Properties

Label 1536.1.h.b
Level $1536$
Weight $1$
Character orbit 1536.h
Self dual yes
Analytic conductor $0.767$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -24
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1536 = 2^{9} \cdot 3 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1536.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(0.766563859404\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.4608.1
Artin image: $D_8$
Artin field: Galois closure of 8.0.7247757312.3

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} -\beta q^{5} + \beta q^{7} + q^{9} +O(q^{10})\) \( q + q^{3} -\beta q^{5} + \beta q^{7} + q^{9} -\beta q^{15} + \beta q^{21} + q^{25} + q^{27} + \beta q^{29} -\beta q^{31} -2 q^{35} -\beta q^{45} + q^{49} + \beta q^{53} -2 q^{59} + \beta q^{63} + q^{75} + \beta q^{79} + q^{81} + \beta q^{87} -\beta q^{93} -2 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{3} + 2q^{9} + O(q^{10}) \) \( 2q + 2q^{3} + 2q^{9} + 2q^{25} + 2q^{27} - 4q^{35} + 2q^{49} - 4q^{59} + 2q^{75} + 2q^{81} - 4q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1536\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(517\) \(1025\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
257.1
1.41421
−1.41421
0 1.00000 0 −1.41421 0 1.41421 0 1.00000 0
257.2 0 1.00000 0 1.41421 0 −1.41421 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by \(\Q(\sqrt{-6}) \)
8.d odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1536.1.h.b 2
3.b odd 2 1 1536.1.h.a 2
4.b odd 2 1 1536.1.h.a 2
8.b even 2 1 1536.1.h.a 2
8.d odd 2 1 inner 1536.1.h.b 2
12.b even 2 1 inner 1536.1.h.b 2
16.e even 4 2 1536.1.e.a 4
16.f odd 4 2 1536.1.e.a 4
24.f even 2 1 1536.1.h.a 2
24.h odd 2 1 CM 1536.1.h.b 2
32.g even 8 2 3072.1.i.e 4
32.g even 8 2 3072.1.i.h 4
32.h odd 8 2 3072.1.i.e 4
32.h odd 8 2 3072.1.i.h 4
48.i odd 4 2 1536.1.e.a 4
48.k even 4 2 1536.1.e.a 4
96.o even 8 2 3072.1.i.e 4
96.o even 8 2 3072.1.i.h 4
96.p odd 8 2 3072.1.i.e 4
96.p odd 8 2 3072.1.i.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1536.1.e.a 4 16.e even 4 2
1536.1.e.a 4 16.f odd 4 2
1536.1.e.a 4 48.i odd 4 2
1536.1.e.a 4 48.k even 4 2
1536.1.h.a 2 3.b odd 2 1
1536.1.h.a 2 4.b odd 2 1
1536.1.h.a 2 8.b even 2 1
1536.1.h.a 2 24.f even 2 1
1536.1.h.b 2 1.a even 1 1 trivial
1536.1.h.b 2 8.d odd 2 1 inner
1536.1.h.b 2 12.b even 2 1 inner
1536.1.h.b 2 24.h odd 2 1 CM
3072.1.i.e 4 32.g even 8 2
3072.1.i.e 4 32.h odd 8 2
3072.1.i.e 4 96.o even 8 2
3072.1.i.e 4 96.p odd 8 2
3072.1.i.h 4 32.g even 8 2
3072.1.i.h 4 32.h odd 8 2
3072.1.i.h 4 96.o even 8 2
3072.1.i.h 4 96.p odd 8 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1536, [\chi])\):

\( T_{5}^{2} - 2 \)
\( T_{59} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( ( -1 + T )^{2} \)
$5$ \( -2 + T^{2} \)
$7$ \( -2 + T^{2} \)
$11$ \( T^{2} \)
$13$ \( T^{2} \)
$17$ \( T^{2} \)
$19$ \( T^{2} \)
$23$ \( T^{2} \)
$29$ \( -2 + T^{2} \)
$31$ \( -2 + T^{2} \)
$37$ \( T^{2} \)
$41$ \( T^{2} \)
$43$ \( T^{2} \)
$47$ \( T^{2} \)
$53$ \( -2 + T^{2} \)
$59$ \( ( 2 + T )^{2} \)
$61$ \( T^{2} \)
$67$ \( T^{2} \)
$71$ \( T^{2} \)
$73$ \( T^{2} \)
$79$ \( -2 + T^{2} \)
$83$ \( T^{2} \)
$89$ \( T^{2} \)
$97$ \( ( 2 + T )^{2} \)
show more
show less