Properties

Label 1539.1.j
Level $1539$
Weight $1$
Character orbit 1539.j
Rep. character $\chi_{1539}(26,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $2$
Newform subspaces $1$
Sturm bound $180$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1539 = 3^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1539.j (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 171 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(180\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1539, [\chi])\).

Total New Old
Modular forms 26 6 20
Cusp forms 2 2 0
Eisenstein series 24 4 20

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q + 2 q^{4} + q^{7} - 2 q^{13} + 2 q^{16} + 2 q^{19} - q^{25} + q^{28} + q^{31} - 2 q^{37} - 2 q^{43} - 2 q^{52} + q^{61} + 2 q^{64} - 2 q^{67} + q^{73} + 2 q^{76} - 2 q^{79} - q^{91} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1539, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1539.1.j.a 1539.j 171.j $2$ $0.768$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-3}) \) None 57.1.h.a \(0\) \(0\) \(0\) \(1\) \(q+q^{4}-\zeta_{6}^{2}q^{7}-q^{13}+q^{16}+q^{19}+\cdots\)