Defining parameters
Level: | \( N \) | \(=\) | \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1530.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 20 \) | ||
Sturm bound: | \(648\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1530))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 340 | 24 | 316 |
Cusp forms | 309 | 24 | 285 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(17\) | Fricke | Dim |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(1\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(3\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(3\) |
Plus space | \(+\) | \(9\) | |||
Minus space | \(-\) | \(15\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1530))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1530))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1530)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(153))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(255))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(306))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(510))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(765))\)\(^{\oplus 2}\)