Properties

Label 1530.2.a.f.1.1
Level $1530$
Weight $2$
Character 1530.1
Self dual yes
Analytic conductor $12.217$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1530,2,Mod(1,1530)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1530, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1530.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.2171115093\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 510)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1530.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{8} -1.00000 q^{10} -4.00000 q^{11} +2.00000 q^{13} +1.00000 q^{16} -1.00000 q^{17} -4.00000 q^{19} +1.00000 q^{20} +4.00000 q^{22} -4.00000 q^{23} +1.00000 q^{25} -2.00000 q^{26} -2.00000 q^{29} -4.00000 q^{31} -1.00000 q^{32} +1.00000 q^{34} -6.00000 q^{37} +4.00000 q^{38} -1.00000 q^{40} +10.0000 q^{41} -8.00000 q^{43} -4.00000 q^{44} +4.00000 q^{46} -7.00000 q^{49} -1.00000 q^{50} +2.00000 q^{52} -6.00000 q^{53} -4.00000 q^{55} +2.00000 q^{58} +8.00000 q^{59} +10.0000 q^{61} +4.00000 q^{62} +1.00000 q^{64} +2.00000 q^{65} -8.00000 q^{67} -1.00000 q^{68} -8.00000 q^{71} -2.00000 q^{73} +6.00000 q^{74} -4.00000 q^{76} +4.00000 q^{79} +1.00000 q^{80} -10.0000 q^{82} -4.00000 q^{83} -1.00000 q^{85} +8.00000 q^{86} +4.00000 q^{88} +14.0000 q^{89} -4.00000 q^{92} -4.00000 q^{95} -10.0000 q^{97} +7.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 4.00000 0.648886
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) 2.00000 0.262613
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) −1.00000 −0.121268
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 6.00000 0.697486
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) −10.0000 −1.10432
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) −1.00000 −0.108465
\(86\) 8.00000 0.862662
\(87\) 0 0
\(88\) 4.00000 0.426401
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −4.00000 −0.417029
\(93\) 0 0
\(94\) 0 0
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 7.00000 0.707107
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 4.00000 0.381385
\(111\) 0 0
\(112\) 0 0
\(113\) −18.0000 −1.69330 −0.846649 0.532152i \(-0.821383\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) −2.00000 −0.185695
\(117\) 0 0
\(118\) −8.00000 −0.736460
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −10.0000 −0.905357
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −2.00000 −0.175412
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 8.00000 0.671345
\(143\) −8.00000 −0.668994
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) −6.00000 −0.493197
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 4.00000 0.324443
\(153\) 0 0
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) −6.00000 −0.478852 −0.239426 0.970915i \(-0.576959\pi\)
−0.239426 + 0.970915i \(0.576959\pi\)
\(158\) −4.00000 −0.318223
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) 0 0
\(162\) 0 0
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) 10.0000 0.780869
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 1.00000 0.0766965
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) 0 0
\(178\) −14.0000 −1.04934
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.00000 0.294884
\(185\) −6.00000 −0.441129
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) 0 0
\(189\) 0 0
\(190\) 4.00000 0.290191
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 6.00000 0.431889 0.215945 0.976406i \(-0.430717\pi\)
0.215945 + 0.976406i \(0.430717\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) −6.00000 −0.422159
\(203\) 0 0
\(204\) 0 0
\(205\) 10.0000 0.698430
\(206\) −16.0000 −1.11477
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) −8.00000 −0.545595
\(216\) 0 0
\(217\) 0 0
\(218\) 14.0000 0.948200
\(219\) 0 0
\(220\) −4.00000 −0.269680
\(221\) −2.00000 −0.134535
\(222\) 0 0
\(223\) 24.0000 1.60716 0.803579 0.595198i \(-0.202926\pi\)
0.803579 + 0.595198i \(0.202926\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 18.0000 1.19734
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 4.00000 0.263752
\(231\) 0 0
\(232\) 2.00000 0.131306
\(233\) 30.0000 1.96537 0.982683 0.185296i \(-0.0593245\pi\)
0.982683 + 0.185296i \(0.0593245\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 8.00000 0.520756
\(237\) 0 0
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) −5.00000 −0.321412
\(243\) 0 0
\(244\) 10.0000 0.640184
\(245\) −7.00000 −0.447214
\(246\) 0 0
\(247\) −8.00000 −0.509028
\(248\) 4.00000 0.254000
\(249\) 0 0
\(250\) −1.00000 −0.0632456
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 16.0000 1.00591
\(254\) 16.0000 1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 2.00000 0.124035
\(261\) 0 0
\(262\) 4.00000 0.247121
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) 0 0
\(268\) −8.00000 −0.488678
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 4.00000 0.239904
\(279\) 0 0
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) −8.00000 −0.474713
\(285\) 0 0
\(286\) 8.00000 0.473050
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 2.00000 0.117444
\(291\) 0 0
\(292\) −2.00000 −0.117041
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) 8.00000 0.465778
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) 2.00000 0.115857
\(299\) −8.00000 −0.462652
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −4.00000 −0.229416
\(305\) 10.0000 0.572598
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.00000 0.227185
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 0 0
\(313\) −2.00000 −0.113047 −0.0565233 0.998401i \(-0.518002\pi\)
−0.0565233 + 0.998401i \(0.518002\pi\)
\(314\) 6.00000 0.338600
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) −26.0000 −1.46031 −0.730153 0.683284i \(-0.760551\pi\)
−0.730153 + 0.683284i \(0.760551\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) 0 0
\(323\) 4.00000 0.222566
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) −12.0000 −0.664619
\(327\) 0 0
\(328\) −10.0000 −0.552158
\(329\) 0 0
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) −4.00000 −0.219529
\(333\) 0 0
\(334\) 12.0000 0.656611
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) 6.00000 0.326841 0.163420 0.986557i \(-0.447747\pi\)
0.163420 + 0.986557i \(0.447747\pi\)
\(338\) 9.00000 0.489535
\(339\) 0 0
\(340\) −1.00000 −0.0542326
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) 0 0
\(344\) 8.00000 0.431331
\(345\) 0 0
\(346\) 2.00000 0.107521
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) 0 0
\(349\) −34.0000 −1.81998 −0.909989 0.414632i \(-0.863910\pi\)
−0.909989 + 0.414632i \(0.863910\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.00000 0.213201
\(353\) 30.0000 1.59674 0.798369 0.602168i \(-0.205696\pi\)
0.798369 + 0.602168i \(0.205696\pi\)
\(354\) 0 0
\(355\) −8.00000 −0.424596
\(356\) 14.0000 0.741999
\(357\) 0 0
\(358\) 0 0
\(359\) −32.0000 −1.68890 −0.844448 0.535638i \(-0.820071\pi\)
−0.844448 + 0.535638i \(0.820071\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 14.0000 0.735824
\(363\) 0 0
\(364\) 0 0
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) −4.00000 −0.208514
\(369\) 0 0
\(370\) 6.00000 0.311925
\(371\) 0 0
\(372\) 0 0
\(373\) 18.0000 0.932005 0.466002 0.884783i \(-0.345694\pi\)
0.466002 + 0.884783i \(0.345694\pi\)
\(374\) −4.00000 −0.206835
\(375\) 0 0
\(376\) 0 0
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) −4.00000 −0.205196
\(381\) 0 0
\(382\) 0 0
\(383\) 24.0000 1.22634 0.613171 0.789950i \(-0.289894\pi\)
0.613171 + 0.789950i \(0.289894\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −6.00000 −0.305392
\(387\) 0 0
\(388\) −10.0000 −0.507673
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 7.00000 0.353553
\(393\) 0 0
\(394\) 18.0000 0.906827
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) 18.0000 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(398\) 4.00000 0.200502
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) −8.00000 −0.398508
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) −10.0000 −0.493865
\(411\) 0 0
\(412\) 16.0000 0.788263
\(413\) 0 0
\(414\) 0 0
\(415\) −4.00000 −0.196352
\(416\) −2.00000 −0.0980581
\(417\) 0 0
\(418\) −16.0000 −0.782586
\(419\) −28.0000 −1.36789 −0.683945 0.729534i \(-0.739737\pi\)
−0.683945 + 0.729534i \(0.739737\pi\)
\(420\) 0 0
\(421\) 30.0000 1.46211 0.731055 0.682318i \(-0.239028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) −12.0000 −0.584151
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) 0 0
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 8.00000 0.385794
\(431\) 16.0000 0.770693 0.385346 0.922772i \(-0.374082\pi\)
0.385346 + 0.922772i \(0.374082\pi\)
\(432\) 0 0
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −14.0000 −0.670478
\(437\) 16.0000 0.765384
\(438\) 0 0
\(439\) 20.0000 0.954548 0.477274 0.878755i \(-0.341625\pi\)
0.477274 + 0.878755i \(0.341625\pi\)
\(440\) 4.00000 0.190693
\(441\) 0 0
\(442\) 2.00000 0.0951303
\(443\) 28.0000 1.33032 0.665160 0.746701i \(-0.268363\pi\)
0.665160 + 0.746701i \(0.268363\pi\)
\(444\) 0 0
\(445\) 14.0000 0.663664
\(446\) −24.0000 −1.13643
\(447\) 0 0
\(448\) 0 0
\(449\) 26.0000 1.22702 0.613508 0.789689i \(-0.289758\pi\)
0.613508 + 0.789689i \(0.289758\pi\)
\(450\) 0 0
\(451\) −40.0000 −1.88353
\(452\) −18.0000 −0.846649
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) −6.00000 −0.280362
\(459\) 0 0
\(460\) −4.00000 −0.186501
\(461\) 38.0000 1.76984 0.884918 0.465746i \(-0.154214\pi\)
0.884918 + 0.465746i \(0.154214\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 0 0
\(466\) −30.0000 −1.38972
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −8.00000 −0.368230
\(473\) 32.0000 1.47136
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) 8.00000 0.365911
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) −10.0000 −0.455488
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) −10.0000 −0.454077
\(486\) 0 0
\(487\) −40.0000 −1.81257 −0.906287 0.422664i \(-0.861095\pi\)
−0.906287 + 0.422664i \(0.861095\pi\)
\(488\) −10.0000 −0.452679
\(489\) 0 0
\(490\) 7.00000 0.316228
\(491\) −24.0000 −1.08310 −0.541552 0.840667i \(-0.682163\pi\)
−0.541552 + 0.840667i \(0.682163\pi\)
\(492\) 0 0
\(493\) 2.00000 0.0900755
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) 28.0000 1.25345 0.626726 0.779240i \(-0.284395\pi\)
0.626726 + 0.779240i \(0.284395\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) 0 0
\(503\) 28.0000 1.24846 0.624229 0.781241i \(-0.285413\pi\)
0.624229 + 0.781241i \(0.285413\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) −16.0000 −0.711287
\(507\) 0 0
\(508\) −16.0000 −0.709885
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 18.0000 0.793946
\(515\) 16.0000 0.705044
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −2.00000 −0.0877058
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 0 0
\(523\) −40.0000 −1.74908 −0.874539 0.484955i \(-0.838836\pi\)
−0.874539 + 0.484955i \(0.838836\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) 16.0000 0.697633
\(527\) 4.00000 0.174243
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 6.00000 0.260623
\(531\) 0 0
\(532\) 0 0
\(533\) 20.0000 0.866296
\(534\) 0 0
\(535\) −12.0000 −0.518805
\(536\) 8.00000 0.345547
\(537\) 0 0
\(538\) −14.0000 −0.603583
\(539\) 28.0000 1.20605
\(540\) 0 0
\(541\) −22.0000 −0.945854 −0.472927 0.881102i \(-0.656803\pi\)
−0.472927 + 0.881102i \(0.656803\pi\)
\(542\) 8.00000 0.343629
\(543\) 0 0
\(544\) 1.00000 0.0428746
\(545\) −14.0000 −0.599694
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 6.00000 0.256307
\(549\) 0 0
\(550\) 4.00000 0.170561
\(551\) 8.00000 0.340811
\(552\) 0 0
\(553\) 0 0
\(554\) −10.0000 −0.424859
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) −30.0000 −1.27114 −0.635570 0.772043i \(-0.719235\pi\)
−0.635570 + 0.772043i \(0.719235\pi\)
\(558\) 0 0
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) −30.0000 −1.26547
\(563\) −20.0000 −0.842900 −0.421450 0.906852i \(-0.638479\pi\)
−0.421450 + 0.906852i \(0.638479\pi\)
\(564\) 0 0
\(565\) −18.0000 −0.757266
\(566\) −20.0000 −0.840663
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 0 0
\(571\) −44.0000 −1.84134 −0.920671 0.390339i \(-0.872358\pi\)
−0.920671 + 0.390339i \(0.872358\pi\)
\(572\) −8.00000 −0.334497
\(573\) 0 0
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) −6.00000 −0.249783 −0.124892 0.992170i \(-0.539858\pi\)
−0.124892 + 0.992170i \(0.539858\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 0 0
\(580\) −2.00000 −0.0830455
\(581\) 0 0
\(582\) 0 0
\(583\) 24.0000 0.993978
\(584\) 2.00000 0.0827606
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) −8.00000 −0.329355
\(591\) 0 0
\(592\) −6.00000 −0.246598
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −2.00000 −0.0819232
\(597\) 0 0
\(598\) 8.00000 0.327144
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 34.0000 1.38689 0.693444 0.720510i \(-0.256092\pi\)
0.693444 + 0.720510i \(0.256092\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.00000 0.203279
\(606\) 0 0
\(607\) −32.0000 −1.29884 −0.649420 0.760430i \(-0.724988\pi\)
−0.649420 + 0.760430i \(0.724988\pi\)
\(608\) 4.00000 0.162221
\(609\) 0 0
\(610\) −10.0000 −0.404888
\(611\) 0 0
\(612\) 0 0
\(613\) 10.0000 0.403896 0.201948 0.979396i \(-0.435273\pi\)
0.201948 + 0.979396i \(0.435273\pi\)
\(614\) −16.0000 −0.645707
\(615\) 0 0
\(616\) 0 0
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 0 0
\(619\) 44.0000 1.76851 0.884255 0.467005i \(-0.154667\pi\)
0.884255 + 0.467005i \(0.154667\pi\)
\(620\) −4.00000 −0.160644
\(621\) 0 0
\(622\) −8.00000 −0.320771
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 2.00000 0.0799361
\(627\) 0 0
\(628\) −6.00000 −0.239426
\(629\) 6.00000 0.239236
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) −4.00000 −0.159111
\(633\) 0 0
\(634\) 26.0000 1.03259
\(635\) −16.0000 −0.634941
\(636\) 0 0
\(637\) −14.0000 −0.554700
\(638\) −8.00000 −0.316723
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) 42.0000 1.65890 0.829450 0.558581i \(-0.188654\pi\)
0.829450 + 0.558581i \(0.188654\pi\)
\(642\) 0 0
\(643\) −20.0000 −0.788723 −0.394362 0.918955i \(-0.629034\pi\)
−0.394362 + 0.918955i \(0.629034\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −4.00000 −0.157378
\(647\) 32.0000 1.25805 0.629025 0.777385i \(-0.283454\pi\)
0.629025 + 0.777385i \(0.283454\pi\)
\(648\) 0 0
\(649\) −32.0000 −1.25611
\(650\) −2.00000 −0.0784465
\(651\) 0 0
\(652\) 12.0000 0.469956
\(653\) −34.0000 −1.33052 −0.665261 0.746611i \(-0.731680\pi\)
−0.665261 + 0.746611i \(0.731680\pi\)
\(654\) 0 0
\(655\) −4.00000 −0.156293
\(656\) 10.0000 0.390434
\(657\) 0 0
\(658\) 0 0
\(659\) −24.0000 −0.934907 −0.467454 0.884018i \(-0.654829\pi\)
−0.467454 + 0.884018i \(0.654829\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) −20.0000 −0.777322
\(663\) 0 0
\(664\) 4.00000 0.155230
\(665\) 0 0
\(666\) 0 0
\(667\) 8.00000 0.309761
\(668\) −12.0000 −0.464294
\(669\) 0 0
\(670\) 8.00000 0.309067
\(671\) −40.0000 −1.54418
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) −6.00000 −0.231111
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.00000 0.0383482
\(681\) 0 0
\(682\) −16.0000 −0.612672
\(683\) −44.0000 −1.68361 −0.841807 0.539779i \(-0.818508\pi\)
−0.841807 + 0.539779i \(0.818508\pi\)
\(684\) 0 0
\(685\) 6.00000 0.229248
\(686\) 0 0
\(687\) 0 0
\(688\) −8.00000 −0.304997
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) −36.0000 −1.36950 −0.684752 0.728776i \(-0.740090\pi\)
−0.684752 + 0.728776i \(0.740090\pi\)
\(692\) −2.00000 −0.0760286
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) −4.00000 −0.151729
\(696\) 0 0
\(697\) −10.0000 −0.378777
\(698\) 34.0000 1.28692
\(699\) 0 0
\(700\) 0 0
\(701\) −10.0000 −0.377695 −0.188847 0.982006i \(-0.560475\pi\)
−0.188847 + 0.982006i \(0.560475\pi\)
\(702\) 0 0
\(703\) 24.0000 0.905177
\(704\) −4.00000 −0.150756
\(705\) 0 0
\(706\) −30.0000 −1.12906
\(707\) 0 0
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 8.00000 0.300235
\(711\) 0 0
\(712\) −14.0000 −0.524672
\(713\) 16.0000 0.599205
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) 0 0
\(717\) 0 0
\(718\) 32.0000 1.19423
\(719\) 48.0000 1.79010 0.895049 0.445968i \(-0.147140\pi\)
0.895049 + 0.445968i \(0.147140\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.00000 0.111648
\(723\) 0 0
\(724\) −14.0000 −0.520306
\(725\) −2.00000 −0.0742781
\(726\) 0 0
\(727\) 40.0000 1.48352 0.741759 0.670667i \(-0.233992\pi\)
0.741759 + 0.670667i \(0.233992\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 2.00000 0.0740233
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) 26.0000 0.960332 0.480166 0.877178i \(-0.340576\pi\)
0.480166 + 0.877178i \(0.340576\pi\)
\(734\) −8.00000 −0.295285
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) 32.0000 1.17874
\(738\) 0 0
\(739\) −44.0000 −1.61857 −0.809283 0.587419i \(-0.800144\pi\)
−0.809283 + 0.587419i \(0.800144\pi\)
\(740\) −6.00000 −0.220564
\(741\) 0 0
\(742\) 0 0
\(743\) −28.0000 −1.02722 −0.513610 0.858024i \(-0.671692\pi\)
−0.513610 + 0.858024i \(0.671692\pi\)
\(744\) 0 0
\(745\) −2.00000 −0.0732743
\(746\) −18.0000 −0.659027
\(747\) 0 0
\(748\) 4.00000 0.146254
\(749\) 0 0
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 4.00000 0.145671
\(755\) 0 0
\(756\) 0 0
\(757\) −14.0000 −0.508839 −0.254419 0.967094i \(-0.581884\pi\)
−0.254419 + 0.967094i \(0.581884\pi\)
\(758\) −20.0000 −0.726433
\(759\) 0 0
\(760\) 4.00000 0.145095
\(761\) −42.0000 −1.52250 −0.761249 0.648459i \(-0.775414\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −24.0000 −0.867155
\(767\) 16.0000 0.577727
\(768\) 0 0
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 6.00000 0.215945
\(773\) −14.0000 −0.503545 −0.251773 0.967786i \(-0.581013\pi\)
−0.251773 + 0.967786i \(0.581013\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) 10.0000 0.358979
\(777\) 0 0
\(778\) −30.0000 −1.07555
\(779\) −40.0000 −1.43315
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) −4.00000 −0.143040
\(783\) 0 0
\(784\) −7.00000 −0.250000
\(785\) −6.00000 −0.214149
\(786\) 0 0
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) −18.0000 −0.641223
\(789\) 0 0
\(790\) −4.00000 −0.142314
\(791\) 0 0
\(792\) 0 0
\(793\) 20.0000 0.710221
\(794\) −18.0000 −0.638796
\(795\) 0 0
\(796\) −4.00000 −0.141776
\(797\) −6.00000 −0.212531 −0.106265 0.994338i \(-0.533889\pi\)
−0.106265 + 0.994338i \(0.533889\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 6.00000 0.211867
\(803\) 8.00000 0.282314
\(804\) 0 0
\(805\) 0 0
\(806\) 8.00000 0.281788
\(807\) 0 0
\(808\) −6.00000 −0.211079
\(809\) −54.0000 −1.89854 −0.949269 0.314464i \(-0.898175\pi\)
−0.949269 + 0.314464i \(0.898175\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −24.0000 −0.841200
\(815\) 12.0000 0.420342
\(816\) 0 0
\(817\) 32.0000 1.11954
\(818\) −10.0000 −0.349642
\(819\) 0 0
\(820\) 10.0000 0.349215
\(821\) 6.00000 0.209401 0.104701 0.994504i \(-0.466612\pi\)
0.104701 + 0.994504i \(0.466612\pi\)
\(822\) 0 0
\(823\) 16.0000 0.557725 0.278862 0.960331i \(-0.410043\pi\)
0.278862 + 0.960331i \(0.410043\pi\)
\(824\) −16.0000 −0.557386
\(825\) 0 0
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) 54.0000 1.87550 0.937749 0.347314i \(-0.112906\pi\)
0.937749 + 0.347314i \(0.112906\pi\)
\(830\) 4.00000 0.138842
\(831\) 0 0
\(832\) 2.00000 0.0693375
\(833\) 7.00000 0.242536
\(834\) 0 0
\(835\) −12.0000 −0.415277
\(836\) 16.0000 0.553372
\(837\) 0 0
\(838\) 28.0000 0.967244
\(839\) −16.0000 −0.552381 −0.276191 0.961103i \(-0.589072\pi\)
−0.276191 + 0.961103i \(0.589072\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −30.0000 −1.03387
\(843\) 0 0
\(844\) 12.0000 0.413057
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) 0 0
\(848\) −6.00000 −0.206041
\(849\) 0 0
\(850\) 1.00000 0.0342997
\(851\) 24.0000 0.822709
\(852\) 0 0
\(853\) −54.0000 −1.84892 −0.924462 0.381273i \(-0.875486\pi\)
−0.924462 + 0.381273i \(0.875486\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) −26.0000 −0.888143 −0.444072 0.895991i \(-0.646466\pi\)
−0.444072 + 0.895991i \(0.646466\pi\)
\(858\) 0 0
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) −8.00000 −0.272798
\(861\) 0 0
\(862\) −16.0000 −0.544962
\(863\) 8.00000 0.272323 0.136162 0.990687i \(-0.456523\pi\)
0.136162 + 0.990687i \(0.456523\pi\)
\(864\) 0 0
\(865\) −2.00000 −0.0680020
\(866\) 6.00000 0.203888
\(867\) 0 0
\(868\) 0 0
\(869\) −16.0000 −0.542763
\(870\) 0 0
\(871\) −16.0000 −0.542139
\(872\) 14.0000 0.474100
\(873\) 0 0
\(874\) −16.0000 −0.541208
\(875\) 0 0
\(876\) 0 0
\(877\) 50.0000 1.68838 0.844190 0.536044i \(-0.180082\pi\)
0.844190 + 0.536044i \(0.180082\pi\)
\(878\) −20.0000 −0.674967
\(879\) 0 0
\(880\) −4.00000 −0.134840
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) −2.00000 −0.0672673
\(885\) 0 0
\(886\) −28.0000 −0.940678
\(887\) −12.0000 −0.402921 −0.201460 0.979497i \(-0.564569\pi\)
−0.201460 + 0.979497i \(0.564569\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −14.0000 −0.469281
\(891\) 0 0
\(892\) 24.0000 0.803579
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −26.0000 −0.867631
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) 6.00000 0.199889
\(902\) 40.0000 1.33185
\(903\) 0 0
\(904\) 18.0000 0.598671
\(905\) −14.0000 −0.465376
\(906\) 0 0
\(907\) −36.0000 −1.19536 −0.597680 0.801735i \(-0.703911\pi\)
−0.597680 + 0.801735i \(0.703911\pi\)
\(908\) −12.0000 −0.398234
\(909\) 0 0
\(910\) 0 0
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 0 0
\(913\) 16.0000 0.529523
\(914\) −2.00000 −0.0661541
\(915\) 0 0
\(916\) 6.00000 0.198246
\(917\) 0 0
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 4.00000 0.131876
\(921\) 0 0
\(922\) −38.0000 −1.25146
\(923\) −16.0000 −0.526646
\(924\) 0 0
\(925\) −6.00000 −0.197279
\(926\) 24.0000 0.788689
\(927\) 0 0
\(928\) 2.00000 0.0656532
\(929\) 50.0000 1.64045 0.820223 0.572043i \(-0.193849\pi\)
0.820223 + 0.572043i \(0.193849\pi\)
\(930\) 0 0
\(931\) 28.0000 0.917663
\(932\) 30.0000 0.982683
\(933\) 0 0
\(934\) −12.0000 −0.392652
\(935\) 4.00000 0.130814
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 30.0000 0.977972 0.488986 0.872292i \(-0.337367\pi\)
0.488986 + 0.872292i \(0.337367\pi\)
\(942\) 0 0
\(943\) −40.0000 −1.30258
\(944\) 8.00000 0.260378
\(945\) 0 0
\(946\) −32.0000 −1.04041
\(947\) 28.0000 0.909878 0.454939 0.890523i \(-0.349661\pi\)
0.454939 + 0.890523i \(0.349661\pi\)
\(948\) 0 0
\(949\) −4.00000 −0.129845
\(950\) 4.00000 0.129777
\(951\) 0 0
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −8.00000 −0.258738
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 12.0000 0.386896
\(963\) 0 0
\(964\) 10.0000 0.322078
\(965\) 6.00000 0.193147
\(966\) 0 0
\(967\) 24.0000 0.771788 0.385894 0.922543i \(-0.373893\pi\)
0.385894 + 0.922543i \(0.373893\pi\)
\(968\) −5.00000 −0.160706
\(969\) 0 0
\(970\) 10.0000 0.321081
\(971\) −32.0000 −1.02693 −0.513464 0.858111i \(-0.671638\pi\)
−0.513464 + 0.858111i \(0.671638\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 40.0000 1.28168
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) −56.0000 −1.78977
\(980\) −7.00000 −0.223607
\(981\) 0 0
\(982\) 24.0000 0.765871
\(983\) 44.0000 1.40338 0.701691 0.712481i \(-0.252429\pi\)
0.701691 + 0.712481i \(0.252429\pi\)
\(984\) 0 0
\(985\) −18.0000 −0.573528
\(986\) −2.00000 −0.0636930
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) 32.0000 1.01754
\(990\) 0 0
\(991\) −44.0000 −1.39771 −0.698853 0.715265i \(-0.746306\pi\)
−0.698853 + 0.715265i \(0.746306\pi\)
\(992\) 4.00000 0.127000
\(993\) 0 0
\(994\) 0 0
\(995\) −4.00000 −0.126809
\(996\) 0 0
\(997\) 10.0000 0.316703 0.158352 0.987383i \(-0.449382\pi\)
0.158352 + 0.987383i \(0.449382\pi\)
\(998\) −28.0000 −0.886325
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1530.2.a.f.1.1 1
3.2 odd 2 510.2.a.f.1.1 1
5.4 even 2 7650.2.a.bw.1.1 1
12.11 even 2 4080.2.a.c.1.1 1
15.2 even 4 2550.2.d.s.2449.2 2
15.8 even 4 2550.2.d.s.2449.1 2
15.14 odd 2 2550.2.a.d.1.1 1
51.50 odd 2 8670.2.a.r.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.a.f.1.1 1 3.2 odd 2
1530.2.a.f.1.1 1 1.1 even 1 trivial
2550.2.a.d.1.1 1 15.14 odd 2
2550.2.d.s.2449.1 2 15.8 even 4
2550.2.d.s.2449.2 2 15.2 even 4
4080.2.a.c.1.1 1 12.11 even 2
7650.2.a.bw.1.1 1 5.4 even 2
8670.2.a.r.1.1 1 51.50 odd 2