 q^{81} + 16 q^{86} + 4 q^{88} - 24 q^{91} - 32 q^{92} + 8 q^{93} - 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 23x^{4} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{6} + 24\nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} + 24\nu^{3} + 5\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} + 24\nu^{3} - 5\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -3\nu^{6} - \nu^{4} - 67\nu^{2} - 9 ) / 5 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{6} + \nu^{4} - 67\nu^{2} + 9 ) / 5 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -5\nu^{7} - \nu^{5} - 115\nu^{3} - 24\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -5\nu^{7} + \nu^{5} - 115\nu^{3} + 24\nu ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + \beta_{4} + 6\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{7} + \beta_{6} + 5\beta_{3} + 5\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 5\beta_{5} - 5\beta_{4} - 18 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 5\beta_{7} - 5\beta_{6} + 24\beta_{3} - 24\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -12\beta_{5} - 12\beta_{4} - 67\beta_1 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -24\beta_{7} - 24\beta_{6} - 115\beta_{3} - 115\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/154\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
153.1
−1.54779 + 1.54779i
−0.323042 + 0.323042i
0.323042 0.323042i
1.54779 1.54779i
1.54779 + 1.54779i
0.323042 + 0.323042i
−0.323042 0.323042i
−1.54779 1.54779i
1.00000i 3.09557i −1.00000 0.646084i −3.09557 2.44949 + 1.00000i 1.00000i −6.58258 −0.646084
153.2 1.00000i 0.646084i −1.00000 3.09557i −0.646084 −2.44949 + 1.00000i 1.00000i 2.58258 −3.09557
153.3 1.00000i 0.646084i −1.00000 3.09557i 0.646084 2.44949 + 1.00000i 1.00000i 2.58258 3.09557
153.4 1.00000i 3.09557i −1.00000 0.646084i 3.09557 −2.44949 + 1.00000i 1.00000i −6.58258 0.646084
153.5 1.00000i 3.09557i −1.00000 0.646084i 3.09557 −2.44949 1.00000i 1.00000i −6.58258 0.646084
153.6 1.00000i 0.646084i −1.00000 3.09557i 0.646084 2.44949 1.00000i 1.00000i 2.58258 3.09557
153.7 1.00000i 0.646084i −1.00000 3.09557i −0.646084 −2.44949 1.00000i 1.00000i 2.58258 −3.09557
153.8 1.00000i 3.09557i −1.00000 0.646084i −3.09557 2.44949 1.00000i 1.00000i −6.58258 −0.646084
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 153.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
11.b odd 2 1 inner
77.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 154.2.c.a 8
3.b odd 2 1 1386.2.e.b 8
4.b odd 2 1 1232.2.e.e 8
7.b odd 2 1 inner 154.2.c.a 8
7.c even 3 2 1078.2.i.b 16
7.d odd 6 2 1078.2.i.b 16
11.b odd 2 1 inner 154.2.c.a 8
21.c even 2 1 1386.2.e.b 8
28.d even 2 1 1232.2.e.e 8
33.d even 2 1 1386.2.e.b 8
44.c even 2 1 1232.2.e.e 8
77.b even 2 1 inner 154.2.c.a 8
77.h odd 6 2 1078.2.i.b 16
77.i even 6 2 1078.2.i.b 16
231.h odd 2 1 1386.2.e.b 8
308.g odd 2 1 1232.2.e.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.2.c.a 8 1.a even 1 1 trivial
154.2.c.a 8 7.b odd 2 1 inner
154.2.c.a 8 11.b odd 2 1 inner
154.2.c.a 8 77.b even 2 1 inner
1078.2.i.b 16 7.c even 3 2
1078.2.i.b 16 7.d odd 6 2
1078.2.i.b 16 77.h odd 6 2
1078.2.i.b 16 77.i even 6 2
1232.2.e.e 8 4.b odd 2 1
1232.2.e.e 8 28.d even 2 1
1232.2.e.e 8 44.c even 2 1
1232.2.e.e 8 308.g odd 2 1
1386.2.e.b 8 3.b odd 2 1
1386.2.e.b 8 21.c even 2 1
1386.2.e.b 8 33.d even 2 1
1386.2.e.b 8 231.h odd 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(154, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$3$ \( (T^{4} + 10 T^{2} + 4)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} + 10 T^{2} + 4)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} - 10 T^{2} + 49)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} - 2 T^{3} + 2 T^{2} - 22 T + 121)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 10 T^{2} + 4)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 14)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} - 34 T^{2} + 100)^{2} \) Copy content Toggle raw display
$23$ \( (T - 4)^{8} \) Copy content Toggle raw display
$29$ \( (T^{4} + 60 T^{2} + 144)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 76 T^{2} + 100)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 2 T - 20)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} - 124 T^{2} + 2500)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 176 T^{2} + 6400)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 124 T^{2} + 2500)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 14 T + 28)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} + 10 T^{2} + 4)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} - 90 T^{2} + 324)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 6 T - 12)^{4} \) Copy content Toggle raw display
$71$ \( (T - 2)^{8} \) Copy content Toggle raw display
$73$ \( (T^{4} - 300 T^{2} + 10404)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 16)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 250 T^{2} + 13924)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 96)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} + 328 T^{2} + 18496)^{2} \) Copy content Toggle raw display
show more
show less