Defining parameters
Level: | \( N \) | = | \( 154 = 2 \cdot 7 \cdot 11 \) |
Weight: | \( k \) | = | \( 1 \) |
Nonzero newspaces: | \( 0 \) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(1440\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(154))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 128 | 0 | 128 |
Cusp forms | 8 | 0 | 8 |
Eisenstein series | 120 | 0 | 120 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 0 | 0 | 0 |
Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(154))\) into lower level spaces
\( S_{1}^{\mathrm{old}}(\Gamma_1(154)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(77))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(154))\)\(^{\oplus 1}\)