Properties

Label 1536.2.c.f.1535.4
Level $1536$
Weight $2$
Character 1536.1535
Analytic conductor $12.265$
Analytic rank $0$
Dimension $4$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1536,2,Mod(1535,1536)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1536, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1536.1535");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1536 = 2^{9} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1536.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2650217505\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1535.4
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1536.1535
Dual form 1536.2.c.f.1535.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.292893 + 1.70711i) q^{3} +(-2.82843 - 1.00000i) q^{9} +O(q^{10})\) \(q+(-0.292893 + 1.70711i) q^{3} +(-2.82843 - 1.00000i) q^{9} +6.24264 q^{11} +6.00000i q^{17} -4.58579i q^{19} +5.00000 q^{25} +(2.53553 - 4.53553i) q^{27} +(-1.82843 + 10.6569i) q^{33} +11.3137i q^{41} -1.07107i q^{43} +7.00000 q^{49} +(-10.2426 - 1.75736i) q^{51} +(7.82843 + 1.34315i) q^{57} +14.2426 q^{59} +15.8995i q^{67} -16.9706 q^{73} +(-1.46447 + 8.53553i) q^{75} +(7.00000 + 5.65685i) q^{81} -10.7279 q^{83} +18.0000i q^{89} -16.9706 q^{97} +(-17.6569 - 6.24264i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{3} + 8 q^{11} + 20 q^{25} - 4 q^{27} + 4 q^{33} + 28 q^{49} - 24 q^{51} + 20 q^{57} + 40 q^{59} - 20 q^{75} + 28 q^{81} + 8 q^{83} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1536\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(517\) \(1025\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.292893 + 1.70711i −0.169102 + 0.985599i
\(4\) 0 0
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) −2.82843 1.00000i −0.942809 0.333333i
\(10\) 0 0
\(11\) 6.24264 1.88223 0.941113 0.338091i \(-0.109781\pi\)
0.941113 + 0.338091i \(0.109781\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000i 1.45521i 0.685994 + 0.727607i \(0.259367\pi\)
−0.685994 + 0.727607i \(0.740633\pi\)
\(18\) 0 0
\(19\) 4.58579i 1.05205i −0.850469 0.526026i \(-0.823682\pi\)
0.850469 0.526026i \(-0.176318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) 2.53553 4.53553i 0.487964 0.872864i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) −1.82843 + 10.6569i −0.318288 + 1.85512i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 11.3137i 1.76690i 0.468521 + 0.883452i \(0.344787\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 1.07107i 0.163336i −0.996660 0.0816682i \(-0.973975\pi\)
0.996660 0.0816682i \(-0.0260248\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) −10.2426 1.75736i −1.43426 0.246080i
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 7.82843 + 1.34315i 1.03690 + 0.177904i
\(58\) 0 0
\(59\) 14.2426 1.85423 0.927117 0.374772i \(-0.122279\pi\)
0.927117 + 0.374772i \(0.122279\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 15.8995i 1.94243i 0.238200 + 0.971216i \(0.423443\pi\)
−0.238200 + 0.971216i \(0.576557\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −16.9706 −1.98625 −0.993127 0.117041i \(-0.962659\pi\)
−0.993127 + 0.117041i \(0.962659\pi\)
\(74\) 0 0
\(75\) −1.46447 + 8.53553i −0.169102 + 0.985599i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 7.00000 + 5.65685i 0.777778 + 0.628539i
\(82\) 0 0
\(83\) −10.7279 −1.17754 −0.588771 0.808300i \(-0.700388\pi\)
−0.588771 + 0.808300i \(0.700388\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 18.0000i 1.90800i 0.299813 + 0.953998i \(0.403076\pi\)
−0.299813 + 0.953998i \(0.596924\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −16.9706 −1.72310 −0.861550 0.507673i \(-0.830506\pi\)
−0.861550 + 0.507673i \(0.830506\pi\)
\(98\) 0 0
\(99\) −17.6569 6.24264i −1.77458 0.627409i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.75736 0.943280 0.471640 0.881791i \(-0.343662\pi\)
0.471640 + 0.881791i \(0.343662\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.3137i 1.06430i −0.846649 0.532152i \(-0.821383\pi\)
0.846649 0.532152i \(-0.178617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 27.9706 2.54278
\(122\) 0 0
\(123\) −19.3137 3.31371i −1.74146 0.298787i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 1.82843 + 0.313708i 0.160984 + 0.0276205i
\(130\) 0 0
\(131\) −2.72792 −0.238340 −0.119170 0.992874i \(-0.538023\pi\)
−0.119170 + 0.992874i \(0.538023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.6274i 1.93319i 0.256307 + 0.966595i \(0.417494\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) 21.5563i 1.82839i −0.405279 0.914193i \(-0.632826\pi\)
0.405279 0.914193i \(-0.367174\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −2.05025 + 11.9497i −0.169102 + 0.985599i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 6.00000 16.9706i 0.485071 1.37199i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 19.4142i 1.52064i −0.649550 0.760319i \(-0.725042\pi\)
0.649550 0.760319i \(-0.274958\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) −4.58579 + 12.9706i −0.350684 + 0.991884i
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.17157 + 24.3137i −0.313555 + 1.82753i
\(178\) 0 0
\(179\) 26.7279 1.99774 0.998869 0.0475398i \(-0.0151381\pi\)
0.998869 + 0.0475398i \(0.0151381\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 37.4558i 2.73904i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 16.9706 1.22157 0.610784 0.791797i \(-0.290854\pi\)
0.610784 + 0.791797i \(0.290854\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) −27.1421 4.65685i −1.91446 0.328469i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 28.6274i 1.98020i
\(210\) 0 0
\(211\) 8.10051i 0.557662i 0.960340 + 0.278831i \(0.0899469\pi\)
−0.960340 + 0.278831i \(0.910053\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 4.97056 28.9706i 0.335880 1.95765i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) −14.1421 5.00000i −0.942809 0.333333i
\(226\) 0 0
\(227\) 23.2132 1.54071 0.770357 0.637613i \(-0.220078\pi\)
0.770357 + 0.637613i \(0.220078\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 30.0000i 1.96537i −0.185296 0.982683i \(-0.559325\pi\)
0.185296 0.982683i \(-0.440675\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 16.9706 1.09317 0.546585 0.837404i \(-0.315928\pi\)
0.546585 + 0.837404i \(0.315928\pi\)
\(242\) 0 0
\(243\) −11.7071 + 10.2929i −0.751011 + 0.660289i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 3.14214 18.3137i 0.199125 1.16058i
\(250\) 0 0
\(251\) 17.7574 1.12083 0.560417 0.828210i \(-0.310641\pi\)
0.560417 + 0.828210i \(0.310641\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.3137i 0.705730i −0.935674 0.352865i \(-0.885208\pi\)
0.935674 0.352865i \(-0.114792\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −30.7279 5.27208i −1.88052 0.322646i
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 31.2132 1.88223
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.0000i 1.07379i −0.843649 0.536895i \(-0.819597\pi\)
0.843649 0.536895i \(-0.180403\pi\)
\(282\) 0 0
\(283\) 2.44365i 0.145260i −0.997359 0.0726300i \(-0.976861\pi\)
0.997359 0.0726300i \(-0.0231392\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 4.97056 28.9706i 0.291380 1.69828i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 15.8284 28.3137i 0.918458 1.64293i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 18.0416i 1.02969i −0.857283 0.514845i \(-0.827849\pi\)
0.857283 0.514845i \(-0.172151\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −2.85786 + 16.6569i −0.159510 + 0.929695i
\(322\) 0 0
\(323\) 27.5147 1.53096
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 36.3848i 1.99989i −0.0105746 0.999944i \(-0.503366\pi\)
0.0105746 0.999944i \(-0.496634\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −14.0000 −0.762629 −0.381314 0.924445i \(-0.624528\pi\)
−0.381314 + 0.924445i \(0.624528\pi\)
\(338\) 0 0
\(339\) 19.3137 + 3.31371i 1.04898 + 0.179976i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −30.2426 −1.62351 −0.811755 0.583998i \(-0.801488\pi\)
−0.811755 + 0.583998i \(0.801488\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 22.6274i 1.20434i −0.798369 0.602168i \(-0.794304\pi\)
0.798369 0.602168i \(-0.205696\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −2.02944 −0.106812
\(362\) 0 0
\(363\) −8.19239 + 47.7487i −0.429989 + 2.50616i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 11.3137 32.0000i 0.588968 1.66585i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 32.8701i 1.68842i 0.536011 + 0.844211i \(0.319930\pi\)
−0.536011 + 0.844211i \(0.680070\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.07107 + 3.02944i −0.0544454 + 0.153995i
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0.798990 4.65685i 0.0403037 0.234907i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.00000i 0.299626i −0.988714 0.149813i \(-0.952133\pi\)
0.988714 0.149813i \(-0.0478671\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −22.0000 −1.08783 −0.543915 0.839140i \(-0.683059\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 0 0
\(411\) −38.6274 6.62742i −1.90535 0.326906i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 36.7990 + 6.31371i 1.80205 + 0.309184i
\(418\) 0 0
\(419\) −13.2721 −0.648383 −0.324192 0.945991i \(-0.605092\pi\)
−0.324192 + 0.945991i \(0.605092\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 30.0000i 1.45521i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −16.9706 −0.815553 −0.407777 0.913082i \(-0.633696\pi\)
−0.407777 + 0.913082i \(0.633696\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −19.7990 7.00000i −0.942809 0.333333i
\(442\) 0 0
\(443\) −27.6985 −1.31599 −0.657997 0.753020i \(-0.728596\pi\)
−0.657997 + 0.753020i \(0.728596\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 42.0000i 1.98210i −0.133482 0.991051i \(-0.542616\pi\)
0.133482 0.991051i \(-0.457384\pi\)
\(450\) 0 0
\(451\) 70.6274i 3.32572i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) 0 0
\(459\) 27.2132 + 15.2132i 1.27020 + 0.710092i
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.786797 0.0364086 0.0182043 0.999834i \(-0.494205\pi\)
0.0182043 + 0.999834i \(0.494205\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.68629i 0.307436i
\(474\) 0 0
\(475\) 22.9289i 1.05205i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 33.1421 + 5.68629i 1.49874 + 0.257143i
\(490\) 0 0
\(491\) −19.6985 −0.888980 −0.444490 0.895784i \(-0.646615\pi\)
−0.444490 + 0.895784i \(0.646615\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 39.8995i 1.78615i −0.449911 0.893073i \(-0.648544\pi\)
0.449911 0.893073i \(-0.351456\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.80761 22.1924i 0.169102 0.985599i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −20.7990 11.6274i −0.918298 0.513363i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 45.2548i 1.98265i −0.131432 0.991325i \(-0.541958\pi\)
0.131432 0.991325i \(-0.458042\pi\)
\(522\) 0 0
\(523\) 8.87006i 0.387861i −0.981015 0.193930i \(-0.937876\pi\)
0.981015 0.193930i \(-0.0621236\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −40.2843 14.2426i −1.74819 0.618078i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −7.82843 + 45.6274i −0.337822 + 1.96897i
\(538\) 0 0
\(539\) 43.6985 1.88223
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 38.5269i 1.64729i −0.567104 0.823646i \(-0.691936\pi\)
0.567104 0.823646i \(-0.308064\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −63.9411 10.9706i −2.69960 0.463178i
\(562\) 0 0
\(563\) −47.2132 −1.98980 −0.994900 0.100870i \(-0.967837\pi\)
−0.994900 + 0.100870i \(0.967837\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22.6274i 0.948591i 0.880366 + 0.474295i \(0.157297\pi\)
−0.880366 + 0.474295i \(0.842703\pi\)
\(570\) 0 0
\(571\) 45.5563i 1.90647i 0.302224 + 0.953237i \(0.402271\pi\)
−0.302224 + 0.953237i \(0.597729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 34.0000 1.41544 0.707719 0.706494i \(-0.249724\pi\)
0.707719 + 0.706494i \(0.249724\pi\)
\(578\) 0 0
\(579\) −4.97056 + 28.9706i −0.206570 + 1.20398i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −38.2426 −1.57844 −0.789221 0.614109i \(-0.789516\pi\)
−0.789221 + 0.614109i \(0.789516\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 45.2548i 1.85839i 0.369586 + 0.929197i \(0.379500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −16.9706 −0.692244 −0.346122 0.938190i \(-0.612502\pi\)
−0.346122 + 0.938190i \(0.612502\pi\)
\(602\) 0 0
\(603\) 15.8995 44.9706i 0.647477 1.83134i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 30.0000i 1.20775i 0.797077 + 0.603877i \(0.206378\pi\)
−0.797077 + 0.603877i \(0.793622\pi\)
\(618\) 0 0
\(619\) 11.6152i 0.466855i 0.972374 + 0.233428i \(0.0749942\pi\)
−0.972374 + 0.233428i \(0.925006\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 48.8701 + 8.38478i 1.95168 + 0.334856i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) −13.8284 2.37258i −0.549631 0.0943017i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 42.0000i 1.65890i 0.558581 + 0.829450i \(0.311346\pi\)
−0.558581 + 0.829450i \(0.688654\pi\)
\(642\) 0 0
\(643\) 29.3553i 1.15766i 0.815448 + 0.578831i \(0.196491\pi\)
−0.815448 + 0.578831i \(0.803509\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 88.9117 3.49009
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 48.0000 + 16.9706i 1.87266 + 0.662085i
\(658\) 0 0
\(659\) −21.2721 −0.828643 −0.414321 0.910131i \(-0.635981\pi\)
−0.414321 + 0.910131i \(0.635981\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 50.9117 1.96250 0.981251 0.192736i \(-0.0617360\pi\)
0.981251 + 0.192736i \(0.0617360\pi\)
\(674\) 0 0
\(675\) 12.6777 22.6777i 0.487964 0.872864i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −6.79899 + 39.6274i −0.260538 + 1.51853i
\(682\) 0 0
\(683\) 51.6985 1.97819 0.989094 0.147287i \(-0.0470541\pi\)
0.989094 + 0.147287i \(0.0470541\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 14.5269i 0.552630i 0.961067 + 0.276315i \(0.0891133\pi\)
−0.961067 + 0.276315i \(0.910887\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −67.8823 −2.57122
\(698\) 0 0
\(699\) 51.2132 + 8.78680i 1.93706 + 0.332347i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −4.97056 + 28.9706i −0.184857 + 1.07743i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −14.1421 23.0000i −0.523783 0.851852i
\(730\) 0 0
\(731\) 6.42641 0.237689
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 99.2548i 3.65610i
\(738\) 0 0
\(739\) 5.95837i 0.219182i −0.993977 0.109591i \(-0.965046\pi\)
0.993977 0.109591i \(-0.0349541\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 30.3431 + 10.7279i 1.11020 + 0.392514i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) −5.20101 + 30.3137i −0.189535 + 1.10469i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.3137i 0.410122i 0.978749 + 0.205061i \(0.0657392\pi\)
−0.978749 + 0.205061i \(0.934261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −50.9117 −1.83592 −0.917961 0.396670i \(-0.870166\pi\)
−0.917961 + 0.396670i \(0.870166\pi\)
\(770\) 0 0
\(771\) 19.3137 + 3.31371i 0.695566 + 0.119340i
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 51.8823 1.85887
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 53.3553i 1.90191i −0.309326 0.950956i \(-0.600103\pi\)
0.309326 0.950956i \(-0.399897\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 18.0000 50.9117i 0.635999 1.79888i
\(802\) 0 0
\(803\) −105.941 −3.73858
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 56.5685i 1.98884i −0.105474 0.994422i \(-0.533636\pi\)
0.105474 0.994422i \(-0.466364\pi\)
\(810\) 0 0
\(811\) 56.8701i 1.99698i −0.0549536 0.998489i \(-0.517501\pi\)
0.0549536 0.998489i \(-0.482499\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −4.91169 −0.171838
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) −9.14214 + 53.2843i −0.318288 + 1.85512i
\(826\) 0 0
\(827\) −24.1838 −0.840952 −0.420476 0.907304i \(-0.638137\pi\)
−0.420476 + 0.907304i \(0.638137\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 42.0000i 1.45521i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 30.7279 + 5.27208i 1.05833 + 0.181580i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 4.17157 + 0.715729i 0.143168 + 0.0245637i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.6274i 0.772938i 0.922302 + 0.386469i \(0.126305\pi\)
−0.922302 + 0.386469i \(0.873695\pi\)
\(858\) 0 0
\(859\) 35.0122i 1.19460i −0.802018 0.597300i \(-0.796240\pi\)
0.802018 0.597300i \(-0.203760\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 5.56497 32.4350i 0.188996 1.10155i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 48.0000 + 16.9706i 1.62455 + 0.574367i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 56.5685i 1.90584i 0.303218 + 0.952921i \(0.401939\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) 43.4142i 1.46100i 0.682910 + 0.730502i \(0.260714\pi\)
−0.682910 + 0.730502i \(0.739286\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 43.6985 + 35.3137i 1.46395 + 1.18305i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 49.0711i 1.62938i −0.579898 0.814689i \(-0.696908\pi\)
0.579898 0.814689i \(-0.303092\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −66.9706 −2.21640
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 30.7990 + 5.28427i 1.01486 + 0.174123i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 54.0000i 1.77168i −0.463988 0.885841i \(-0.653582\pi\)
0.463988 0.885841i \(-0.346418\pi\)
\(930\) 0 0
\(931\) 32.1005i 1.05205i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −50.9117 −1.66321 −0.831606 0.555366i \(-0.812578\pi\)
−0.831606 + 0.555366i \(0.812578\pi\)
\(938\) 0 0
\(939\) 2.92893 17.0711i 0.0955821 0.557093i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16.7868 −0.545498 −0.272749 0.962085i \(-0.587933\pi\)
−0.272749 + 0.962085i \(0.587933\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 45.2548i 1.46595i −0.680257 0.732974i \(-0.738132\pi\)
0.680257 0.732974i \(-0.261868\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) −27.5980 9.75736i −0.889332 0.314427i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) −8.05887 + 46.9706i −0.258888 + 1.50891i
\(970\) 0 0
\(971\) −16.1838 −0.519362 −0.259681 0.965694i \(-0.583617\pi\)
−0.259681 + 0.965694i \(0.583617\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.00000i 0.191957i 0.995383 + 0.0959785i \(0.0305980\pi\)
−0.995383 + 0.0959785i \(0.969402\pi\)
\(978\) 0 0
\(979\) 112.368i 3.59128i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 62.1127 + 10.6569i 1.97109 + 0.338185i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1536.2.c.f.1535.4 yes 4
3.2 odd 2 1536.2.c.j.1535.2 yes 4
4.3 odd 2 1536.2.c.j.1535.1 yes 4
8.3 odd 2 CM 1536.2.c.f.1535.4 yes 4
8.5 even 2 1536.2.c.j.1535.1 yes 4
12.11 even 2 inner 1536.2.c.f.1535.3 4
16.3 odd 4 1536.2.f.j.767.4 4
16.5 even 4 1536.2.f.j.767.4 4
16.11 odd 4 1536.2.f.a.767.1 4
16.13 even 4 1536.2.f.a.767.1 4
24.5 odd 2 inner 1536.2.c.f.1535.3 4
24.11 even 2 1536.2.c.j.1535.2 yes 4
48.5 odd 4 1536.2.f.j.767.3 4
48.11 even 4 1536.2.f.a.767.2 4
48.29 odd 4 1536.2.f.a.767.2 4
48.35 even 4 1536.2.f.j.767.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1536.2.c.f.1535.3 4 12.11 even 2 inner
1536.2.c.f.1535.3 4 24.5 odd 2 inner
1536.2.c.f.1535.4 yes 4 1.1 even 1 trivial
1536.2.c.f.1535.4 yes 4 8.3 odd 2 CM
1536.2.c.j.1535.1 yes 4 4.3 odd 2
1536.2.c.j.1535.1 yes 4 8.5 even 2
1536.2.c.j.1535.2 yes 4 3.2 odd 2
1536.2.c.j.1535.2 yes 4 24.11 even 2
1536.2.f.a.767.1 4 16.11 odd 4
1536.2.f.a.767.1 4 16.13 even 4
1536.2.f.a.767.2 4 48.11 even 4
1536.2.f.a.767.2 4 48.29 odd 4
1536.2.f.j.767.3 4 48.5 odd 4
1536.2.f.j.767.3 4 48.35 even 4
1536.2.f.j.767.4 4 16.3 odd 4
1536.2.f.j.767.4 4 16.5 even 4