Properties

Label 154.2.a.d
Level $154$
Weight $2$
Character orbit 154.a
Self dual yes
Analytic conductor $1.230$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [154,2,Mod(1,154)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(154, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("154.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 154 = 2 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 154.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.22969619113\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + ( - \beta - 1) q^{3} + q^{4} + (\beta + 1) q^{5} + ( - \beta - 1) q^{6} + q^{7} + q^{8} + (2 \beta + 3) q^{9} + (\beta + 1) q^{10} + q^{11} + ( - \beta - 1) q^{12} + (\beta - 1) q^{13}+ \cdots + (2 \beta + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{5} - 2 q^{6} + 2 q^{7} + 2 q^{8} + 6 q^{9} + 2 q^{10} + 2 q^{11} - 2 q^{12} - 2 q^{13} + 2 q^{14} - 12 q^{15} + 2 q^{16} - 4 q^{17} + 6 q^{18} - 10 q^{19} + 2 q^{20}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
1.00000 −3.23607 1.00000 3.23607 −3.23607 1.00000 1.00000 7.47214 3.23607
1.2 1.00000 1.23607 1.00000 −1.23607 1.23607 1.00000 1.00000 −1.47214 −1.23607
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 154.2.a.d 2
3.b odd 2 1 1386.2.a.m 2
4.b odd 2 1 1232.2.a.p 2
5.b even 2 1 3850.2.a.bj 2
5.c odd 4 2 3850.2.c.q 4
7.b odd 2 1 1078.2.a.w 2
7.c even 3 2 1078.2.e.q 4
7.d odd 6 2 1078.2.e.n 4
8.b even 2 1 4928.2.a.bt 2
8.d odd 2 1 4928.2.a.bk 2
11.b odd 2 1 1694.2.a.l 2
21.c even 2 1 9702.2.a.cu 2
28.d even 2 1 8624.2.a.bf 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.2.a.d 2 1.a even 1 1 trivial
1078.2.a.w 2 7.b odd 2 1
1078.2.e.n 4 7.d odd 6 2
1078.2.e.q 4 7.c even 3 2
1232.2.a.p 2 4.b odd 2 1
1386.2.a.m 2 3.b odd 2 1
1694.2.a.l 2 11.b odd 2 1
3850.2.a.bj 2 5.b even 2 1
3850.2.c.q 4 5.c odd 4 2
4928.2.a.bk 2 8.d odd 2 1
4928.2.a.bt 2 8.b even 2 1
8624.2.a.bf 2 28.d even 2 1
9702.2.a.cu 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(154))\):

\( T_{3}^{2} + 2T_{3} - 4 \) Copy content Toggle raw display
\( T_{5}^{2} - 2T_{5} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$5$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( (T - 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 4T - 16 \) Copy content Toggle raw display
$19$ \( T^{2} + 10T + 20 \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 20 \) Copy content Toggle raw display
$31$ \( (T - 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4T - 76 \) Copy content Toggle raw display
$41$ \( T^{2} - 4T - 16 \) Copy content Toggle raw display
$43$ \( T^{2} + 12T + 16 \) Copy content Toggle raw display
$47$ \( (T + 2)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 8T - 4 \) Copy content Toggle raw display
$59$ \( T^{2} - 10T + 20 \) Copy content Toggle raw display
$61$ \( T^{2} + 6T + 4 \) Copy content Toggle raw display
$67$ \( T^{2} + 4T - 176 \) Copy content Toggle raw display
$71$ \( T^{2} - 4T - 16 \) Copy content Toggle raw display
$73$ \( T^{2} - 8T - 64 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 2T - 124 \) Copy content Toggle raw display
$89$ \( (T - 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 16T + 44 \) Copy content Toggle raw display
show more
show less