Properties

Label 153.4.a.i.1.1
Level $153$
Weight $4$
Character 153.1
Self dual yes
Analytic conductor $9.027$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [153,4,Mod(1,153)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(153, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("153.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 153.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.02729223088\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.1506848.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 17x^{2} + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.06515\) of defining polynomial
Character \(\chi\) \(=\) 153.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.56787 q^{2} +4.72971 q^{4} +20.6288 q^{5} -5.24213 q^{7} +11.6680 q^{8} -73.6008 q^{10} +5.21023 q^{11} -14.8007 q^{13} +18.7033 q^{14} -79.4675 q^{16} -17.0000 q^{17} +26.2601 q^{19} +97.5682 q^{20} -18.5894 q^{22} +165.443 q^{23} +300.546 q^{25} +52.8069 q^{26} -24.7938 q^{28} -42.3983 q^{29} +263.956 q^{31} +190.186 q^{32} +60.6538 q^{34} -108.139 q^{35} -322.217 q^{37} -93.6927 q^{38} +240.696 q^{40} +321.529 q^{41} +385.799 q^{43} +24.6429 q^{44} -590.280 q^{46} +309.308 q^{47} -315.520 q^{49} -1072.31 q^{50} -70.0029 q^{52} +192.701 q^{53} +107.481 q^{55} -61.1650 q^{56} +151.272 q^{58} -587.082 q^{59} -241.163 q^{61} -941.763 q^{62} -42.8203 q^{64} -305.320 q^{65} +205.396 q^{67} -80.4052 q^{68} +385.825 q^{70} +933.035 q^{71} -869.875 q^{73} +1149.63 q^{74} +124.203 q^{76} -27.3127 q^{77} +102.161 q^{79} -1639.32 q^{80} -1147.17 q^{82} +298.886 q^{83} -350.689 q^{85} -1376.48 q^{86} +60.7928 q^{88} -666.125 q^{89} +77.5871 q^{91} +782.499 q^{92} -1103.57 q^{94} +541.714 q^{95} +1351.60 q^{97} +1125.74 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 26 q^{4} + 22 q^{5} - 24 q^{7} + 102 q^{8} - 2 q^{10} + 50 q^{11} + 26 q^{13} + 80 q^{14} + 138 q^{16} - 68 q^{17} + 34 q^{19} + 312 q^{20} - 254 q^{22} + 382 q^{23} + 138 q^{25} - 22 q^{26}+ \cdots - 1472 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.56787 −1.26143 −0.630717 0.776013i \(-0.717239\pi\)
−0.630717 + 0.776013i \(0.717239\pi\)
\(3\) 0 0
\(4\) 4.72971 0.591214
\(5\) 20.6288 1.84509 0.922547 0.385885i \(-0.126104\pi\)
0.922547 + 0.385885i \(0.126104\pi\)
\(6\) 0 0
\(7\) −5.24213 −0.283049 −0.141524 0.989935i \(-0.545200\pi\)
−0.141524 + 0.989935i \(0.545200\pi\)
\(8\) 11.6680 0.515656
\(9\) 0 0
\(10\) −73.6008 −2.32746
\(11\) 5.21023 0.142813 0.0714065 0.997447i \(-0.477251\pi\)
0.0714065 + 0.997447i \(0.477251\pi\)
\(12\) 0 0
\(13\) −14.8007 −0.315767 −0.157883 0.987458i \(-0.550467\pi\)
−0.157883 + 0.987458i \(0.550467\pi\)
\(14\) 18.7033 0.357047
\(15\) 0 0
\(16\) −79.4675 −1.24168
\(17\) −17.0000 −0.242536
\(18\) 0 0
\(19\) 26.2601 0.317078 0.158539 0.987353i \(-0.449322\pi\)
0.158539 + 0.987353i \(0.449322\pi\)
\(20\) 97.5682 1.09085
\(21\) 0 0
\(22\) −18.5894 −0.180149
\(23\) 165.443 1.49988 0.749941 0.661504i \(-0.230082\pi\)
0.749941 + 0.661504i \(0.230082\pi\)
\(24\) 0 0
\(25\) 300.546 2.40437
\(26\) 52.8069 0.398319
\(27\) 0 0
\(28\) −24.7938 −0.167342
\(29\) −42.3983 −0.271488 −0.135744 0.990744i \(-0.543343\pi\)
−0.135744 + 0.990744i \(0.543343\pi\)
\(30\) 0 0
\(31\) 263.956 1.52929 0.764644 0.644452i \(-0.222915\pi\)
0.764644 + 0.644452i \(0.222915\pi\)
\(32\) 190.186 1.05064
\(33\) 0 0
\(34\) 60.6538 0.305943
\(35\) −108.139 −0.522251
\(36\) 0 0
\(37\) −322.217 −1.43168 −0.715840 0.698264i \(-0.753956\pi\)
−0.715840 + 0.698264i \(0.753956\pi\)
\(38\) −93.6927 −0.399973
\(39\) 0 0
\(40\) 240.696 0.951434
\(41\) 321.529 1.22474 0.612371 0.790571i \(-0.290216\pi\)
0.612371 + 0.790571i \(0.290216\pi\)
\(42\) 0 0
\(43\) 385.799 1.36823 0.684114 0.729375i \(-0.260189\pi\)
0.684114 + 0.729375i \(0.260189\pi\)
\(44\) 24.6429 0.0844331
\(45\) 0 0
\(46\) −590.280 −1.89200
\(47\) 309.308 0.959942 0.479971 0.877284i \(-0.340647\pi\)
0.479971 + 0.877284i \(0.340647\pi\)
\(48\) 0 0
\(49\) −315.520 −0.919884
\(50\) −1072.31 −3.03295
\(51\) 0 0
\(52\) −70.0029 −0.186686
\(53\) 192.701 0.499426 0.249713 0.968320i \(-0.419664\pi\)
0.249713 + 0.968320i \(0.419664\pi\)
\(54\) 0 0
\(55\) 107.481 0.263504
\(56\) −61.1650 −0.145956
\(57\) 0 0
\(58\) 151.272 0.342464
\(59\) −587.082 −1.29545 −0.647725 0.761874i \(-0.724279\pi\)
−0.647725 + 0.761874i \(0.724279\pi\)
\(60\) 0 0
\(61\) −241.163 −0.506192 −0.253096 0.967441i \(-0.581449\pi\)
−0.253096 + 0.967441i \(0.581449\pi\)
\(62\) −941.763 −1.92910
\(63\) 0 0
\(64\) −42.8203 −0.0836334
\(65\) −305.320 −0.582619
\(66\) 0 0
\(67\) 205.396 0.374525 0.187262 0.982310i \(-0.440039\pi\)
0.187262 + 0.982310i \(0.440039\pi\)
\(68\) −80.4052 −0.143391
\(69\) 0 0
\(70\) 385.825 0.658785
\(71\) 933.035 1.55959 0.779795 0.626035i \(-0.215323\pi\)
0.779795 + 0.626035i \(0.215323\pi\)
\(72\) 0 0
\(73\) −869.875 −1.39467 −0.697337 0.716744i \(-0.745632\pi\)
−0.697337 + 0.716744i \(0.745632\pi\)
\(74\) 1149.63 1.80597
\(75\) 0 0
\(76\) 124.203 0.187461
\(77\) −27.3127 −0.0404230
\(78\) 0 0
\(79\) 102.161 0.145494 0.0727470 0.997350i \(-0.476823\pi\)
0.0727470 + 0.997350i \(0.476823\pi\)
\(80\) −1639.32 −2.29102
\(81\) 0 0
\(82\) −1147.17 −1.54493
\(83\) 298.886 0.395265 0.197633 0.980276i \(-0.436675\pi\)
0.197633 + 0.980276i \(0.436675\pi\)
\(84\) 0 0
\(85\) −350.689 −0.447501
\(86\) −1376.48 −1.72593
\(87\) 0 0
\(88\) 60.7928 0.0736424
\(89\) −666.125 −0.793361 −0.396680 0.917957i \(-0.629838\pi\)
−0.396680 + 0.917957i \(0.629838\pi\)
\(90\) 0 0
\(91\) 77.5871 0.0893773
\(92\) 782.499 0.886752
\(93\) 0 0
\(94\) −1103.57 −1.21090
\(95\) 541.714 0.585038
\(96\) 0 0
\(97\) 1351.60 1.41478 0.707391 0.706822i \(-0.249872\pi\)
0.707391 + 0.706822i \(0.249872\pi\)
\(98\) 1125.74 1.16037
\(99\) 0 0
\(100\) 1421.50 1.42150
\(101\) −1628.22 −1.60410 −0.802050 0.597256i \(-0.796257\pi\)
−0.802050 + 0.597256i \(0.796257\pi\)
\(102\) 0 0
\(103\) 48.4374 0.0463367 0.0231684 0.999732i \(-0.492625\pi\)
0.0231684 + 0.999732i \(0.492625\pi\)
\(104\) −172.694 −0.162827
\(105\) 0 0
\(106\) −687.534 −0.629993
\(107\) 1493.56 1.34942 0.674711 0.738082i \(-0.264268\pi\)
0.674711 + 0.738082i \(0.264268\pi\)
\(108\) 0 0
\(109\) 694.642 0.610410 0.305205 0.952287i \(-0.401275\pi\)
0.305205 + 0.952287i \(0.401275\pi\)
\(110\) −383.477 −0.332392
\(111\) 0 0
\(112\) 416.579 0.351456
\(113\) 1302.15 1.08404 0.542018 0.840367i \(-0.317660\pi\)
0.542018 + 0.840367i \(0.317660\pi\)
\(114\) 0 0
\(115\) 3412.89 2.76742
\(116\) −200.532 −0.160508
\(117\) 0 0
\(118\) 2094.63 1.63412
\(119\) 89.1163 0.0686494
\(120\) 0 0
\(121\) −1303.85 −0.979604
\(122\) 860.438 0.638528
\(123\) 0 0
\(124\) 1248.44 0.904138
\(125\) 3621.31 2.59120
\(126\) 0 0
\(127\) −2100.00 −1.46728 −0.733642 0.679536i \(-0.762181\pi\)
−0.733642 + 0.679536i \(0.762181\pi\)
\(128\) −1368.71 −0.945143
\(129\) 0 0
\(130\) 1089.34 0.734935
\(131\) −963.258 −0.642444 −0.321222 0.947004i \(-0.604094\pi\)
−0.321222 + 0.947004i \(0.604094\pi\)
\(132\) 0 0
\(133\) −137.659 −0.0897484
\(134\) −732.828 −0.472438
\(135\) 0 0
\(136\) −198.355 −0.125065
\(137\) 311.771 0.194426 0.0972130 0.995264i \(-0.469007\pi\)
0.0972130 + 0.995264i \(0.469007\pi\)
\(138\) 0 0
\(139\) −1039.05 −0.634035 −0.317018 0.948420i \(-0.602681\pi\)
−0.317018 + 0.948420i \(0.602681\pi\)
\(140\) −511.466 −0.308762
\(141\) 0 0
\(142\) −3328.95 −1.96732
\(143\) −77.1149 −0.0450956
\(144\) 0 0
\(145\) −874.624 −0.500921
\(146\) 3103.60 1.75929
\(147\) 0 0
\(148\) −1524.00 −0.846430
\(149\) 375.216 0.206301 0.103151 0.994666i \(-0.467108\pi\)
0.103151 + 0.994666i \(0.467108\pi\)
\(150\) 0 0
\(151\) −2602.60 −1.40262 −0.701312 0.712854i \(-0.747402\pi\)
−0.701312 + 0.712854i \(0.747402\pi\)
\(152\) 306.402 0.163503
\(153\) 0 0
\(154\) 97.4483 0.0509910
\(155\) 5445.10 2.82168
\(156\) 0 0
\(157\) −3134.77 −1.59351 −0.796756 0.604301i \(-0.793453\pi\)
−0.796756 + 0.604301i \(0.793453\pi\)
\(158\) −364.498 −0.183531
\(159\) 0 0
\(160\) 3923.31 1.93853
\(161\) −867.276 −0.424540
\(162\) 0 0
\(163\) −52.9329 −0.0254357 −0.0127179 0.999919i \(-0.504048\pi\)
−0.0127179 + 0.999919i \(0.504048\pi\)
\(164\) 1520.74 0.724085
\(165\) 0 0
\(166\) −1066.39 −0.498601
\(167\) −3554.79 −1.64717 −0.823586 0.567192i \(-0.808030\pi\)
−0.823586 + 0.567192i \(0.808030\pi\)
\(168\) 0 0
\(169\) −1977.94 −0.900291
\(170\) 1251.21 0.564493
\(171\) 0 0
\(172\) 1824.72 0.808916
\(173\) 134.253 0.0590006 0.0295003 0.999565i \(-0.490608\pi\)
0.0295003 + 0.999565i \(0.490608\pi\)
\(174\) 0 0
\(175\) −1575.50 −0.680554
\(176\) −414.044 −0.177328
\(177\) 0 0
\(178\) 2376.65 1.00077
\(179\) −2368.80 −0.989119 −0.494559 0.869144i \(-0.664671\pi\)
−0.494559 + 0.869144i \(0.664671\pi\)
\(180\) 0 0
\(181\) 1320.79 0.542396 0.271198 0.962524i \(-0.412580\pi\)
0.271198 + 0.962524i \(0.412580\pi\)
\(182\) −276.821 −0.112744
\(183\) 0 0
\(184\) 1930.39 0.773423
\(185\) −6646.95 −2.64158
\(186\) 0 0
\(187\) −88.5739 −0.0346373
\(188\) 1462.94 0.567531
\(189\) 0 0
\(190\) −1932.77 −0.737987
\(191\) −549.534 −0.208183 −0.104091 0.994568i \(-0.533193\pi\)
−0.104091 + 0.994568i \(0.533193\pi\)
\(192\) 0 0
\(193\) 4191.18 1.56315 0.781575 0.623811i \(-0.214417\pi\)
0.781575 + 0.623811i \(0.214417\pi\)
\(194\) −4822.33 −1.78465
\(195\) 0 0
\(196\) −1492.32 −0.543848
\(197\) −3963.36 −1.43339 −0.716695 0.697386i \(-0.754346\pi\)
−0.716695 + 0.697386i \(0.754346\pi\)
\(198\) 0 0
\(199\) −4603.54 −1.63988 −0.819940 0.572450i \(-0.805993\pi\)
−0.819940 + 0.572450i \(0.805993\pi\)
\(200\) 3506.76 1.23983
\(201\) 0 0
\(202\) 5809.29 2.02347
\(203\) 222.257 0.0768444
\(204\) 0 0
\(205\) 6632.75 2.25976
\(206\) −172.819 −0.0584507
\(207\) 0 0
\(208\) 1176.17 0.392081
\(209\) 136.821 0.0452829
\(210\) 0 0
\(211\) −3972.74 −1.29618 −0.648091 0.761563i \(-0.724432\pi\)
−0.648091 + 0.761563i \(0.724432\pi\)
\(212\) 911.423 0.295268
\(213\) 0 0
\(214\) −5328.84 −1.70221
\(215\) 7958.56 2.52451
\(216\) 0 0
\(217\) −1383.69 −0.432863
\(218\) −2478.40 −0.769992
\(219\) 0 0
\(220\) 508.353 0.155787
\(221\) 251.611 0.0765847
\(222\) 0 0
\(223\) 3347.58 1.00525 0.502624 0.864505i \(-0.332368\pi\)
0.502624 + 0.864505i \(0.332368\pi\)
\(224\) −996.982 −0.297382
\(225\) 0 0
\(226\) −4645.91 −1.36744
\(227\) 2809.86 0.821572 0.410786 0.911732i \(-0.365254\pi\)
0.410786 + 0.911732i \(0.365254\pi\)
\(228\) 0 0
\(229\) 5978.12 1.72509 0.862544 0.505981i \(-0.168870\pi\)
0.862544 + 0.505981i \(0.168870\pi\)
\(230\) −12176.8 −3.49092
\(231\) 0 0
\(232\) −494.701 −0.139995
\(233\) −2877.85 −0.809160 −0.404580 0.914503i \(-0.632582\pi\)
−0.404580 + 0.914503i \(0.632582\pi\)
\(234\) 0 0
\(235\) 6380.65 1.77118
\(236\) −2776.73 −0.765888
\(237\) 0 0
\(238\) −317.955 −0.0865966
\(239\) −836.275 −0.226335 −0.113168 0.993576i \(-0.536100\pi\)
−0.113168 + 0.993576i \(0.536100\pi\)
\(240\) 0 0
\(241\) 1336.21 0.357148 0.178574 0.983926i \(-0.442852\pi\)
0.178574 + 0.983926i \(0.442852\pi\)
\(242\) 4651.98 1.23571
\(243\) 0 0
\(244\) −1140.63 −0.299268
\(245\) −6508.79 −1.69727
\(246\) 0 0
\(247\) −388.667 −0.100123
\(248\) 3079.83 0.788587
\(249\) 0 0
\(250\) −12920.4 −3.26862
\(251\) −5582.36 −1.40381 −0.701903 0.712273i \(-0.747666\pi\)
−0.701903 + 0.712273i \(0.747666\pi\)
\(252\) 0 0
\(253\) 861.998 0.214203
\(254\) 7492.55 1.85088
\(255\) 0 0
\(256\) 5225.96 1.27587
\(257\) 4627.76 1.12324 0.561618 0.827397i \(-0.310179\pi\)
0.561618 + 0.827397i \(0.310179\pi\)
\(258\) 0 0
\(259\) 1689.11 0.405235
\(260\) −1444.07 −0.344453
\(261\) 0 0
\(262\) 3436.78 0.810401
\(263\) 399.519 0.0936708 0.0468354 0.998903i \(-0.485086\pi\)
0.0468354 + 0.998903i \(0.485086\pi\)
\(264\) 0 0
\(265\) 3975.20 0.921488
\(266\) 491.149 0.113212
\(267\) 0 0
\(268\) 971.466 0.221424
\(269\) −2204.10 −0.499577 −0.249789 0.968300i \(-0.580361\pi\)
−0.249789 + 0.968300i \(0.580361\pi\)
\(270\) 0 0
\(271\) −2363.70 −0.529833 −0.264916 0.964271i \(-0.585344\pi\)
−0.264916 + 0.964271i \(0.585344\pi\)
\(272\) 1350.95 0.301152
\(273\) 0 0
\(274\) −1112.36 −0.245255
\(275\) 1565.92 0.343376
\(276\) 0 0
\(277\) −3988.65 −0.865179 −0.432589 0.901591i \(-0.642400\pi\)
−0.432589 + 0.901591i \(0.642400\pi\)
\(278\) 3707.19 0.799793
\(279\) 0 0
\(280\) −1261.76 −0.269302
\(281\) −1494.96 −0.317373 −0.158686 0.987329i \(-0.550726\pi\)
−0.158686 + 0.987329i \(0.550726\pi\)
\(282\) 0 0
\(283\) 5973.29 1.25468 0.627341 0.778744i \(-0.284143\pi\)
0.627341 + 0.778744i \(0.284143\pi\)
\(284\) 4412.99 0.922052
\(285\) 0 0
\(286\) 275.136 0.0568851
\(287\) −1685.50 −0.346661
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) 3120.55 0.631879
\(291\) 0 0
\(292\) −4114.26 −0.824551
\(293\) −5706.31 −1.13777 −0.568884 0.822417i \(-0.692625\pi\)
−0.568884 + 0.822417i \(0.692625\pi\)
\(294\) 0 0
\(295\) −12110.8 −2.39023
\(296\) −3759.62 −0.738254
\(297\) 0 0
\(298\) −1338.72 −0.260235
\(299\) −2448.67 −0.473613
\(300\) 0 0
\(301\) −2022.41 −0.387275
\(302\) 9285.73 1.76932
\(303\) 0 0
\(304\) −2086.82 −0.393709
\(305\) −4974.89 −0.933973
\(306\) 0 0
\(307\) 4684.64 0.870900 0.435450 0.900213i \(-0.356589\pi\)
0.435450 + 0.900213i \(0.356589\pi\)
\(308\) −129.181 −0.0238987
\(309\) 0 0
\(310\) −19427.4 −3.55936
\(311\) 4086.74 0.745138 0.372569 0.928005i \(-0.378477\pi\)
0.372569 + 0.928005i \(0.378477\pi\)
\(312\) 0 0
\(313\) 6893.79 1.24492 0.622460 0.782651i \(-0.286133\pi\)
0.622460 + 0.782651i \(0.286133\pi\)
\(314\) 11184.4 2.01011
\(315\) 0 0
\(316\) 483.193 0.0860182
\(317\) 4907.72 0.869542 0.434771 0.900541i \(-0.356829\pi\)
0.434771 + 0.900541i \(0.356829\pi\)
\(318\) 0 0
\(319\) −220.905 −0.0387721
\(320\) −883.330 −0.154311
\(321\) 0 0
\(322\) 3094.33 0.535529
\(323\) −446.422 −0.0769027
\(324\) 0 0
\(325\) −4448.29 −0.759220
\(326\) 188.858 0.0320855
\(327\) 0 0
\(328\) 3751.59 0.631545
\(329\) −1621.44 −0.271710
\(330\) 0 0
\(331\) −8884.92 −1.47541 −0.737703 0.675126i \(-0.764089\pi\)
−0.737703 + 0.675126i \(0.764089\pi\)
\(332\) 1413.65 0.233687
\(333\) 0 0
\(334\) 12683.0 2.07780
\(335\) 4237.07 0.691033
\(336\) 0 0
\(337\) −5398.17 −0.872572 −0.436286 0.899808i \(-0.643706\pi\)
−0.436286 + 0.899808i \(0.643706\pi\)
\(338\) 7057.04 1.13566
\(339\) 0 0
\(340\) −1658.66 −0.264569
\(341\) 1375.27 0.218402
\(342\) 0 0
\(343\) 3452.05 0.543420
\(344\) 4501.49 0.705534
\(345\) 0 0
\(346\) −478.999 −0.0744253
\(347\) 6120.24 0.946835 0.473417 0.880838i \(-0.343020\pi\)
0.473417 + 0.880838i \(0.343020\pi\)
\(348\) 0 0
\(349\) −4211.65 −0.645972 −0.322986 0.946404i \(-0.604687\pi\)
−0.322986 + 0.946404i \(0.604687\pi\)
\(350\) 5621.20 0.858473
\(351\) 0 0
\(352\) 990.915 0.150045
\(353\) −982.908 −0.148201 −0.0741005 0.997251i \(-0.523609\pi\)
−0.0741005 + 0.997251i \(0.523609\pi\)
\(354\) 0 0
\(355\) 19247.4 2.87759
\(356\) −3150.58 −0.469046
\(357\) 0 0
\(358\) 8451.57 1.24771
\(359\) 12216.9 1.79605 0.898027 0.439940i \(-0.145000\pi\)
0.898027 + 0.439940i \(0.145000\pi\)
\(360\) 0 0
\(361\) −6169.41 −0.899462
\(362\) −4712.42 −0.684197
\(363\) 0 0
\(364\) 366.965 0.0528411
\(365\) −17944.5 −2.57330
\(366\) 0 0
\(367\) −3054.02 −0.434383 −0.217192 0.976129i \(-0.569690\pi\)
−0.217192 + 0.976129i \(0.569690\pi\)
\(368\) −13147.4 −1.86237
\(369\) 0 0
\(370\) 23715.5 3.33218
\(371\) −1010.17 −0.141362
\(372\) 0 0
\(373\) 5547.11 0.770023 0.385012 0.922912i \(-0.374197\pi\)
0.385012 + 0.922912i \(0.374197\pi\)
\(374\) 316.021 0.0436926
\(375\) 0 0
\(376\) 3609.00 0.495000
\(377\) 627.523 0.0857269
\(378\) 0 0
\(379\) 3793.70 0.514168 0.257084 0.966389i \(-0.417238\pi\)
0.257084 + 0.966389i \(0.417238\pi\)
\(380\) 2562.15 0.345883
\(381\) 0 0
\(382\) 1960.67 0.262609
\(383\) 10645.4 1.42024 0.710122 0.704079i \(-0.248640\pi\)
0.710122 + 0.704079i \(0.248640\pi\)
\(384\) 0 0
\(385\) −563.428 −0.0745843
\(386\) −14953.6 −1.97181
\(387\) 0 0
\(388\) 6392.67 0.836440
\(389\) 551.008 0.0718180 0.0359090 0.999355i \(-0.488567\pi\)
0.0359090 + 0.999355i \(0.488567\pi\)
\(390\) 0 0
\(391\) −2812.54 −0.363775
\(392\) −3681.48 −0.474343
\(393\) 0 0
\(394\) 14140.8 1.80813
\(395\) 2107.46 0.268450
\(396\) 0 0
\(397\) −12508.7 −1.58135 −0.790674 0.612238i \(-0.790269\pi\)
−0.790674 + 0.612238i \(0.790269\pi\)
\(398\) 16424.8 2.06860
\(399\) 0 0
\(400\) −23883.7 −2.98546
\(401\) −9724.10 −1.21097 −0.605484 0.795857i \(-0.707021\pi\)
−0.605484 + 0.795857i \(0.707021\pi\)
\(402\) 0 0
\(403\) −3906.73 −0.482898
\(404\) −7701.03 −0.948367
\(405\) 0 0
\(406\) −792.986 −0.0969341
\(407\) −1678.83 −0.204463
\(408\) 0 0
\(409\) −1698.84 −0.205385 −0.102693 0.994713i \(-0.532746\pi\)
−0.102693 + 0.994713i \(0.532746\pi\)
\(410\) −23664.8 −2.85054
\(411\) 0 0
\(412\) 229.095 0.0273949
\(413\) 3077.56 0.366675
\(414\) 0 0
\(415\) 6165.66 0.729302
\(416\) −2814.88 −0.331757
\(417\) 0 0
\(418\) −488.161 −0.0571213
\(419\) 2663.86 0.310592 0.155296 0.987868i \(-0.450367\pi\)
0.155296 + 0.987868i \(0.450367\pi\)
\(420\) 0 0
\(421\) 776.756 0.0899211 0.0449606 0.998989i \(-0.485684\pi\)
0.0449606 + 0.998989i \(0.485684\pi\)
\(422\) 14174.2 1.63505
\(423\) 0 0
\(424\) 2248.43 0.257532
\(425\) −5109.29 −0.583146
\(426\) 0 0
\(427\) 1264.21 0.143277
\(428\) 7064.12 0.797798
\(429\) 0 0
\(430\) −28395.1 −3.18450
\(431\) −5951.70 −0.665158 −0.332579 0.943075i \(-0.607919\pi\)
−0.332579 + 0.943075i \(0.607919\pi\)
\(432\) 0 0
\(433\) 154.417 0.0171382 0.00856908 0.999963i \(-0.497272\pi\)
0.00856908 + 0.999963i \(0.497272\pi\)
\(434\) 4936.84 0.546028
\(435\) 0 0
\(436\) 3285.46 0.360883
\(437\) 4344.56 0.475580
\(438\) 0 0
\(439\) −12859.5 −1.39806 −0.699031 0.715091i \(-0.746385\pi\)
−0.699031 + 0.715091i \(0.746385\pi\)
\(440\) 1254.08 0.135877
\(441\) 0 0
\(442\) −897.717 −0.0966065
\(443\) −16428.4 −1.76193 −0.880967 0.473177i \(-0.843107\pi\)
−0.880967 + 0.473177i \(0.843107\pi\)
\(444\) 0 0
\(445\) −13741.3 −1.46383
\(446\) −11943.7 −1.26805
\(447\) 0 0
\(448\) 224.470 0.0236723
\(449\) −700.731 −0.0736516 −0.0368258 0.999322i \(-0.511725\pi\)
−0.0368258 + 0.999322i \(0.511725\pi\)
\(450\) 0 0
\(451\) 1675.24 0.174909
\(452\) 6158.80 0.640898
\(453\) 0 0
\(454\) −10025.2 −1.03636
\(455\) 1600.53 0.164910
\(456\) 0 0
\(457\) 3127.81 0.320159 0.160080 0.987104i \(-0.448825\pi\)
0.160080 + 0.987104i \(0.448825\pi\)
\(458\) −21329.2 −2.17608
\(459\) 0 0
\(460\) 16142.0 1.63614
\(461\) −12198.4 −1.23240 −0.616200 0.787590i \(-0.711329\pi\)
−0.616200 + 0.787590i \(0.711329\pi\)
\(462\) 0 0
\(463\) −5054.14 −0.507313 −0.253657 0.967294i \(-0.581633\pi\)
−0.253657 + 0.967294i \(0.581633\pi\)
\(464\) 3369.28 0.337102
\(465\) 0 0
\(466\) 10267.8 1.02070
\(467\) 8366.25 0.829002 0.414501 0.910049i \(-0.363956\pi\)
0.414501 + 0.910049i \(0.363956\pi\)
\(468\) 0 0
\(469\) −1076.71 −0.106009
\(470\) −22765.4 −2.23423
\(471\) 0 0
\(472\) −6850.05 −0.668006
\(473\) 2010.10 0.195401
\(474\) 0 0
\(475\) 7892.38 0.762373
\(476\) 421.494 0.0405865
\(477\) 0 0
\(478\) 2983.72 0.285507
\(479\) −3942.17 −0.376038 −0.188019 0.982165i \(-0.560207\pi\)
−0.188019 + 0.982165i \(0.560207\pi\)
\(480\) 0 0
\(481\) 4769.03 0.452077
\(482\) −4767.42 −0.450519
\(483\) 0 0
\(484\) −6166.86 −0.579156
\(485\) 27881.8 2.61041
\(486\) 0 0
\(487\) 160.598 0.0149433 0.00747165 0.999972i \(-0.497622\pi\)
0.00747165 + 0.999972i \(0.497622\pi\)
\(488\) −2813.88 −0.261021
\(489\) 0 0
\(490\) 23222.5 2.14099
\(491\) 17380.5 1.59750 0.798748 0.601666i \(-0.205496\pi\)
0.798748 + 0.601666i \(0.205496\pi\)
\(492\) 0 0
\(493\) 720.770 0.0658456
\(494\) 1386.71 0.126298
\(495\) 0 0
\(496\) −20976.0 −1.89889
\(497\) −4891.09 −0.441440
\(498\) 0 0
\(499\) 17648.5 1.58328 0.791640 0.610988i \(-0.209228\pi\)
0.791640 + 0.610988i \(0.209228\pi\)
\(500\) 17127.8 1.53195
\(501\) 0 0
\(502\) 19917.1 1.77081
\(503\) 2367.22 0.209839 0.104920 0.994481i \(-0.466541\pi\)
0.104920 + 0.994481i \(0.466541\pi\)
\(504\) 0 0
\(505\) −33588.2 −2.95972
\(506\) −3075.50 −0.270203
\(507\) 0 0
\(508\) −9932.42 −0.867480
\(509\) 13983.5 1.21770 0.608850 0.793286i \(-0.291631\pi\)
0.608850 + 0.793286i \(0.291631\pi\)
\(510\) 0 0
\(511\) 4560.00 0.394760
\(512\) −7695.84 −0.664280
\(513\) 0 0
\(514\) −16511.2 −1.41689
\(515\) 999.205 0.0854956
\(516\) 0 0
\(517\) 1611.57 0.137092
\(518\) −6026.51 −0.511177
\(519\) 0 0
\(520\) −3562.46 −0.300431
\(521\) −14012.1 −1.17828 −0.589139 0.808032i \(-0.700533\pi\)
−0.589139 + 0.808032i \(0.700533\pi\)
\(522\) 0 0
\(523\) −6665.75 −0.557310 −0.278655 0.960391i \(-0.589889\pi\)
−0.278655 + 0.960391i \(0.589889\pi\)
\(524\) −4555.93 −0.379822
\(525\) 0 0
\(526\) −1425.43 −0.118159
\(527\) −4487.26 −0.370907
\(528\) 0 0
\(529\) 15204.5 1.24965
\(530\) −14183.0 −1.16240
\(531\) 0 0
\(532\) −651.087 −0.0530606
\(533\) −4758.85 −0.386733
\(534\) 0 0
\(535\) 30810.4 2.48981
\(536\) 2396.56 0.193126
\(537\) 0 0
\(538\) 7863.94 0.630183
\(539\) −1643.93 −0.131371
\(540\) 0 0
\(541\) −2658.37 −0.211261 −0.105631 0.994405i \(-0.533686\pi\)
−0.105631 + 0.994405i \(0.533686\pi\)
\(542\) 8433.39 0.668349
\(543\) 0 0
\(544\) −3233.17 −0.254818
\(545\) 14329.6 1.12626
\(546\) 0 0
\(547\) −20140.6 −1.57431 −0.787156 0.616755i \(-0.788447\pi\)
−0.787156 + 0.616755i \(0.788447\pi\)
\(548\) 1474.59 0.114947
\(549\) 0 0
\(550\) −5586.99 −0.433146
\(551\) −1113.38 −0.0860829
\(552\) 0 0
\(553\) −535.543 −0.0411819
\(554\) 14231.0 1.09137
\(555\) 0 0
\(556\) −4914.40 −0.374851
\(557\) −10449.2 −0.794874 −0.397437 0.917629i \(-0.630100\pi\)
−0.397437 + 0.917629i \(0.630100\pi\)
\(558\) 0 0
\(559\) −5710.08 −0.432041
\(560\) 8593.52 0.648469
\(561\) 0 0
\(562\) 5333.82 0.400345
\(563\) 6606.44 0.494544 0.247272 0.968946i \(-0.420466\pi\)
0.247272 + 0.968946i \(0.420466\pi\)
\(564\) 0 0
\(565\) 26861.8 2.00015
\(566\) −21311.9 −1.58270
\(567\) 0 0
\(568\) 10886.6 0.804212
\(569\) −6016.94 −0.443310 −0.221655 0.975125i \(-0.571146\pi\)
−0.221655 + 0.975125i \(0.571146\pi\)
\(570\) 0 0
\(571\) −10560.4 −0.773974 −0.386987 0.922085i \(-0.626484\pi\)
−0.386987 + 0.922085i \(0.626484\pi\)
\(572\) −364.731 −0.0266612
\(573\) 0 0
\(574\) 6013.64 0.437290
\(575\) 49723.4 3.60627
\(576\) 0 0
\(577\) −9374.56 −0.676374 −0.338187 0.941079i \(-0.609814\pi\)
−0.338187 + 0.941079i \(0.609814\pi\)
\(578\) −1031.12 −0.0742020
\(579\) 0 0
\(580\) −4136.72 −0.296152
\(581\) −1566.80 −0.111879
\(582\) 0 0
\(583\) 1004.02 0.0713246
\(584\) −10149.7 −0.719172
\(585\) 0 0
\(586\) 20359.4 1.43522
\(587\) 16742.5 1.17724 0.588618 0.808411i \(-0.299672\pi\)
0.588618 + 0.808411i \(0.299672\pi\)
\(588\) 0 0
\(589\) 6931.52 0.484904
\(590\) 43209.7 3.01511
\(591\) 0 0
\(592\) 25605.8 1.77769
\(593\) 16820.2 1.16480 0.582398 0.812904i \(-0.302115\pi\)
0.582398 + 0.812904i \(0.302115\pi\)
\(594\) 0 0
\(595\) 1838.36 0.126665
\(596\) 1774.66 0.121968
\(597\) 0 0
\(598\) 8736.54 0.597431
\(599\) 16523.6 1.12711 0.563553 0.826080i \(-0.309434\pi\)
0.563553 + 0.826080i \(0.309434\pi\)
\(600\) 0 0
\(601\) 1133.13 0.0769075 0.0384537 0.999260i \(-0.487757\pi\)
0.0384537 + 0.999260i \(0.487757\pi\)
\(602\) 7215.70 0.488521
\(603\) 0 0
\(604\) −12309.5 −0.829252
\(605\) −26896.9 −1.80746
\(606\) 0 0
\(607\) 210.365 0.0140667 0.00703333 0.999975i \(-0.497761\pi\)
0.00703333 + 0.999975i \(0.497761\pi\)
\(608\) 4994.31 0.333135
\(609\) 0 0
\(610\) 17749.8 1.17814
\(611\) −4577.97 −0.303118
\(612\) 0 0
\(613\) −4813.64 −0.317163 −0.158582 0.987346i \(-0.550692\pi\)
−0.158582 + 0.987346i \(0.550692\pi\)
\(614\) −16714.2 −1.09858
\(615\) 0 0
\(616\) −318.684 −0.0208444
\(617\) 19782.2 1.29076 0.645381 0.763861i \(-0.276699\pi\)
0.645381 + 0.763861i \(0.276699\pi\)
\(618\) 0 0
\(619\) 6340.53 0.411709 0.205854 0.978583i \(-0.434003\pi\)
0.205854 + 0.978583i \(0.434003\pi\)
\(620\) 25753.8 1.66822
\(621\) 0 0
\(622\) −14581.0 −0.939942
\(623\) 3491.92 0.224560
\(624\) 0 0
\(625\) 37134.8 2.37663
\(626\) −24596.2 −1.57038
\(627\) 0 0
\(628\) −14826.5 −0.942108
\(629\) 5477.69 0.347233
\(630\) 0 0
\(631\) −4591.83 −0.289696 −0.144848 0.989454i \(-0.546269\pi\)
−0.144848 + 0.989454i \(0.546269\pi\)
\(632\) 1192.01 0.0750249
\(633\) 0 0
\(634\) −17510.1 −1.09687
\(635\) −43320.5 −2.70728
\(636\) 0 0
\(637\) 4669.91 0.290469
\(638\) 788.160 0.0489084
\(639\) 0 0
\(640\) −28234.9 −1.74388
\(641\) −3018.43 −0.185992 −0.0929961 0.995666i \(-0.529644\pi\)
−0.0929961 + 0.995666i \(0.529644\pi\)
\(642\) 0 0
\(643\) −25834.1 −1.58444 −0.792222 0.610233i \(-0.791076\pi\)
−0.792222 + 0.610233i \(0.791076\pi\)
\(644\) −4101.97 −0.250994
\(645\) 0 0
\(646\) 1592.78 0.0970076
\(647\) 4123.41 0.250553 0.125277 0.992122i \(-0.460018\pi\)
0.125277 + 0.992122i \(0.460018\pi\)
\(648\) 0 0
\(649\) −3058.83 −0.185007
\(650\) 15870.9 0.957706
\(651\) 0 0
\(652\) −250.358 −0.0150380
\(653\) −18013.5 −1.07951 −0.539757 0.841821i \(-0.681484\pi\)
−0.539757 + 0.841821i \(0.681484\pi\)
\(654\) 0 0
\(655\) −19870.8 −1.18537
\(656\) −25551.1 −1.52074
\(657\) 0 0
\(658\) 5785.08 0.342744
\(659\) 5886.59 0.347965 0.173982 0.984749i \(-0.444336\pi\)
0.173982 + 0.984749i \(0.444336\pi\)
\(660\) 0 0
\(661\) −1099.06 −0.0646722 −0.0323361 0.999477i \(-0.510295\pi\)
−0.0323361 + 0.999477i \(0.510295\pi\)
\(662\) 31700.2 1.86113
\(663\) 0 0
\(664\) 3487.39 0.203821
\(665\) −2839.74 −0.165594
\(666\) 0 0
\(667\) −7014.51 −0.407201
\(668\) −16813.1 −0.973832
\(669\) 0 0
\(670\) −15117.3 −0.871692
\(671\) −1256.51 −0.0722909
\(672\) 0 0
\(673\) −5682.62 −0.325481 −0.162741 0.986669i \(-0.552033\pi\)
−0.162741 + 0.986669i \(0.552033\pi\)
\(674\) 19260.0 1.10069
\(675\) 0 0
\(676\) −9355.09 −0.532265
\(677\) −4491.71 −0.254993 −0.127497 0.991839i \(-0.540694\pi\)
−0.127497 + 0.991839i \(0.540694\pi\)
\(678\) 0 0
\(679\) −7085.25 −0.400452
\(680\) −4091.83 −0.230757
\(681\) 0 0
\(682\) −4906.80 −0.275500
\(683\) −11533.2 −0.646131 −0.323065 0.946377i \(-0.604713\pi\)
−0.323065 + 0.946377i \(0.604713\pi\)
\(684\) 0 0
\(685\) 6431.45 0.358734
\(686\) −12316.5 −0.685489
\(687\) 0 0
\(688\) −30658.5 −1.69890
\(689\) −2852.11 −0.157702
\(690\) 0 0
\(691\) 28818.2 1.58654 0.793268 0.608873i \(-0.208378\pi\)
0.793268 + 0.608873i \(0.208378\pi\)
\(692\) 634.980 0.0348820
\(693\) 0 0
\(694\) −21836.2 −1.19437
\(695\) −21434.3 −1.16985
\(696\) 0 0
\(697\) −5466.00 −0.297044
\(698\) 15026.6 0.814851
\(699\) 0 0
\(700\) −7451.69 −0.402353
\(701\) 16494.8 0.888730 0.444365 0.895846i \(-0.353429\pi\)
0.444365 + 0.895846i \(0.353429\pi\)
\(702\) 0 0
\(703\) −8461.45 −0.453954
\(704\) −223.104 −0.0119439
\(705\) 0 0
\(706\) 3506.89 0.186946
\(707\) 8535.36 0.454038
\(708\) 0 0
\(709\) 26363.9 1.39650 0.698248 0.715856i \(-0.253963\pi\)
0.698248 + 0.715856i \(0.253963\pi\)
\(710\) −68672.2 −3.62989
\(711\) 0 0
\(712\) −7772.32 −0.409101
\(713\) 43669.8 2.29375
\(714\) 0 0
\(715\) −1590.79 −0.0832056
\(716\) −11203.7 −0.584781
\(717\) 0 0
\(718\) −43588.3 −2.26560
\(719\) −15410.9 −0.799348 −0.399674 0.916657i \(-0.630877\pi\)
−0.399674 + 0.916657i \(0.630877\pi\)
\(720\) 0 0
\(721\) −253.915 −0.0131155
\(722\) 22011.7 1.13461
\(723\) 0 0
\(724\) 6246.97 0.320672
\(725\) −12742.6 −0.652759
\(726\) 0 0
\(727\) −3399.02 −0.173401 −0.0867005 0.996234i \(-0.527632\pi\)
−0.0867005 + 0.996234i \(0.527632\pi\)
\(728\) 905.283 0.0460879
\(729\) 0 0
\(730\) 64023.5 3.24605
\(731\) −6558.58 −0.331844
\(732\) 0 0
\(733\) −1731.67 −0.0872585 −0.0436293 0.999048i \(-0.513892\pi\)
−0.0436293 + 0.999048i \(0.513892\pi\)
\(734\) 10896.4 0.547945
\(735\) 0 0
\(736\) 31465.0 1.57584
\(737\) 1070.16 0.0534870
\(738\) 0 0
\(739\) −34116.1 −1.69821 −0.849107 0.528221i \(-0.822859\pi\)
−0.849107 + 0.528221i \(0.822859\pi\)
\(740\) −31438.2 −1.56174
\(741\) 0 0
\(742\) 3604.15 0.178319
\(743\) 16893.3 0.834126 0.417063 0.908878i \(-0.363059\pi\)
0.417063 + 0.908878i \(0.363059\pi\)
\(744\) 0 0
\(745\) 7740.24 0.380645
\(746\) −19791.4 −0.971333
\(747\) 0 0
\(748\) −418.929 −0.0204780
\(749\) −7829.45 −0.381952
\(750\) 0 0
\(751\) 32492.2 1.57877 0.789385 0.613898i \(-0.210399\pi\)
0.789385 + 0.613898i \(0.210399\pi\)
\(752\) −24580.0 −1.19194
\(753\) 0 0
\(754\) −2238.92 −0.108139
\(755\) −53688.4 −2.58797
\(756\) 0 0
\(757\) 31568.5 1.51569 0.757845 0.652434i \(-0.226252\pi\)
0.757845 + 0.652434i \(0.226252\pi\)
\(758\) −13535.5 −0.648588
\(759\) 0 0
\(760\) 6320.69 0.301679
\(761\) 21878.0 1.04215 0.521076 0.853510i \(-0.325531\pi\)
0.521076 + 0.853510i \(0.325531\pi\)
\(762\) 0 0
\(763\) −3641.41 −0.172776
\(764\) −2599.14 −0.123081
\(765\) 0 0
\(766\) −37981.4 −1.79154
\(767\) 8689.20 0.409060
\(768\) 0 0
\(769\) 12510.4 0.586653 0.293327 0.956012i \(-0.405238\pi\)
0.293327 + 0.956012i \(0.405238\pi\)
\(770\) 2010.24 0.0940831
\(771\) 0 0
\(772\) 19823.1 0.924157
\(773\) 3483.57 0.162090 0.0810448 0.996710i \(-0.474174\pi\)
0.0810448 + 0.996710i \(0.474174\pi\)
\(774\) 0 0
\(775\) 79331.1 3.67698
\(776\) 15770.4 0.729541
\(777\) 0 0
\(778\) −1965.93 −0.0905936
\(779\) 8443.39 0.388338
\(780\) 0 0
\(781\) 4861.33 0.222730
\(782\) 10034.8 0.458878
\(783\) 0 0
\(784\) 25073.6 1.14220
\(785\) −64666.4 −2.94018
\(786\) 0 0
\(787\) −21827.4 −0.988643 −0.494322 0.869279i \(-0.664584\pi\)
−0.494322 + 0.869279i \(0.664584\pi\)
\(788\) −18745.6 −0.847441
\(789\) 0 0
\(790\) −7519.15 −0.338632
\(791\) −6826.05 −0.306835
\(792\) 0 0
\(793\) 3569.37 0.159839
\(794\) 44629.5 1.99476
\(795\) 0 0
\(796\) −21773.4 −0.969520
\(797\) 31873.4 1.41658 0.708289 0.705922i \(-0.249467\pi\)
0.708289 + 0.705922i \(0.249467\pi\)
\(798\) 0 0
\(799\) −5258.24 −0.232820
\(800\) 57159.8 2.52613
\(801\) 0 0
\(802\) 34694.3 1.52756
\(803\) −4532.25 −0.199178
\(804\) 0 0
\(805\) −17890.8 −0.783316
\(806\) 13938.7 0.609144
\(807\) 0 0
\(808\) −18998.0 −0.827164
\(809\) −19243.8 −0.836312 −0.418156 0.908375i \(-0.637323\pi\)
−0.418156 + 0.908375i \(0.637323\pi\)
\(810\) 0 0
\(811\) 8969.81 0.388376 0.194188 0.980964i \(-0.437793\pi\)
0.194188 + 0.980964i \(0.437793\pi\)
\(812\) 1051.21 0.0454315
\(813\) 0 0
\(814\) 5989.84 0.257916
\(815\) −1091.94 −0.0469313
\(816\) 0 0
\(817\) 10131.1 0.433835
\(818\) 6061.26 0.259080
\(819\) 0 0
\(820\) 31371.0 1.33600
\(821\) 3644.00 0.154904 0.0774522 0.996996i \(-0.475321\pi\)
0.0774522 + 0.996996i \(0.475321\pi\)
\(822\) 0 0
\(823\) −7219.82 −0.305793 −0.152896 0.988242i \(-0.548860\pi\)
−0.152896 + 0.988242i \(0.548860\pi\)
\(824\) 565.166 0.0238938
\(825\) 0 0
\(826\) −10980.3 −0.462536
\(827\) 5356.59 0.225232 0.112616 0.993639i \(-0.464077\pi\)
0.112616 + 0.993639i \(0.464077\pi\)
\(828\) 0 0
\(829\) −14161.8 −0.593319 −0.296659 0.954983i \(-0.595873\pi\)
−0.296659 + 0.954983i \(0.595873\pi\)
\(830\) −21998.3 −0.919966
\(831\) 0 0
\(832\) 633.769 0.0264086
\(833\) 5363.84 0.223105
\(834\) 0 0
\(835\) −73330.9 −3.03919
\(836\) 647.125 0.0267719
\(837\) 0 0
\(838\) −9504.30 −0.391791
\(839\) −12912.5 −0.531333 −0.265667 0.964065i \(-0.585592\pi\)
−0.265667 + 0.964065i \(0.585592\pi\)
\(840\) 0 0
\(841\) −22591.4 −0.926294
\(842\) −2771.37 −0.113430
\(843\) 0 0
\(844\) −18789.9 −0.766321
\(845\) −40802.5 −1.66112
\(846\) 0 0
\(847\) 6834.97 0.277276
\(848\) −15313.5 −0.620127
\(849\) 0 0
\(850\) 18229.3 0.735599
\(851\) −53308.7 −2.14735
\(852\) 0 0
\(853\) −6526.03 −0.261954 −0.130977 0.991385i \(-0.541811\pi\)
−0.130977 + 0.991385i \(0.541811\pi\)
\(854\) −4510.53 −0.180734
\(855\) 0 0
\(856\) 17426.8 0.695837
\(857\) −19431.8 −0.774536 −0.387268 0.921967i \(-0.626581\pi\)
−0.387268 + 0.921967i \(0.626581\pi\)
\(858\) 0 0
\(859\) 8373.86 0.332610 0.166305 0.986074i \(-0.446816\pi\)
0.166305 + 0.986074i \(0.446816\pi\)
\(860\) 37641.7 1.49253
\(861\) 0 0
\(862\) 21234.9 0.839053
\(863\) 13066.9 0.515412 0.257706 0.966223i \(-0.417033\pi\)
0.257706 + 0.966223i \(0.417033\pi\)
\(864\) 0 0
\(865\) 2769.48 0.108862
\(866\) −550.941 −0.0216186
\(867\) 0 0
\(868\) −6544.48 −0.255915
\(869\) 532.283 0.0207785
\(870\) 0 0
\(871\) −3040.00 −0.118262
\(872\) 8105.06 0.314761
\(873\) 0 0
\(874\) −15500.8 −0.599912
\(875\) −18983.4 −0.733435
\(876\) 0 0
\(877\) −40889.1 −1.57438 −0.787188 0.616713i \(-0.788464\pi\)
−0.787188 + 0.616713i \(0.788464\pi\)
\(878\) 45881.0 1.76356
\(879\) 0 0
\(880\) −8541.22 −0.327187
\(881\) 16437.8 0.628608 0.314304 0.949322i \(-0.398229\pi\)
0.314304 + 0.949322i \(0.398229\pi\)
\(882\) 0 0
\(883\) −37873.1 −1.44341 −0.721705 0.692201i \(-0.756641\pi\)
−0.721705 + 0.692201i \(0.756641\pi\)
\(884\) 1190.05 0.0452780
\(885\) 0 0
\(886\) 58614.5 2.22256
\(887\) 35145.6 1.33041 0.665205 0.746661i \(-0.268344\pi\)
0.665205 + 0.746661i \(0.268344\pi\)
\(888\) 0 0
\(889\) 11008.5 0.415313
\(890\) 49027.4 1.84652
\(891\) 0 0
\(892\) 15833.1 0.594317
\(893\) 8122.47 0.304376
\(894\) 0 0
\(895\) −48865.4 −1.82502
\(896\) 7174.98 0.267521
\(897\) 0 0
\(898\) 2500.12 0.0929066
\(899\) −11191.3 −0.415184
\(900\) 0 0
\(901\) −3275.93 −0.121129
\(902\) −5977.05 −0.220636
\(903\) 0 0
\(904\) 15193.4 0.558990
\(905\) 27246.3 1.00077
\(906\) 0 0
\(907\) 4884.66 0.178823 0.0894116 0.995995i \(-0.471501\pi\)
0.0894116 + 0.995995i \(0.471501\pi\)
\(908\) 13289.8 0.485725
\(909\) 0 0
\(910\) −5710.47 −0.208022
\(911\) 44687.5 1.62521 0.812603 0.582818i \(-0.198050\pi\)
0.812603 + 0.582818i \(0.198050\pi\)
\(912\) 0 0
\(913\) 1557.27 0.0564491
\(914\) −11159.6 −0.403860
\(915\) 0 0
\(916\) 28274.8 1.01990
\(917\) 5049.52 0.181843
\(918\) 0 0
\(919\) 43322.8 1.55505 0.777524 0.628853i \(-0.216475\pi\)
0.777524 + 0.628853i \(0.216475\pi\)
\(920\) 39821.5 1.42704
\(921\) 0 0
\(922\) 43522.3 1.55459
\(923\) −13809.5 −0.492467
\(924\) 0 0
\(925\) −96841.2 −3.44229
\(926\) 18032.5 0.639942
\(927\) 0 0
\(928\) −8063.57 −0.285237
\(929\) −31035.2 −1.09605 −0.548025 0.836462i \(-0.684620\pi\)
−0.548025 + 0.836462i \(0.684620\pi\)
\(930\) 0 0
\(931\) −8285.59 −0.291675
\(932\) −13611.4 −0.478387
\(933\) 0 0
\(934\) −29849.7 −1.04573
\(935\) −1827.17 −0.0639090
\(936\) 0 0
\(937\) −28794.9 −1.00394 −0.501968 0.864886i \(-0.667390\pi\)
−0.501968 + 0.864886i \(0.667390\pi\)
\(938\) 3841.58 0.133723
\(939\) 0 0
\(940\) 30178.7 1.04715
\(941\) 11949.5 0.413966 0.206983 0.978344i \(-0.433635\pi\)
0.206983 + 0.978344i \(0.433635\pi\)
\(942\) 0 0
\(943\) 53194.8 1.83697
\(944\) 46653.9 1.60853
\(945\) 0 0
\(946\) −7171.79 −0.246485
\(947\) −20143.1 −0.691197 −0.345599 0.938382i \(-0.612324\pi\)
−0.345599 + 0.938382i \(0.612324\pi\)
\(948\) 0 0
\(949\) 12874.7 0.440391
\(950\) −28159.0 −0.961683
\(951\) 0 0
\(952\) 1039.81 0.0353994
\(953\) 36544.6 1.24218 0.621090 0.783739i \(-0.286690\pi\)
0.621090 + 0.783739i \(0.286690\pi\)
\(954\) 0 0
\(955\) −11336.2 −0.384117
\(956\) −3955.34 −0.133813
\(957\) 0 0
\(958\) 14065.2 0.474347
\(959\) −1634.34 −0.0550320
\(960\) 0 0
\(961\) 39881.9 1.33872
\(962\) −17015.3 −0.570265
\(963\) 0 0
\(964\) 6319.88 0.211151
\(965\) 86459.0 2.88416
\(966\) 0 0
\(967\) −40645.1 −1.35166 −0.675831 0.737056i \(-0.736215\pi\)
−0.675831 + 0.737056i \(0.736215\pi\)
\(968\) −15213.3 −0.505139
\(969\) 0 0
\(970\) −99478.7 −3.29285
\(971\) 711.265 0.0235073 0.0117536 0.999931i \(-0.496259\pi\)
0.0117536 + 0.999931i \(0.496259\pi\)
\(972\) 0 0
\(973\) 5446.83 0.179463
\(974\) −572.993 −0.0188500
\(975\) 0 0
\(976\) 19164.6 0.628529
\(977\) −57865.1 −1.89485 −0.947425 0.319979i \(-0.896324\pi\)
−0.947425 + 0.319979i \(0.896324\pi\)
\(978\) 0 0
\(979\) −3470.67 −0.113302
\(980\) −30784.7 −1.00345
\(981\) 0 0
\(982\) −62011.4 −2.01514
\(983\) 4983.77 0.161707 0.0808534 0.996726i \(-0.474235\pi\)
0.0808534 + 0.996726i \(0.474235\pi\)
\(984\) 0 0
\(985\) −81759.4 −2.64474
\(986\) −2571.62 −0.0830598
\(987\) 0 0
\(988\) −1838.28 −0.0591939
\(989\) 63827.8 2.05218
\(990\) 0 0
\(991\) 20463.6 0.655952 0.327976 0.944686i \(-0.393633\pi\)
0.327976 + 0.944686i \(0.393633\pi\)
\(992\) 50200.9 1.60673
\(993\) 0 0
\(994\) 17450.8 0.556847
\(995\) −94965.3 −3.02573
\(996\) 0 0
\(997\) 37140.8 1.17980 0.589900 0.807476i \(-0.299167\pi\)
0.589900 + 0.807476i \(0.299167\pi\)
\(998\) −62967.7 −1.99720
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.4.a.i.1.1 yes 4
3.2 odd 2 153.4.a.h.1.4 4
4.3 odd 2 2448.4.a.bs.1.4 4
12.11 even 2 2448.4.a.bo.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.4.a.h.1.4 4 3.2 odd 2
153.4.a.i.1.1 yes 4 1.1 even 1 trivial
2448.4.a.bo.1.1 4 12.11 even 2
2448.4.a.bs.1.4 4 4.3 odd 2