Properties

Label 1530.2.a.i.1.1
Level $1530$
Weight $2$
Character 1530.1
Self dual yes
Analytic conductor $12.217$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1530,2,Mod(1,1530)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1530, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1530.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.2171115093\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 510)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1530.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} -2.00000 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} -2.00000 q^{7} +1.00000 q^{8} -1.00000 q^{10} -4.00000 q^{11} -2.00000 q^{14} +1.00000 q^{16} -1.00000 q^{17} +4.00000 q^{19} -1.00000 q^{20} -4.00000 q^{22} -4.00000 q^{23} +1.00000 q^{25} -2.00000 q^{28} -6.00000 q^{29} -8.00000 q^{31} +1.00000 q^{32} -1.00000 q^{34} +2.00000 q^{35} -6.00000 q^{37} +4.00000 q^{38} -1.00000 q^{40} -8.00000 q^{41} +2.00000 q^{43} -4.00000 q^{44} -4.00000 q^{46} +8.00000 q^{47} -3.00000 q^{49} +1.00000 q^{50} -14.0000 q^{53} +4.00000 q^{55} -2.00000 q^{56} -6.00000 q^{58} -6.00000 q^{59} +2.00000 q^{61} -8.00000 q^{62} +1.00000 q^{64} +2.00000 q^{67} -1.00000 q^{68} +2.00000 q^{70} +10.0000 q^{71} +4.00000 q^{73} -6.00000 q^{74} +4.00000 q^{76} +8.00000 q^{77} +4.00000 q^{79} -1.00000 q^{80} -8.00000 q^{82} +16.0000 q^{83} +1.00000 q^{85} +2.00000 q^{86} -4.00000 q^{88} -6.00000 q^{89} -4.00000 q^{92} +8.00000 q^{94} -4.00000 q^{95} -8.00000 q^{97} -3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) −4.00000 −0.852803
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) −2.00000 −0.377964
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 4.00000 0.648886
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 0 0
\(53\) −14.0000 −1.92305 −0.961524 0.274721i \(-0.911414\pi\)
−0.961524 + 0.274721i \(0.911414\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) −2.00000 −0.267261
\(57\) 0 0
\(58\) −6.00000 −0.787839
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −8.00000 −1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) −1.00000 −0.121268
\(69\) 0 0
\(70\) 2.00000 0.239046
\(71\) 10.0000 1.18678 0.593391 0.804914i \(-0.297789\pi\)
0.593391 + 0.804914i \(0.297789\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) −6.00000 −0.697486
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) 8.00000 0.911685
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) −8.00000 −0.883452
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 2.00000 0.215666
\(87\) 0 0
\(88\) −4.00000 −0.426401
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −4.00000 −0.417029
\(93\) 0 0
\(94\) 8.00000 0.825137
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) −20.0000 −1.97066 −0.985329 0.170664i \(-0.945409\pi\)
−0.985329 + 0.170664i \(0.945409\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −14.0000 −1.35980
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 4.00000 0.381385
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) −6.00000 −0.552345
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 2.00000 0.181071
\(123\) 0 0
\(124\) −8.00000 −0.718421
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −8.00000 −0.693688
\(134\) 2.00000 0.172774
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 2.00000 0.169031
\(141\) 0 0
\(142\) 10.0000 0.839181
\(143\) 0 0
\(144\) 0 0
\(145\) 6.00000 0.498273
\(146\) 4.00000 0.331042
\(147\) 0 0
\(148\) −6.00000 −0.493197
\(149\) −20.0000 −1.63846 −0.819232 0.573462i \(-0.805600\pi\)
−0.819232 + 0.573462i \(0.805600\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 4.00000 0.324443
\(153\) 0 0
\(154\) 8.00000 0.644658
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 4.00000 0.318223
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) −8.00000 −0.624695
\(165\) 0 0
\(166\) 16.0000 1.24184
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 1.00000 0.0766965
\(171\) 0 0
\(172\) 2.00000 0.152499
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) −2.00000 −0.151186
\(176\) −4.00000 −0.301511
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) −2.00000 −0.149487 −0.0747435 0.997203i \(-0.523814\pi\)
−0.0747435 + 0.997203i \(0.523814\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4.00000 −0.294884
\(185\) 6.00000 0.441129
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) 8.00000 0.583460
\(189\) 0 0
\(190\) −4.00000 −0.290191
\(191\) 20.0000 1.44715 0.723575 0.690246i \(-0.242498\pi\)
0.723575 + 0.690246i \(0.242498\pi\)
\(192\) 0 0
\(193\) 16.0000 1.15171 0.575853 0.817554i \(-0.304670\pi\)
0.575853 + 0.817554i \(0.304670\pi\)
\(194\) −8.00000 −0.574367
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) 12.0000 0.844317
\(203\) 12.0000 0.842235
\(204\) 0 0
\(205\) 8.00000 0.558744
\(206\) −20.0000 −1.39347
\(207\) 0 0
\(208\) 0 0
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) −14.0000 −0.961524
\(213\) 0 0
\(214\) 4.00000 0.273434
\(215\) −2.00000 −0.136399
\(216\) 0 0
\(217\) 16.0000 1.08615
\(218\) −2.00000 −0.135457
\(219\) 0 0
\(220\) 4.00000 0.269680
\(221\) 0 0
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) 18.0000 1.19734
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) −26.0000 −1.71813 −0.859064 0.511868i \(-0.828954\pi\)
−0.859064 + 0.511868i \(0.828954\pi\)
\(230\) 4.00000 0.263752
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) 0 0
\(235\) −8.00000 −0.521862
\(236\) −6.00000 −0.390567
\(237\) 0 0
\(238\) 2.00000 0.129641
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 5.00000 0.321412
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 3.00000 0.191663
\(246\) 0 0
\(247\) 0 0
\(248\) −8.00000 −0.508001
\(249\) 0 0
\(250\) −1.00000 −0.0632456
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) 0 0
\(253\) 16.0000 1.00591
\(254\) 4.00000 0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −30.0000 −1.87135 −0.935674 0.352865i \(-0.885208\pi\)
−0.935674 + 0.352865i \(0.885208\pi\)
\(258\) 0 0
\(259\) 12.0000 0.745644
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) 14.0000 0.860013
\(266\) −8.00000 −0.490511
\(267\) 0 0
\(268\) 2.00000 0.122169
\(269\) 2.00000 0.121942 0.0609711 0.998140i \(-0.480580\pi\)
0.0609711 + 0.998140i \(0.480580\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) 6.00000 0.360505 0.180253 0.983620i \(-0.442309\pi\)
0.180253 + 0.983620i \(0.442309\pi\)
\(278\) −4.00000 −0.239904
\(279\) 0 0
\(280\) 2.00000 0.119523
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) −12.0000 −0.713326 −0.356663 0.934233i \(-0.616086\pi\)
−0.356663 + 0.934233i \(0.616086\pi\)
\(284\) 10.0000 0.593391
\(285\) 0 0
\(286\) 0 0
\(287\) 16.0000 0.944450
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 6.00000 0.352332
\(291\) 0 0
\(292\) 4.00000 0.234082
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 0 0
\(295\) 6.00000 0.349334
\(296\) −6.00000 −0.348743
\(297\) 0 0
\(298\) −20.0000 −1.15857
\(299\) 0 0
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) −16.0000 −0.920697
\(303\) 0 0
\(304\) 4.00000 0.229416
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 8.00000 0.455842
\(309\) 0 0
\(310\) 8.00000 0.454369
\(311\) −10.0000 −0.567048 −0.283524 0.958965i \(-0.591504\pi\)
−0.283524 + 0.958965i \(0.591504\pi\)
\(312\) 0 0
\(313\) −8.00000 −0.452187 −0.226093 0.974106i \(-0.572595\pi\)
−0.226093 + 0.974106i \(0.572595\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) 24.0000 1.34374
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 8.00000 0.445823
\(323\) −4.00000 −0.222566
\(324\) 0 0
\(325\) 0 0
\(326\) 8.00000 0.443079
\(327\) 0 0
\(328\) −8.00000 −0.441726
\(329\) −16.0000 −0.882109
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 16.0000 0.878114
\(333\) 0 0
\(334\) 16.0000 0.875481
\(335\) −2.00000 −0.109272
\(336\) 0 0
\(337\) 20.0000 1.08947 0.544735 0.838608i \(-0.316630\pi\)
0.544735 + 0.838608i \(0.316630\pi\)
\(338\) −13.0000 −0.707107
\(339\) 0 0
\(340\) 1.00000 0.0542326
\(341\) 32.0000 1.73290
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 2.00000 0.107833
\(345\) 0 0
\(346\) −2.00000 −0.107521
\(347\) 20.0000 1.07366 0.536828 0.843692i \(-0.319622\pi\)
0.536828 + 0.843692i \(0.319622\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) −2.00000 −0.106904
\(351\) 0 0
\(352\) −4.00000 −0.213201
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) −10.0000 −0.530745
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) −2.00000 −0.105703
\(359\) 4.00000 0.211112 0.105556 0.994413i \(-0.466338\pi\)
0.105556 + 0.994413i \(0.466338\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 14.0000 0.735824
\(363\) 0 0
\(364\) 0 0
\(365\) −4.00000 −0.209370
\(366\) 0 0
\(367\) −38.0000 −1.98358 −0.991792 0.127862i \(-0.959188\pi\)
−0.991792 + 0.127862i \(0.959188\pi\)
\(368\) −4.00000 −0.208514
\(369\) 0 0
\(370\) 6.00000 0.311925
\(371\) 28.0000 1.45369
\(372\) 0 0
\(373\) 36.0000 1.86401 0.932005 0.362446i \(-0.118058\pi\)
0.932005 + 0.362446i \(0.118058\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) 8.00000 0.412568
\(377\) 0 0
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) −4.00000 −0.205196
\(381\) 0 0
\(382\) 20.0000 1.02329
\(383\) 16.0000 0.817562 0.408781 0.912633i \(-0.365954\pi\)
0.408781 + 0.912633i \(0.365954\pi\)
\(384\) 0 0
\(385\) −8.00000 −0.407718
\(386\) 16.0000 0.814379
\(387\) 0 0
\(388\) −8.00000 −0.406138
\(389\) 36.0000 1.82527 0.912636 0.408773i \(-0.134043\pi\)
0.912636 + 0.408773i \(0.134043\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) −3.00000 −0.151523
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) −4.00000 −0.201262
\(396\) 0 0
\(397\) 34.0000 1.70641 0.853206 0.521575i \(-0.174655\pi\)
0.853206 + 0.521575i \(0.174655\pi\)
\(398\) −8.00000 −0.401004
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −20.0000 −0.998752 −0.499376 0.866385i \(-0.666437\pi\)
−0.499376 + 0.866385i \(0.666437\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 12.0000 0.597022
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 8.00000 0.395092
\(411\) 0 0
\(412\) −20.0000 −0.985329
\(413\) 12.0000 0.590481
\(414\) 0 0
\(415\) −16.0000 −0.785409
\(416\) 0 0
\(417\) 0 0
\(418\) −16.0000 −0.782586
\(419\) −32.0000 −1.56330 −0.781651 0.623716i \(-0.785622\pi\)
−0.781651 + 0.623716i \(0.785622\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 4.00000 0.194717
\(423\) 0 0
\(424\) −14.0000 −0.679900
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) −4.00000 −0.193574
\(428\) 4.00000 0.193347
\(429\) 0 0
\(430\) −2.00000 −0.0964486
\(431\) −10.0000 −0.481683 −0.240842 0.970564i \(-0.577423\pi\)
−0.240842 + 0.970564i \(0.577423\pi\)
\(432\) 0 0
\(433\) 6.00000 0.288342 0.144171 0.989553i \(-0.453949\pi\)
0.144171 + 0.989553i \(0.453949\pi\)
\(434\) 16.0000 0.768025
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) −16.0000 −0.765384
\(438\) 0 0
\(439\) −28.0000 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 4.00000 0.190693
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 6.00000 0.284427
\(446\) 4.00000 0.189405
\(447\) 0 0
\(448\) −2.00000 −0.0944911
\(449\) 12.0000 0.566315 0.283158 0.959073i \(-0.408618\pi\)
0.283158 + 0.959073i \(0.408618\pi\)
\(450\) 0 0
\(451\) 32.0000 1.50682
\(452\) 18.0000 0.846649
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) −26.0000 −1.21490
\(459\) 0 0
\(460\) 4.00000 0.186501
\(461\) −24.0000 −1.11779 −0.558896 0.829238i \(-0.688775\pi\)
−0.558896 + 0.829238i \(0.688775\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) −10.0000 −0.463241
\(467\) 28.0000 1.29569 0.647843 0.761774i \(-0.275671\pi\)
0.647843 + 0.761774i \(0.275671\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) −8.00000 −0.369012
\(471\) 0 0
\(472\) −6.00000 −0.276172
\(473\) −8.00000 −0.367840
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 2.00000 0.0916698
\(477\) 0 0
\(478\) 0 0
\(479\) −30.0000 −1.37073 −0.685367 0.728197i \(-0.740358\pi\)
−0.685367 + 0.728197i \(0.740358\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 10.0000 0.455488
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 8.00000 0.363261
\(486\) 0 0
\(487\) 30.0000 1.35943 0.679715 0.733476i \(-0.262104\pi\)
0.679715 + 0.733476i \(0.262104\pi\)
\(488\) 2.00000 0.0905357
\(489\) 0 0
\(490\) 3.00000 0.135526
\(491\) 6.00000 0.270776 0.135388 0.990793i \(-0.456772\pi\)
0.135388 + 0.990793i \(0.456772\pi\)
\(492\) 0 0
\(493\) 6.00000 0.270226
\(494\) 0 0
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) −20.0000 −0.897123
\(498\) 0 0
\(499\) 36.0000 1.61158 0.805791 0.592200i \(-0.201741\pi\)
0.805791 + 0.592200i \(0.201741\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) 2.00000 0.0892644
\(503\) −44.0000 −1.96186 −0.980932 0.194354i \(-0.937739\pi\)
−0.980932 + 0.194354i \(0.937739\pi\)
\(504\) 0 0
\(505\) −12.0000 −0.533993
\(506\) 16.0000 0.711287
\(507\) 0 0
\(508\) 4.00000 0.177471
\(509\) 36.0000 1.59567 0.797836 0.602875i \(-0.205978\pi\)
0.797836 + 0.602875i \(0.205978\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −30.0000 −1.32324
\(515\) 20.0000 0.881305
\(516\) 0 0
\(517\) −32.0000 −1.40736
\(518\) 12.0000 0.527250
\(519\) 0 0
\(520\) 0 0
\(521\) −12.0000 −0.525730 −0.262865 0.964833i \(-0.584667\pi\)
−0.262865 + 0.964833i \(0.584667\pi\)
\(522\) 0 0
\(523\) 30.0000 1.31181 0.655904 0.754844i \(-0.272288\pi\)
0.655904 + 0.754844i \(0.272288\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −16.0000 −0.697633
\(527\) 8.00000 0.348485
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 14.0000 0.608121
\(531\) 0 0
\(532\) −8.00000 −0.346844
\(533\) 0 0
\(534\) 0 0
\(535\) −4.00000 −0.172935
\(536\) 2.00000 0.0863868
\(537\) 0 0
\(538\) 2.00000 0.0862261
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) −30.0000 −1.28980 −0.644900 0.764267i \(-0.723101\pi\)
−0.644900 + 0.764267i \(0.723101\pi\)
\(542\) 16.0000 0.687259
\(543\) 0 0
\(544\) −1.00000 −0.0428746
\(545\) 2.00000 0.0856706
\(546\) 0 0
\(547\) 36.0000 1.53925 0.769624 0.638497i \(-0.220443\pi\)
0.769624 + 0.638497i \(0.220443\pi\)
\(548\) 6.00000 0.256307
\(549\) 0 0
\(550\) −4.00000 −0.170561
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) 6.00000 0.254916
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 2.00000 0.0845154
\(561\) 0 0
\(562\) 10.0000 0.421825
\(563\) −40.0000 −1.68580 −0.842900 0.538071i \(-0.819153\pi\)
−0.842900 + 0.538071i \(0.819153\pi\)
\(564\) 0 0
\(565\) −18.0000 −0.757266
\(566\) −12.0000 −0.504398
\(567\) 0 0
\(568\) 10.0000 0.419591
\(569\) −34.0000 −1.42535 −0.712677 0.701492i \(-0.752517\pi\)
−0.712677 + 0.701492i \(0.752517\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 16.0000 0.667827
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) −10.0000 −0.416305 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(578\) 1.00000 0.0415945
\(579\) 0 0
\(580\) 6.00000 0.249136
\(581\) −32.0000 −1.32758
\(582\) 0 0
\(583\) 56.0000 2.31928
\(584\) 4.00000 0.165521
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 32.0000 1.32078 0.660391 0.750922i \(-0.270391\pi\)
0.660391 + 0.750922i \(0.270391\pi\)
\(588\) 0 0
\(589\) −32.0000 −1.31854
\(590\) 6.00000 0.247016
\(591\) 0 0
\(592\) −6.00000 −0.246598
\(593\) −46.0000 −1.88899 −0.944497 0.328521i \(-0.893450\pi\)
−0.944497 + 0.328521i \(0.893450\pi\)
\(594\) 0 0
\(595\) −2.00000 −0.0819920
\(596\) −20.0000 −0.819232
\(597\) 0 0
\(598\) 0 0
\(599\) −36.0000 −1.47092 −0.735460 0.677568i \(-0.763034\pi\)
−0.735460 + 0.677568i \(0.763034\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) −4.00000 −0.163028
\(603\) 0 0
\(604\) −16.0000 −0.651031
\(605\) −5.00000 −0.203279
\(606\) 0 0
\(607\) 22.0000 0.892952 0.446476 0.894795i \(-0.352679\pi\)
0.446476 + 0.894795i \(0.352679\pi\)
\(608\) 4.00000 0.162221
\(609\) 0 0
\(610\) −2.00000 −0.0809776
\(611\) 0 0
\(612\) 0 0
\(613\) −36.0000 −1.45403 −0.727013 0.686624i \(-0.759092\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) 2.00000 0.0807134
\(615\) 0 0
\(616\) 8.00000 0.322329
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 0 0
\(619\) −12.0000 −0.482321 −0.241160 0.970485i \(-0.577528\pi\)
−0.241160 + 0.970485i \(0.577528\pi\)
\(620\) 8.00000 0.321288
\(621\) 0 0
\(622\) −10.0000 −0.400963
\(623\) 12.0000 0.480770
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −8.00000 −0.319744
\(627\) 0 0
\(628\) 0 0
\(629\) 6.00000 0.239236
\(630\) 0 0
\(631\) −24.0000 −0.955425 −0.477712 0.878516i \(-0.658534\pi\)
−0.477712 + 0.878516i \(0.658534\pi\)
\(632\) 4.00000 0.159111
\(633\) 0 0
\(634\) −18.0000 −0.714871
\(635\) −4.00000 −0.158735
\(636\) 0 0
\(637\) 0 0
\(638\) 24.0000 0.950169
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) −28.0000 −1.10593 −0.552967 0.833203i \(-0.686504\pi\)
−0.552967 + 0.833203i \(0.686504\pi\)
\(642\) 0 0
\(643\) 16.0000 0.630978 0.315489 0.948929i \(-0.397831\pi\)
0.315489 + 0.948929i \(0.397831\pi\)
\(644\) 8.00000 0.315244
\(645\) 0 0
\(646\) −4.00000 −0.157378
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) 24.0000 0.942082
\(650\) 0 0
\(651\) 0 0
\(652\) 8.00000 0.313304
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −8.00000 −0.312348
\(657\) 0 0
\(658\) −16.0000 −0.623745
\(659\) 30.0000 1.16863 0.584317 0.811525i \(-0.301362\pi\)
0.584317 + 0.811525i \(0.301362\pi\)
\(660\) 0 0
\(661\) −30.0000 −1.16686 −0.583432 0.812162i \(-0.698291\pi\)
−0.583432 + 0.812162i \(0.698291\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 16.0000 0.620920
\(665\) 8.00000 0.310227
\(666\) 0 0
\(667\) 24.0000 0.929284
\(668\) 16.0000 0.619059
\(669\) 0 0
\(670\) −2.00000 −0.0772667
\(671\) −8.00000 −0.308837
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 20.0000 0.770371
\(675\) 0 0
\(676\) −13.0000 −0.500000
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) 16.0000 0.614024
\(680\) 1.00000 0.0383482
\(681\) 0 0
\(682\) 32.0000 1.22534
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 20.0000 0.763604
\(687\) 0 0
\(688\) 2.00000 0.0762493
\(689\) 0 0
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) −2.00000 −0.0760286
\(693\) 0 0
\(694\) 20.0000 0.759190
\(695\) 4.00000 0.151729
\(696\) 0 0
\(697\) 8.00000 0.303022
\(698\) −14.0000 −0.529908
\(699\) 0 0
\(700\) −2.00000 −0.0755929
\(701\) 8.00000 0.302156 0.151078 0.988522i \(-0.451726\pi\)
0.151078 + 0.988522i \(0.451726\pi\)
\(702\) 0 0
\(703\) −24.0000 −0.905177
\(704\) −4.00000 −0.150756
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) −24.0000 −0.902613
\(708\) 0 0
\(709\) 2.00000 0.0751116 0.0375558 0.999295i \(-0.488043\pi\)
0.0375558 + 0.999295i \(0.488043\pi\)
\(710\) −10.0000 −0.375293
\(711\) 0 0
\(712\) −6.00000 −0.224860
\(713\) 32.0000 1.19841
\(714\) 0 0
\(715\) 0 0
\(716\) −2.00000 −0.0747435
\(717\) 0 0
\(718\) 4.00000 0.149279
\(719\) −14.0000 −0.522112 −0.261056 0.965324i \(-0.584071\pi\)
−0.261056 + 0.965324i \(0.584071\pi\)
\(720\) 0 0
\(721\) 40.0000 1.48968
\(722\) −3.00000 −0.111648
\(723\) 0 0
\(724\) 14.0000 0.520306
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) −44.0000 −1.63187 −0.815935 0.578144i \(-0.803777\pi\)
−0.815935 + 0.578144i \(0.803777\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −4.00000 −0.148047
\(731\) −2.00000 −0.0739727
\(732\) 0 0
\(733\) −44.0000 −1.62518 −0.812589 0.582838i \(-0.801942\pi\)
−0.812589 + 0.582838i \(0.801942\pi\)
\(734\) −38.0000 −1.40261
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) −32.0000 −1.17714 −0.588570 0.808447i \(-0.700309\pi\)
−0.588570 + 0.808447i \(0.700309\pi\)
\(740\) 6.00000 0.220564
\(741\) 0 0
\(742\) 28.0000 1.02791
\(743\) 40.0000 1.46746 0.733729 0.679442i \(-0.237778\pi\)
0.733729 + 0.679442i \(0.237778\pi\)
\(744\) 0 0
\(745\) 20.0000 0.732743
\(746\) 36.0000 1.31805
\(747\) 0 0
\(748\) 4.00000 0.146254
\(749\) −8.00000 −0.292314
\(750\) 0 0
\(751\) 36.0000 1.31366 0.656829 0.754039i \(-0.271897\pi\)
0.656829 + 0.754039i \(0.271897\pi\)
\(752\) 8.00000 0.291730
\(753\) 0 0
\(754\) 0 0
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) 8.00000 0.290765 0.145382 0.989376i \(-0.453559\pi\)
0.145382 + 0.989376i \(0.453559\pi\)
\(758\) −28.0000 −1.01701
\(759\) 0 0
\(760\) −4.00000 −0.145095
\(761\) 46.0000 1.66750 0.833749 0.552143i \(-0.186190\pi\)
0.833749 + 0.552143i \(0.186190\pi\)
\(762\) 0 0
\(763\) 4.00000 0.144810
\(764\) 20.0000 0.723575
\(765\) 0 0
\(766\) 16.0000 0.578103
\(767\) 0 0
\(768\) 0 0
\(769\) −50.0000 −1.80305 −0.901523 0.432731i \(-0.857550\pi\)
−0.901523 + 0.432731i \(0.857550\pi\)
\(770\) −8.00000 −0.288300
\(771\) 0 0
\(772\) 16.0000 0.575853
\(773\) −14.0000 −0.503545 −0.251773 0.967786i \(-0.581013\pi\)
−0.251773 + 0.967786i \(0.581013\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) −8.00000 −0.287183
\(777\) 0 0
\(778\) 36.0000 1.29066
\(779\) −32.0000 −1.14652
\(780\) 0 0
\(781\) −40.0000 −1.43131
\(782\) 4.00000 0.143040
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) 0 0
\(787\) 8.00000 0.285169 0.142585 0.989783i \(-0.454459\pi\)
0.142585 + 0.989783i \(0.454459\pi\)
\(788\) 6.00000 0.213741
\(789\) 0 0
\(790\) −4.00000 −0.142314
\(791\) −36.0000 −1.28001
\(792\) 0 0
\(793\) 0 0
\(794\) 34.0000 1.20661
\(795\) 0 0
\(796\) −8.00000 −0.283552
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 0 0
\(799\) −8.00000 −0.283020
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) −20.0000 −0.706225
\(803\) −16.0000 −0.564628
\(804\) 0 0
\(805\) −8.00000 −0.281963
\(806\) 0 0
\(807\) 0 0
\(808\) 12.0000 0.422159
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) −4.00000 −0.140459 −0.0702295 0.997531i \(-0.522373\pi\)
−0.0702295 + 0.997531i \(0.522373\pi\)
\(812\) 12.0000 0.421117
\(813\) 0 0
\(814\) 24.0000 0.841200
\(815\) −8.00000 −0.280228
\(816\) 0 0
\(817\) 8.00000 0.279885
\(818\) −26.0000 −0.909069
\(819\) 0 0
\(820\) 8.00000 0.279372
\(821\) 6.00000 0.209401 0.104701 0.994504i \(-0.466612\pi\)
0.104701 + 0.994504i \(0.466612\pi\)
\(822\) 0 0
\(823\) −14.0000 −0.488009 −0.244005 0.969774i \(-0.578461\pi\)
−0.244005 + 0.969774i \(0.578461\pi\)
\(824\) −20.0000 −0.696733
\(825\) 0 0
\(826\) 12.0000 0.417533
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) −38.0000 −1.31979 −0.659897 0.751356i \(-0.729400\pi\)
−0.659897 + 0.751356i \(0.729400\pi\)
\(830\) −16.0000 −0.555368
\(831\) 0 0
\(832\) 0 0
\(833\) 3.00000 0.103944
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) −16.0000 −0.553372
\(837\) 0 0
\(838\) −32.0000 −1.10542
\(839\) 6.00000 0.207143 0.103572 0.994622i \(-0.466973\pi\)
0.103572 + 0.994622i \(0.466973\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −10.0000 −0.344623
\(843\) 0 0
\(844\) 4.00000 0.137686
\(845\) 13.0000 0.447214
\(846\) 0 0
\(847\) −10.0000 −0.343604
\(848\) −14.0000 −0.480762
\(849\) 0 0
\(850\) −1.00000 −0.0342997
\(851\) 24.0000 0.822709
\(852\) 0 0
\(853\) 6.00000 0.205436 0.102718 0.994711i \(-0.467246\pi\)
0.102718 + 0.994711i \(0.467246\pi\)
\(854\) −4.00000 −0.136877
\(855\) 0 0
\(856\) 4.00000 0.136717
\(857\) −26.0000 −0.888143 −0.444072 0.895991i \(-0.646466\pi\)
−0.444072 + 0.895991i \(0.646466\pi\)
\(858\) 0 0
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) −2.00000 −0.0681994
\(861\) 0 0
\(862\) −10.0000 −0.340601
\(863\) −8.00000 −0.272323 −0.136162 0.990687i \(-0.543477\pi\)
−0.136162 + 0.990687i \(0.543477\pi\)
\(864\) 0 0
\(865\) 2.00000 0.0680020
\(866\) 6.00000 0.203888
\(867\) 0 0
\(868\) 16.0000 0.543075
\(869\) −16.0000 −0.542763
\(870\) 0 0
\(871\) 0 0
\(872\) −2.00000 −0.0677285
\(873\) 0 0
\(874\) −16.0000 −0.541208
\(875\) 2.00000 0.0676123
\(876\) 0 0
\(877\) −18.0000 −0.607817 −0.303908 0.952701i \(-0.598292\pi\)
−0.303908 + 0.952701i \(0.598292\pi\)
\(878\) −28.0000 −0.944954
\(879\) 0 0
\(880\) 4.00000 0.134840
\(881\) −44.0000 −1.48240 −0.741199 0.671286i \(-0.765742\pi\)
−0.741199 + 0.671286i \(0.765742\pi\)
\(882\) 0 0
\(883\) −2.00000 −0.0673054 −0.0336527 0.999434i \(-0.510714\pi\)
−0.0336527 + 0.999434i \(0.510714\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.0000 0.402921 0.201460 0.979497i \(-0.435431\pi\)
0.201460 + 0.979497i \(0.435431\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 6.00000 0.201120
\(891\) 0 0
\(892\) 4.00000 0.133930
\(893\) 32.0000 1.07084
\(894\) 0 0
\(895\) 2.00000 0.0668526
\(896\) −2.00000 −0.0668153
\(897\) 0 0
\(898\) 12.0000 0.400445
\(899\) 48.0000 1.60089
\(900\) 0 0
\(901\) 14.0000 0.466408
\(902\) 32.0000 1.06548
\(903\) 0 0
\(904\) 18.0000 0.598671
\(905\) −14.0000 −0.465376
\(906\) 0 0
\(907\) −16.0000 −0.531271 −0.265636 0.964073i \(-0.585582\pi\)
−0.265636 + 0.964073i \(0.585582\pi\)
\(908\) 12.0000 0.398234
\(909\) 0 0
\(910\) 0 0
\(911\) −38.0000 −1.25900 −0.629498 0.777002i \(-0.716739\pi\)
−0.629498 + 0.777002i \(0.716739\pi\)
\(912\) 0 0
\(913\) −64.0000 −2.11809
\(914\) −18.0000 −0.595387
\(915\) 0 0
\(916\) −26.0000 −0.859064
\(917\) 0 0
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 4.00000 0.131876
\(921\) 0 0
\(922\) −24.0000 −0.790398
\(923\) 0 0
\(924\) 0 0
\(925\) −6.00000 −0.197279
\(926\) −4.00000 −0.131448
\(927\) 0 0
\(928\) −6.00000 −0.196960
\(929\) 32.0000 1.04989 0.524943 0.851137i \(-0.324087\pi\)
0.524943 + 0.851137i \(0.324087\pi\)
\(930\) 0 0
\(931\) −12.0000 −0.393284
\(932\) −10.0000 −0.327561
\(933\) 0 0
\(934\) 28.0000 0.916188
\(935\) −4.00000 −0.130814
\(936\) 0 0
\(937\) 22.0000 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(938\) −4.00000 −0.130605
\(939\) 0 0
\(940\) −8.00000 −0.260931
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) 0 0
\(943\) 32.0000 1.04206
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) −8.00000 −0.260102
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 4.00000 0.129777
\(951\) 0 0
\(952\) 2.00000 0.0648204
\(953\) 54.0000 1.74923 0.874616 0.484817i \(-0.161114\pi\)
0.874616 + 0.484817i \(0.161114\pi\)
\(954\) 0 0
\(955\) −20.0000 −0.647185
\(956\) 0 0
\(957\) 0 0
\(958\) −30.0000 −0.969256
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 0 0
\(964\) 10.0000 0.322078
\(965\) −16.0000 −0.515058
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) 5.00000 0.160706
\(969\) 0 0
\(970\) 8.00000 0.256865
\(971\) −50.0000 −1.60458 −0.802288 0.596937i \(-0.796384\pi\)
−0.802288 + 0.596937i \(0.796384\pi\)
\(972\) 0 0
\(973\) 8.00000 0.256468
\(974\) 30.0000 0.961262
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) 24.0000 0.767043
\(980\) 3.00000 0.0958315
\(981\) 0 0
\(982\) 6.00000 0.191468
\(983\) 48.0000 1.53096 0.765481 0.643458i \(-0.222501\pi\)
0.765481 + 0.643458i \(0.222501\pi\)
\(984\) 0 0
\(985\) −6.00000 −0.191176
\(986\) 6.00000 0.191079
\(987\) 0 0
\(988\) 0 0
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) 48.0000 1.52477 0.762385 0.647124i \(-0.224028\pi\)
0.762385 + 0.647124i \(0.224028\pi\)
\(992\) −8.00000 −0.254000
\(993\) 0 0
\(994\) −20.0000 −0.634361
\(995\) 8.00000 0.253617
\(996\) 0 0
\(997\) −62.0000 −1.96356 −0.981780 0.190022i \(-0.939144\pi\)
−0.981780 + 0.190022i \(0.939144\pi\)
\(998\) 36.0000 1.13956
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1530.2.a.i.1.1 1
3.2 odd 2 510.2.a.b.1.1 1
5.4 even 2 7650.2.a.y.1.1 1
12.11 even 2 4080.2.a.n.1.1 1
15.2 even 4 2550.2.d.j.2449.1 2
15.8 even 4 2550.2.d.j.2449.2 2
15.14 odd 2 2550.2.a.y.1.1 1
51.50 odd 2 8670.2.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.a.b.1.1 1 3.2 odd 2
1530.2.a.i.1.1 1 1.1 even 1 trivial
2550.2.a.y.1.1 1 15.14 odd 2
2550.2.d.j.2449.1 2 15.2 even 4
2550.2.d.j.2449.2 2 15.8 even 4
4080.2.a.n.1.1 1 12.11 even 2
7650.2.a.y.1.1 1 5.4 even 2
8670.2.a.c.1.1 1 51.50 odd 2