Properties

Label 1530.2.a
Level $1530$
Weight $2$
Character orbit 1530.a
Rep. character $\chi_{1530}(1,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $20$
Sturm bound $648$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 20 \)
Sturm bound: \(648\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1530))\).

Total New Old
Modular forms 340 24 316
Cusp forms 309 24 285
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(17\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(+\)\(2\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(1\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(1\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(2\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(3\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(3\)
Plus space\(+\)\(9\)
Minus space\(-\)\(15\)

Trace form

\( 24 q + 24 q^{4} - 2 q^{5} + 2 q^{10} + 4 q^{11} + 24 q^{16} - 4 q^{17} + 4 q^{19} - 2 q^{20} + 4 q^{22} + 8 q^{23} + 24 q^{25} + 4 q^{26} - 28 q^{29} + 8 q^{31} + 4 q^{35} - 12 q^{37} + 16 q^{38} + 2 q^{40}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1530))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 17
1530.2.a.a 1530.a 1.a $1$ $12.217$ \(\Q\) None 1530.2.a.a \(-1\) \(0\) \(-1\) \(-4\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-4q^{7}-q^{8}+q^{10}+\cdots\)
1530.2.a.b 1530.a 1.a $1$ $12.217$ \(\Q\) None 510.2.a.e \(-1\) \(0\) \(-1\) \(0\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}-4q^{11}+\cdots\)
1530.2.a.c 1530.a 1.a $1$ $12.217$ \(\Q\) None 510.2.a.g \(-1\) \(0\) \(-1\) \(2\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}+2q^{7}-q^{8}+q^{10}+\cdots\)
1530.2.a.d 1530.a 1.a $1$ $12.217$ \(\Q\) None 510.2.a.c \(-1\) \(0\) \(1\) \(-4\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-4q^{7}-q^{8}-q^{10}+\cdots\)
1530.2.a.e 1530.a 1.a $1$ $12.217$ \(\Q\) None 1530.2.a.e \(-1\) \(0\) \(1\) \(-2\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-2q^{7}-q^{8}-q^{10}+\cdots\)
1530.2.a.f 1530.a 1.a $1$ $12.217$ \(\Q\) None 510.2.a.f \(-1\) \(0\) \(1\) \(0\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-q^{8}-q^{10}-4q^{11}+\cdots\)
1530.2.a.g 1530.a 1.a $1$ $12.217$ \(\Q\) None 170.2.a.e \(-1\) \(0\) \(1\) \(2\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+2q^{7}-q^{8}-q^{10}+\cdots\)
1530.2.a.h 1530.a 1.a $1$ $12.217$ \(\Q\) None 510.2.a.d \(-1\) \(0\) \(1\) \(2\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+2q^{7}-q^{8}-q^{10}+\cdots\)
1530.2.a.i 1530.a 1.a $1$ $12.217$ \(\Q\) None 510.2.a.b \(1\) \(0\) \(-1\) \(-2\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-2q^{7}+q^{8}-q^{10}+\cdots\)
1530.2.a.j 1530.a 1.a $1$ $12.217$ \(\Q\) None 170.2.a.b \(1\) \(0\) \(-1\) \(-2\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-2q^{7}+q^{8}-q^{10}+\cdots\)
1530.2.a.k 1530.a 1.a $1$ $12.217$ \(\Q\) None 1530.2.a.e \(1\) \(0\) \(-1\) \(-2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-2q^{7}+q^{8}-q^{10}+\cdots\)
1530.2.a.l 1530.a 1.a $1$ $12.217$ \(\Q\) None 170.2.a.c \(1\) \(0\) \(-1\) \(2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}+2q^{7}+q^{8}-q^{10}+\cdots\)
1530.2.a.m 1530.a 1.a $1$ $12.217$ \(\Q\) None 1530.2.a.a \(1\) \(0\) \(1\) \(-4\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}-4q^{7}+q^{8}+q^{10}+\cdots\)
1530.2.a.n 1530.a 1.a $1$ $12.217$ \(\Q\) None 170.2.a.a \(1\) \(0\) \(1\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+2q^{7}+q^{8}+q^{10}+\cdots\)
1530.2.a.o 1530.a 1.a $1$ $12.217$ \(\Q\) None 170.2.a.d \(1\) \(0\) \(1\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+2q^{7}+q^{8}+q^{10}+\cdots\)
1530.2.a.p 1530.a 1.a $1$ $12.217$ \(\Q\) None 510.2.a.a \(1\) \(0\) \(1\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+2q^{7}+q^{8}+q^{10}+\cdots\)
1530.2.a.q 1530.a 1.a $2$ $12.217$ \(\Q(\sqrt{5}) \) None 1530.2.a.q \(-2\) \(0\) \(-2\) \(2\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}+(1+\beta )q^{7}-q^{8}+\cdots\)
1530.2.a.r 1530.a 1.a $2$ $12.217$ \(\Q(\sqrt{17}) \) None 170.2.a.f \(-2\) \(0\) \(-2\) \(2\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}+2\beta q^{7}-q^{8}+q^{10}+\cdots\)
1530.2.a.s 1530.a 1.a $2$ $12.217$ \(\Q(\sqrt{6}) \) None 510.2.a.h \(2\) \(0\) \(-2\) \(0\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}+\beta q^{7}+q^{8}-q^{10}+\cdots\)
1530.2.a.t 1530.a 1.a $2$ $12.217$ \(\Q(\sqrt{5}) \) None 1530.2.a.q \(2\) \(0\) \(2\) \(2\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+(1+\beta )q^{7}+q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1530))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1530)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(153))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(255))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(306))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(510))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(765))\)\(^{\oplus 2}\)