Properties

Label 1536.2.c.l.1535.3
Level $1536$
Weight $2$
Character 1536.1535
Analytic conductor $12.265$
Analytic rank $0$
Dimension $8$
CM discriminant -24
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1536,2,Mod(1535,1536)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1536, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1536.1535");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1536 = 2^{9} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1536.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2650217505\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1535.3
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 1536.1535
Dual form 1536.2.c.l.1535.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{3} +0.449490i q^{5} +4.87832i q^{7} +3.00000 q^{9} +O(q^{10})\) \(q-1.73205 q^{3} +0.449490i q^{5} +4.87832i q^{7} +3.00000 q^{9} +5.65685 q^{11} -0.778539i q^{15} -8.44949i q^{21} +4.79796 q^{25} -5.19615 q^{27} -9.34847i q^{29} +10.5352i q^{31} -9.79796 q^{33} -2.19275 q^{35} +1.34847i q^{45} -16.7980 q^{49} +7.55051i q^{53} +2.54270i q^{55} +10.3923 q^{59} +14.6349i q^{63} +9.79796 q^{73} -8.31031 q^{75} +27.5959i q^{77} +3.32124i q^{79} +9.00000 q^{81} -5.65685 q^{83} +16.1920i q^{87} -18.2474i q^{93} -2.00000 q^{97} +16.9706 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 24 q^{9} - 40 q^{25} - 56 q^{49} + 72 q^{81} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1536\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(517\) \(1025\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73205 −1.00000
\(4\) 0 0
\(5\) 0.449490i 0.201018i 0.994936 + 0.100509i \(0.0320471\pi\)
−0.994936 + 0.100509i \(0.967953\pi\)
\(6\) 0 0
\(7\) 4.87832i 1.84383i 0.387392 + 0.921915i \(0.373376\pi\)
−0.387392 + 0.921915i \(0.626624\pi\)
\(8\) 0 0
\(9\) 3.00000 1.00000
\(10\) 0 0
\(11\) 5.65685 1.70561 0.852803 0.522233i \(-0.174901\pi\)
0.852803 + 0.522233i \(0.174901\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) − 0.778539i − 0.201018i
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) − 8.44949i − 1.84383i
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 4.79796 0.959592
\(26\) 0 0
\(27\) −5.19615 −1.00000
\(28\) 0 0
\(29\) − 9.34847i − 1.73597i −0.496593 0.867984i \(-0.665416\pi\)
0.496593 0.867984i \(-0.334584\pi\)
\(30\) 0 0
\(31\) 10.5352i 1.89217i 0.323915 + 0.946086i \(0.395001\pi\)
−0.323915 + 0.946086i \(0.604999\pi\)
\(32\) 0 0
\(33\) −9.79796 −1.70561
\(34\) 0 0
\(35\) −2.19275 −0.370643
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 1.34847i 0.201018i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −16.7980 −2.39971
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.55051i 1.03714i 0.855034 + 0.518571i \(0.173536\pi\)
−0.855034 + 0.518571i \(0.826464\pi\)
\(54\) 0 0
\(55\) 2.54270i 0.342857i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.3923 1.35296 0.676481 0.736460i \(-0.263504\pi\)
0.676481 + 0.736460i \(0.263504\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 14.6349i 1.84383i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 9.79796 1.14676 0.573382 0.819288i \(-0.305631\pi\)
0.573382 + 0.819288i \(0.305631\pi\)
\(74\) 0 0
\(75\) −8.31031 −0.959592
\(76\) 0 0
\(77\) 27.5959i 3.14485i
\(78\) 0 0
\(79\) 3.32124i 0.373668i 0.982391 + 0.186834i \(0.0598227\pi\)
−0.982391 + 0.186834i \(0.940177\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) −5.65685 −0.620920 −0.310460 0.950586i \(-0.600483\pi\)
−0.310460 + 0.950586i \(0.600483\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 16.1920i 1.73597i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 18.2474i − 1.89217i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 16.9706 1.70561
\(100\) 0 0
\(101\) 16.4495i 1.63679i 0.574659 + 0.818393i \(0.305135\pi\)
−0.574659 + 0.818393i \(0.694865\pi\)
\(102\) 0 0
\(103\) 20.2918i 1.99941i 0.0242790 + 0.999705i \(0.492271\pi\)
−0.0242790 + 0.999705i \(0.507729\pi\)
\(104\) 0 0
\(105\) 3.79796 0.370643
\(106\) 0 0
\(107\) −17.3205 −1.67444 −0.837218 0.546869i \(-0.815820\pi\)
−0.837218 + 0.546869i \(0.815820\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 21.0000 1.90909
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 4.40408i 0.393913i
\(126\) 0 0
\(127\) − 12.0922i − 1.07301i −0.843896 0.536507i \(-0.819744\pi\)
0.843896 0.536507i \(-0.180256\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.46410 −0.302660 −0.151330 0.988483i \(-0.548356\pi\)
−0.151330 + 0.988483i \(0.548356\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 2.33562i − 0.201018i
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 4.20204 0.348961
\(146\) 0 0
\(147\) 29.0949 2.39971
\(148\) 0 0
\(149\) − 19.1464i − 1.56854i −0.620422 0.784268i \(-0.713039\pi\)
0.620422 0.784268i \(-0.286961\pi\)
\(150\) 0 0
\(151\) − 18.7347i − 1.52461i −0.647218 0.762305i \(-0.724068\pi\)
0.647218 0.762305i \(-0.275932\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.73545 −0.380361
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) − 13.0779i − 1.03714i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) − 4.40408i − 0.342857i
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 26.2474i 1.99556i 0.0666220 + 0.997778i \(0.478778\pi\)
−0.0666220 + 0.997778i \(0.521222\pi\)
\(174\) 0 0
\(175\) 23.4060i 1.76932i
\(176\) 0 0
\(177\) −18.0000 −1.35296
\(178\) 0 0
\(179\) −24.2487 −1.81243 −0.906217 0.422813i \(-0.861043\pi\)
−0.906217 + 0.422813i \(0.861043\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) − 25.3485i − 1.84383i
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −9.79796 −0.705273 −0.352636 0.935760i \(-0.614715\pi\)
−0.352636 + 0.935760i \(0.614715\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 27.1464i 1.93410i 0.254581 + 0.967051i \(0.418062\pi\)
−0.254581 + 0.967051i \(0.581938\pi\)
\(198\) 0 0
\(199\) − 7.42101i − 0.526062i −0.964787 0.263031i \(-0.915278\pi\)
0.964787 0.263031i \(-0.0847221\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 45.6048 3.20083
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −51.3939 −3.48884
\(218\) 0 0
\(219\) −16.9706 −1.14676
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 7.99247i − 0.535215i −0.963528 0.267608i \(-0.913767\pi\)
0.963528 0.267608i \(-0.0862331\pi\)
\(224\) 0 0
\(225\) 14.3939 0.959592
\(226\) 0 0
\(227\) −28.2843 −1.87729 −0.938647 0.344881i \(-0.887919\pi\)
−0.938647 + 0.344881i \(0.887919\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) − 47.7975i − 3.14485i
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 5.75255i − 0.373668i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 29.3939 1.89343 0.946713 0.322078i \(-0.104381\pi\)
0.946713 + 0.322078i \(0.104381\pi\)
\(242\) 0 0
\(243\) −15.5885 −1.00000
\(244\) 0 0
\(245\) − 7.55051i − 0.482384i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 9.79796 0.620920
\(250\) 0 0
\(251\) 5.65685 0.357057 0.178529 0.983935i \(-0.442866\pi\)
0.178529 + 0.983935i \(0.442866\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) − 28.0454i − 1.73597i
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −3.39388 −0.208484
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 14.6515i − 0.893320i −0.894704 0.446660i \(-0.852613\pi\)
0.894704 0.446660i \(-0.147387\pi\)
\(270\) 0 0
\(271\) − 1.76416i − 0.107165i −0.998563 0.0535825i \(-0.982936\pi\)
0.998563 0.0535825i \(-0.0170640\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 27.1414 1.63669
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 31.6055i 1.89217i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 3.46410 0.203069
\(292\) 0 0
\(293\) − 12.0454i − 0.703700i −0.936056 0.351850i \(-0.885553\pi\)
0.936056 0.351850i \(-0.114447\pi\)
\(294\) 0 0
\(295\) 4.67123i 0.271970i
\(296\) 0 0
\(297\) −29.3939 −1.70561
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 28.4914i − 1.63679i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) − 35.1464i − 1.99941i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 9.79796 0.553813 0.276907 0.960897i \(-0.410691\pi\)
0.276907 + 0.960897i \(0.410691\pi\)
\(314\) 0 0
\(315\) −6.57826 −0.370643
\(316\) 0 0
\(317\) − 34.2474i − 1.92353i −0.273879 0.961764i \(-0.588307\pi\)
0.273879 0.961764i \(-0.411693\pi\)
\(318\) 0 0
\(319\) − 52.8829i − 2.96088i
\(320\) 0 0
\(321\) 30.0000 1.67444
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 29.3939 1.60119 0.800593 0.599208i \(-0.204518\pi\)
0.800593 + 0.599208i \(0.204518\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 59.5959i 3.22730i
\(342\) 0 0
\(343\) − 47.7975i − 2.58082i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 28.2843 1.51838 0.759190 0.650870i \(-0.225596\pi\)
0.759190 + 0.650870i \(0.225596\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) −36.3731 −1.90909
\(364\) 0 0
\(365\) 4.40408i 0.230520i
\(366\) 0 0
\(367\) − 23.4060i − 1.22178i −0.791715 0.610890i \(-0.790812\pi\)
0.791715 0.610890i \(-0.209188\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −36.8338 −1.91231
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) − 7.62809i − 0.393913i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 20.9444i 1.07301i
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) −12.4041 −0.632171
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 4.85357i − 0.246086i −0.992401 0.123043i \(-0.960735\pi\)
0.992401 0.123043i \(-0.0392653\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 6.00000 0.302660
\(394\) 0 0
\(395\) −1.49286 −0.0751140
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 4.04541i 0.201018i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 50.6969i 2.49463i
\(414\) 0 0
\(415\) − 2.54270i − 0.124816i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 39.5980 1.93449 0.967244 0.253849i \(-0.0816965\pi\)
0.967244 + 0.253849i \(0.0816965\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) −7.27815 −0.348961
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) − 41.3621i − 1.97411i −0.160391 0.987054i \(-0.551275\pi\)
0.160391 0.987054i \(-0.448725\pi\)
\(440\) 0 0
\(441\) −50.3939 −2.39971
\(442\) 0 0
\(443\) 28.2843 1.34383 0.671913 0.740630i \(-0.265473\pi\)
0.671913 + 0.740630i \(0.265473\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 33.1626i 1.56854i
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 32.4495i 1.52461i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −38.0000 −1.77757 −0.888783 0.458329i \(-0.848448\pi\)
−0.888783 + 0.458329i \(0.848448\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 12.9444i − 0.602880i −0.953485 0.301440i \(-0.902533\pi\)
0.953485 0.301440i \(-0.0974673\pi\)
\(462\) 0 0
\(463\) − 5.86393i − 0.272520i −0.990673 0.136260i \(-0.956492\pi\)
0.990673 0.136260i \(-0.0435083\pi\)
\(464\) 0 0
\(465\) 8.20204 0.380361
\(466\) 0 0
\(467\) 39.5980 1.83238 0.916188 0.400749i \(-0.131250\pi\)
0.916188 + 0.400749i \(0.131250\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 22.6515i 1.03714i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 0.898979i − 0.0408206i
\(486\) 0 0
\(487\) 32.5911i 1.47684i 0.674338 + 0.738422i \(0.264429\pi\)
−0.674338 + 0.738422i \(0.735571\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −38.1051 −1.71966 −0.859830 0.510581i \(-0.829431\pi\)
−0.859830 + 0.510581i \(0.829431\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 7.62809i 0.342857i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −7.39388 −0.329023
\(506\) 0 0
\(507\) 22.5167 1.00000
\(508\) 0 0
\(509\) 29.8434i 1.32278i 0.750040 + 0.661392i \(0.230034\pi\)
−0.750040 + 0.661392i \(0.769966\pi\)
\(510\) 0 0
\(511\) 47.7975i 2.11444i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.12096 −0.401917
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) − 45.4619i − 1.99556i
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) − 40.5403i − 1.76932i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 31.1769 1.35296
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 7.78539i − 0.336592i
\(536\) 0 0
\(537\) 42.0000 1.81243
\(538\) 0 0
\(539\) −95.0236 −4.09296
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −16.2020 −0.688981
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 21.8434i − 0.925533i −0.886480 0.462767i \(-0.846857\pi\)
0.886480 0.462767i \(-0.153143\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −28.2843 −1.19204 −0.596020 0.802970i \(-0.703252\pi\)
−0.596020 + 0.802970i \(0.703252\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 43.9048i 1.84383i
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 29.3939 1.22368 0.611842 0.790980i \(-0.290429\pi\)
0.611842 + 0.790980i \(0.290429\pi\)
\(578\) 0 0
\(579\) 16.9706 0.705273
\(580\) 0 0
\(581\) − 27.5959i − 1.14487i
\(582\) 0 0
\(583\) 42.7121i 1.76896i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.3205 0.714894 0.357447 0.933933i \(-0.383647\pi\)
0.357447 + 0.933933i \(0.383647\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) − 47.0190i − 1.93410i
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 12.8536i 0.526062i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 48.9898 1.99834 0.999168 0.0407909i \(-0.0129877\pi\)
0.999168 + 0.0407909i \(0.0129877\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.43928i 0.383761i
\(606\) 0 0
\(607\) 15.6206i 0.634019i 0.948422 + 0.317010i \(0.102679\pi\)
−0.948422 + 0.317010i \(0.897321\pi\)
\(608\) 0 0
\(609\) −78.9898 −3.20083
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 22.0102 0.880408
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 38.8194i 1.54538i 0.634785 + 0.772689i \(0.281089\pi\)
−0.634785 + 0.772689i \(0.718911\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.43534 0.215695
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 58.7878 2.30762
\(650\) 0 0
\(651\) 89.0168 3.48884
\(652\) 0 0
\(653\) − 21.7526i − 0.851243i −0.904901 0.425622i \(-0.860055\pi\)
0.904901 0.425622i \(-0.139945\pi\)
\(654\) 0 0
\(655\) − 1.55708i − 0.0608401i
\(656\) 0 0
\(657\) 29.3939 1.14676
\(658\) 0 0
\(659\) 24.2487 0.944596 0.472298 0.881439i \(-0.343425\pi\)
0.472298 + 0.881439i \(0.343425\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 13.8434i 0.535215i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 0 0
\(675\) −24.9309 −0.959592
\(676\) 0 0
\(677\) − 38.7423i − 1.48899i −0.667628 0.744495i \(-0.732690\pi\)
0.667628 0.744495i \(-0.267310\pi\)
\(678\) 0 0
\(679\) − 9.75663i − 0.374425i
\(680\) 0 0
\(681\) 48.9898 1.87729
\(682\) 0 0
\(683\) 5.65685 0.216454 0.108227 0.994126i \(-0.465483\pi\)
0.108227 + 0.994126i \(0.465483\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 82.7878i 3.14485i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 52.9444i 1.99968i 0.0178345 + 0.999841i \(0.494323\pi\)
−0.0178345 + 0.999841i \(0.505677\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −80.2458 −3.01795
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 9.96371i 0.373668i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −98.9898 −3.68657
\(722\) 0 0
\(723\) −50.9117 −1.89343
\(724\) 0 0
\(725\) − 44.8536i − 1.66582i
\(726\) 0 0
\(727\) 36.6909i 1.36079i 0.732845 + 0.680395i \(0.238192\pi\)
−0.732845 + 0.680395i \(0.761808\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 13.0779i 0.482384i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 8.60612 0.315304
\(746\) 0 0
\(747\) −16.9706 −0.620920
\(748\) 0 0
\(749\) − 84.4949i − 3.08738i
\(750\) 0 0
\(751\) 31.0340i 1.13245i 0.824251 + 0.566224i \(0.191596\pi\)
−0.824251 + 0.566224i \(0.808404\pi\)
\(752\) 0 0
\(753\) −9.79796 −0.357057
\(754\) 0 0
\(755\) 8.42107 0.306474
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −48.9898 −1.76662 −0.883309 0.468792i \(-0.844689\pi\)
−0.883309 + 0.468792i \(0.844689\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 22.7423i − 0.817985i −0.912538 0.408993i \(-0.865880\pi\)
0.912538 0.408993i \(-0.134120\pi\)
\(774\) 0 0
\(775\) 50.5473i 1.81571i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 48.5761i 1.73597i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 5.87837 0.208484
\(796\) 0 0
\(797\) − 50.2474i − 1.77986i −0.456101 0.889928i \(-0.650754\pi\)
0.456101 0.889928i \(-0.349246\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 55.4256 1.95593
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 25.3772i 0.893320i
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 3.05561i 0.107165i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 11.9546i − 0.417218i −0.977999 0.208609i \(-0.933106\pi\)
0.977999 0.208609i \(-0.0668936\pi\)
\(822\) 0 0
\(823\) − 56.7756i − 1.97907i −0.144280 0.989537i \(-0.546087\pi\)
0.144280 0.989537i \(-0.453913\pi\)
\(824\) 0 0
\(825\) −47.0102 −1.63669
\(826\) 0 0
\(827\) 10.3923 0.361376 0.180688 0.983540i \(-0.442168\pi\)
0.180688 + 0.983540i \(0.442168\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 54.7423i − 1.89217i
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −58.3939 −2.01358
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 5.84337i − 0.201018i
\(846\) 0 0
\(847\) 102.445i 3.52004i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −11.7980 −0.401143
\(866\) 0 0
\(867\) −29.4449 −1.00000
\(868\) 0 0
\(869\) 18.7878i 0.637331i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −6.00000 −0.203069
\(874\) 0 0
\(875\) −21.4845 −0.726309
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 20.8633i 0.703700i
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) − 8.09082i − 0.271970i
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 58.9898 1.97845
\(890\) 0 0
\(891\) 50.9117 1.70561
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) − 10.8995i − 0.364332i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 98.4877 3.28475
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 49.3485i 1.63679i
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −32.0000 −1.05905
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 16.8990i − 0.558053i
\(918\) 0 0
\(919\) 11.1066i 0.366374i 0.983078 + 0.183187i \(0.0586414\pi\)
−0.983078 + 0.183187i \(0.941359\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 60.8754i 1.99941i
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 58.0000 1.89478 0.947389 0.320085i \(-0.103712\pi\)
0.947389 + 0.320085i \(0.103712\pi\)
\(938\) 0 0
\(939\) −16.9706 −0.553813
\(940\) 0 0
\(941\) − 60.9444i − 1.98673i −0.115003 0.993365i \(-0.536688\pi\)
0.115003 0.993365i \(-0.463312\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 11.3939 0.370643
\(946\) 0 0
\(947\) −24.2487 −0.787977 −0.393989 0.919115i \(-0.628905\pi\)
−0.393989 + 0.919115i \(0.628905\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 59.3183i 1.92353i
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 91.5959i 2.96088i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −79.9898 −2.58032
\(962\) 0 0
\(963\) −51.9615 −1.67444
\(964\) 0 0
\(965\) − 4.40408i − 0.141772i
\(966\) 0 0
\(967\) − 40.3765i − 1.29842i −0.760609 0.649211i \(-0.775099\pi\)
0.760609 0.649211i \(-0.224901\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −62.2254 −1.99691 −0.998454 0.0555842i \(-0.982298\pi\)
−0.998454 + 0.0555842i \(0.982298\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) −12.2020 −0.388789
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) − 58.3327i − 1.85300i −0.376296 0.926500i \(-0.622802\pi\)
0.376296 0.926500i \(-0.377198\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.33567 0.105748
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1536.2.c.l.1535.3 yes 8
3.2 odd 2 inner 1536.2.c.l.1535.6 yes 8
4.3 odd 2 inner 1536.2.c.l.1535.7 yes 8
8.3 odd 2 inner 1536.2.c.l.1535.2 8
8.5 even 2 inner 1536.2.c.l.1535.6 yes 8
12.11 even 2 inner 1536.2.c.l.1535.2 8
16.3 odd 4 1536.2.f.b.767.4 4
16.5 even 4 1536.2.f.h.767.3 4
16.11 odd 4 1536.2.f.h.767.1 4
16.13 even 4 1536.2.f.b.767.2 4
24.5 odd 2 CM 1536.2.c.l.1535.3 yes 8
24.11 even 2 inner 1536.2.c.l.1535.7 yes 8
48.5 odd 4 1536.2.f.b.767.2 4
48.11 even 4 1536.2.f.b.767.4 4
48.29 odd 4 1536.2.f.h.767.3 4
48.35 even 4 1536.2.f.h.767.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1536.2.c.l.1535.2 8 8.3 odd 2 inner
1536.2.c.l.1535.2 8 12.11 even 2 inner
1536.2.c.l.1535.3 yes 8 1.1 even 1 trivial
1536.2.c.l.1535.3 yes 8 24.5 odd 2 CM
1536.2.c.l.1535.6 yes 8 3.2 odd 2 inner
1536.2.c.l.1535.6 yes 8 8.5 even 2 inner
1536.2.c.l.1535.7 yes 8 4.3 odd 2 inner
1536.2.c.l.1535.7 yes 8 24.11 even 2 inner
1536.2.f.b.767.2 4 16.13 even 4
1536.2.f.b.767.2 4 48.5 odd 4
1536.2.f.b.767.4 4 16.3 odd 4
1536.2.f.b.767.4 4 48.11 even 4
1536.2.f.h.767.1 4 16.11 odd 4
1536.2.f.h.767.1 4 48.35 even 4
1536.2.f.h.767.3 4 16.5 even 4
1536.2.f.h.767.3 4 48.29 odd 4