Properties

Label 154.2
Level 154
Weight 2
Dimension 229
Nonzero newspaces 8
Newform subspaces 22
Sturm bound 2880
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 154 = 2 \cdot 7 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 22 \)
Sturm bound: \(2880\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(154))\).

Total New Old
Modular forms 840 229 611
Cusp forms 601 229 372
Eisenstein series 239 0 239

Trace form

\( 229 q + 3 q^{2} + 8 q^{3} - q^{4} + 6 q^{5} - 10 q^{6} - 11 q^{7} + 3 q^{8} - 29 q^{9} - 14 q^{10} - 9 q^{11} - 12 q^{12} + 2 q^{13} - 7 q^{14} - 36 q^{15} - q^{16} - 34 q^{17} + 5 q^{18} - 14 q^{19}+ \cdots - 117 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(154))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
154.2.a \(\chi_{154}(1, \cdot)\) 154.2.a.a 1 1
154.2.a.b 1
154.2.a.c 1
154.2.a.d 2
154.2.c \(\chi_{154}(153, \cdot)\) 154.2.c.a 8 1
154.2.e \(\chi_{154}(23, \cdot)\) 154.2.e.a 2 2
154.2.e.b 2
154.2.e.c 2
154.2.e.d 2
154.2.e.e 4
154.2.e.f 4
154.2.f \(\chi_{154}(15, \cdot)\) 154.2.f.a 4 4
154.2.f.b 4
154.2.f.c 4
154.2.f.d 4
154.2.f.e 8
154.2.i \(\chi_{154}(87, \cdot)\) 154.2.i.a 16 2
154.2.k \(\chi_{154}(13, \cdot)\) 154.2.k.a 32 4
154.2.m \(\chi_{154}(9, \cdot)\) 154.2.m.a 8 8
154.2.m.b 24
154.2.m.c 32
154.2.n \(\chi_{154}(17, \cdot)\) 154.2.n.a 64 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(154))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(154)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(77))\)\(^{\oplus 2}\)