Properties

Label 153.4.a.h.1.4
Level $153$
Weight $4$
Character 153.1
Self dual yes
Analytic conductor $9.027$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [153,4,Mod(1,153)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(153, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("153.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 153.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.02729223088\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.1506848.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 17x^{2} + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.06515\) of defining polynomial
Character \(\chi\) \(=\) 153.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.56787 q^{2} +4.72971 q^{4} -20.6288 q^{5} -5.24213 q^{7} -11.6680 q^{8} +O(q^{10})\) \(q+3.56787 q^{2} +4.72971 q^{4} -20.6288 q^{5} -5.24213 q^{7} -11.6680 q^{8} -73.6008 q^{10} -5.21023 q^{11} -14.8007 q^{13} -18.7033 q^{14} -79.4675 q^{16} +17.0000 q^{17} +26.2601 q^{19} -97.5682 q^{20} -18.5894 q^{22} -165.443 q^{23} +300.546 q^{25} -52.8069 q^{26} -24.7938 q^{28} +42.3983 q^{29} +263.956 q^{31} -190.186 q^{32} +60.6538 q^{34} +108.139 q^{35} -322.217 q^{37} +93.6927 q^{38} +240.696 q^{40} -321.529 q^{41} +385.799 q^{43} -24.6429 q^{44} -590.280 q^{46} -309.308 q^{47} -315.520 q^{49} +1072.31 q^{50} -70.0029 q^{52} -192.701 q^{53} +107.481 q^{55} +61.1650 q^{56} +151.272 q^{58} +587.082 q^{59} -241.163 q^{61} +941.763 q^{62} -42.8203 q^{64} +305.320 q^{65} +205.396 q^{67} +80.4052 q^{68} +385.825 q^{70} -933.035 q^{71} -869.875 q^{73} -1149.63 q^{74} +124.203 q^{76} +27.3127 q^{77} +102.161 q^{79} +1639.32 q^{80} -1147.17 q^{82} -298.886 q^{83} -350.689 q^{85} +1376.48 q^{86} +60.7928 q^{88} +666.125 q^{89} +77.5871 q^{91} -782.499 q^{92} -1103.57 q^{94} -541.714 q^{95} +1351.60 q^{97} -1125.74 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 26 q^{4} - 22 q^{5} - 24 q^{7} - 102 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} + 26 q^{4} - 22 q^{5} - 24 q^{7} - 102 q^{8} - 2 q^{10} - 50 q^{11} + 26 q^{13} - 80 q^{14} + 138 q^{16} + 68 q^{17} + 34 q^{19} - 312 q^{20} - 254 q^{22} - 382 q^{23} + 138 q^{25} + 22 q^{26} + 52 q^{28} - 540 q^{29} - 356 q^{31} - 730 q^{32} - 68 q^{34} - 304 q^{35} - 404 q^{37} - 298 q^{38} + 332 q^{40} + 114 q^{41} + 570 q^{43} + 1368 q^{44} - 290 q^{46} - 496 q^{47} - 224 q^{49} + 1862 q^{50} - 1012 q^{52} - 92 q^{53} - 482 q^{55} + 1428 q^{56} + 1324 q^{58} + 48 q^{59} - 1036 q^{61} + 2564 q^{62} + 2898 q^{64} + 342 q^{65} + 812 q^{67} + 442 q^{68} + 152 q^{70} - 1044 q^{71} - 1212 q^{73} + 1444 q^{74} + 2268 q^{76} + 564 q^{77} + 488 q^{79} + 1000 q^{80} - 938 q^{82} - 1708 q^{83} - 374 q^{85} + 2446 q^{86} - 3868 q^{88} + 8 q^{89} + 716 q^{91} - 1356 q^{92} - 1224 q^{94} - 1010 q^{95} - 76 q^{97} + 1472 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.56787 1.26143 0.630717 0.776013i \(-0.282761\pi\)
0.630717 + 0.776013i \(0.282761\pi\)
\(3\) 0 0
\(4\) 4.72971 0.591214
\(5\) −20.6288 −1.84509 −0.922547 0.385885i \(-0.873896\pi\)
−0.922547 + 0.385885i \(0.873896\pi\)
\(6\) 0 0
\(7\) −5.24213 −0.283049 −0.141524 0.989935i \(-0.545200\pi\)
−0.141524 + 0.989935i \(0.545200\pi\)
\(8\) −11.6680 −0.515656
\(9\) 0 0
\(10\) −73.6008 −2.32746
\(11\) −5.21023 −0.142813 −0.0714065 0.997447i \(-0.522749\pi\)
−0.0714065 + 0.997447i \(0.522749\pi\)
\(12\) 0 0
\(13\) −14.8007 −0.315767 −0.157883 0.987458i \(-0.550467\pi\)
−0.157883 + 0.987458i \(0.550467\pi\)
\(14\) −18.7033 −0.357047
\(15\) 0 0
\(16\) −79.4675 −1.24168
\(17\) 17.0000 0.242536
\(18\) 0 0
\(19\) 26.2601 0.317078 0.158539 0.987353i \(-0.449322\pi\)
0.158539 + 0.987353i \(0.449322\pi\)
\(20\) −97.5682 −1.09085
\(21\) 0 0
\(22\) −18.5894 −0.180149
\(23\) −165.443 −1.49988 −0.749941 0.661504i \(-0.769918\pi\)
−0.749941 + 0.661504i \(0.769918\pi\)
\(24\) 0 0
\(25\) 300.546 2.40437
\(26\) −52.8069 −0.398319
\(27\) 0 0
\(28\) −24.7938 −0.167342
\(29\) 42.3983 0.271488 0.135744 0.990744i \(-0.456657\pi\)
0.135744 + 0.990744i \(0.456657\pi\)
\(30\) 0 0
\(31\) 263.956 1.52929 0.764644 0.644452i \(-0.222915\pi\)
0.764644 + 0.644452i \(0.222915\pi\)
\(32\) −190.186 −1.05064
\(33\) 0 0
\(34\) 60.6538 0.305943
\(35\) 108.139 0.522251
\(36\) 0 0
\(37\) −322.217 −1.43168 −0.715840 0.698264i \(-0.753956\pi\)
−0.715840 + 0.698264i \(0.753956\pi\)
\(38\) 93.6927 0.399973
\(39\) 0 0
\(40\) 240.696 0.951434
\(41\) −321.529 −1.22474 −0.612371 0.790571i \(-0.709784\pi\)
−0.612371 + 0.790571i \(0.709784\pi\)
\(42\) 0 0
\(43\) 385.799 1.36823 0.684114 0.729375i \(-0.260189\pi\)
0.684114 + 0.729375i \(0.260189\pi\)
\(44\) −24.6429 −0.0844331
\(45\) 0 0
\(46\) −590.280 −1.89200
\(47\) −309.308 −0.959942 −0.479971 0.877284i \(-0.659353\pi\)
−0.479971 + 0.877284i \(0.659353\pi\)
\(48\) 0 0
\(49\) −315.520 −0.919884
\(50\) 1072.31 3.03295
\(51\) 0 0
\(52\) −70.0029 −0.186686
\(53\) −192.701 −0.499426 −0.249713 0.968320i \(-0.580336\pi\)
−0.249713 + 0.968320i \(0.580336\pi\)
\(54\) 0 0
\(55\) 107.481 0.263504
\(56\) 61.1650 0.145956
\(57\) 0 0
\(58\) 151.272 0.342464
\(59\) 587.082 1.29545 0.647725 0.761874i \(-0.275721\pi\)
0.647725 + 0.761874i \(0.275721\pi\)
\(60\) 0 0
\(61\) −241.163 −0.506192 −0.253096 0.967441i \(-0.581449\pi\)
−0.253096 + 0.967441i \(0.581449\pi\)
\(62\) 941.763 1.92910
\(63\) 0 0
\(64\) −42.8203 −0.0836334
\(65\) 305.320 0.582619
\(66\) 0 0
\(67\) 205.396 0.374525 0.187262 0.982310i \(-0.440039\pi\)
0.187262 + 0.982310i \(0.440039\pi\)
\(68\) 80.4052 0.143391
\(69\) 0 0
\(70\) 385.825 0.658785
\(71\) −933.035 −1.55959 −0.779795 0.626035i \(-0.784677\pi\)
−0.779795 + 0.626035i \(0.784677\pi\)
\(72\) 0 0
\(73\) −869.875 −1.39467 −0.697337 0.716744i \(-0.745632\pi\)
−0.697337 + 0.716744i \(0.745632\pi\)
\(74\) −1149.63 −1.80597
\(75\) 0 0
\(76\) 124.203 0.187461
\(77\) 27.3127 0.0404230
\(78\) 0 0
\(79\) 102.161 0.145494 0.0727470 0.997350i \(-0.476823\pi\)
0.0727470 + 0.997350i \(0.476823\pi\)
\(80\) 1639.32 2.29102
\(81\) 0 0
\(82\) −1147.17 −1.54493
\(83\) −298.886 −0.395265 −0.197633 0.980276i \(-0.563325\pi\)
−0.197633 + 0.980276i \(0.563325\pi\)
\(84\) 0 0
\(85\) −350.689 −0.447501
\(86\) 1376.48 1.72593
\(87\) 0 0
\(88\) 60.7928 0.0736424
\(89\) 666.125 0.793361 0.396680 0.917957i \(-0.370162\pi\)
0.396680 + 0.917957i \(0.370162\pi\)
\(90\) 0 0
\(91\) 77.5871 0.0893773
\(92\) −782.499 −0.886752
\(93\) 0 0
\(94\) −1103.57 −1.21090
\(95\) −541.714 −0.585038
\(96\) 0 0
\(97\) 1351.60 1.41478 0.707391 0.706822i \(-0.249872\pi\)
0.707391 + 0.706822i \(0.249872\pi\)
\(98\) −1125.74 −1.16037
\(99\) 0 0
\(100\) 1421.50 1.42150
\(101\) 1628.22 1.60410 0.802050 0.597256i \(-0.203743\pi\)
0.802050 + 0.597256i \(0.203743\pi\)
\(102\) 0 0
\(103\) 48.4374 0.0463367 0.0231684 0.999732i \(-0.492625\pi\)
0.0231684 + 0.999732i \(0.492625\pi\)
\(104\) 172.694 0.162827
\(105\) 0 0
\(106\) −687.534 −0.629993
\(107\) −1493.56 −1.34942 −0.674711 0.738082i \(-0.735732\pi\)
−0.674711 + 0.738082i \(0.735732\pi\)
\(108\) 0 0
\(109\) 694.642 0.610410 0.305205 0.952287i \(-0.401275\pi\)
0.305205 + 0.952287i \(0.401275\pi\)
\(110\) 383.477 0.332392
\(111\) 0 0
\(112\) 416.579 0.351456
\(113\) −1302.15 −1.08404 −0.542018 0.840367i \(-0.682340\pi\)
−0.542018 + 0.840367i \(0.682340\pi\)
\(114\) 0 0
\(115\) 3412.89 2.76742
\(116\) 200.532 0.160508
\(117\) 0 0
\(118\) 2094.63 1.63412
\(119\) −89.1163 −0.0686494
\(120\) 0 0
\(121\) −1303.85 −0.979604
\(122\) −860.438 −0.638528
\(123\) 0 0
\(124\) 1248.44 0.904138
\(125\) −3621.31 −2.59120
\(126\) 0 0
\(127\) −2100.00 −1.46728 −0.733642 0.679536i \(-0.762181\pi\)
−0.733642 + 0.679536i \(0.762181\pi\)
\(128\) 1368.71 0.945143
\(129\) 0 0
\(130\) 1089.34 0.734935
\(131\) 963.258 0.642444 0.321222 0.947004i \(-0.395906\pi\)
0.321222 + 0.947004i \(0.395906\pi\)
\(132\) 0 0
\(133\) −137.659 −0.0897484
\(134\) 732.828 0.472438
\(135\) 0 0
\(136\) −198.355 −0.125065
\(137\) −311.771 −0.194426 −0.0972130 0.995264i \(-0.530993\pi\)
−0.0972130 + 0.995264i \(0.530993\pi\)
\(138\) 0 0
\(139\) −1039.05 −0.634035 −0.317018 0.948420i \(-0.602681\pi\)
−0.317018 + 0.948420i \(0.602681\pi\)
\(140\) 511.466 0.308762
\(141\) 0 0
\(142\) −3328.95 −1.96732
\(143\) 77.1149 0.0450956
\(144\) 0 0
\(145\) −874.624 −0.500921
\(146\) −3103.60 −1.75929
\(147\) 0 0
\(148\) −1524.00 −0.846430
\(149\) −375.216 −0.206301 −0.103151 0.994666i \(-0.532892\pi\)
−0.103151 + 0.994666i \(0.532892\pi\)
\(150\) 0 0
\(151\) −2602.60 −1.40262 −0.701312 0.712854i \(-0.747402\pi\)
−0.701312 + 0.712854i \(0.747402\pi\)
\(152\) −306.402 −0.163503
\(153\) 0 0
\(154\) 97.4483 0.0509910
\(155\) −5445.10 −2.82168
\(156\) 0 0
\(157\) −3134.77 −1.59351 −0.796756 0.604301i \(-0.793453\pi\)
−0.796756 + 0.604301i \(0.793453\pi\)
\(158\) 364.498 0.183531
\(159\) 0 0
\(160\) 3923.31 1.93853
\(161\) 867.276 0.424540
\(162\) 0 0
\(163\) −52.9329 −0.0254357 −0.0127179 0.999919i \(-0.504048\pi\)
−0.0127179 + 0.999919i \(0.504048\pi\)
\(164\) −1520.74 −0.724085
\(165\) 0 0
\(166\) −1066.39 −0.498601
\(167\) 3554.79 1.64717 0.823586 0.567192i \(-0.191970\pi\)
0.823586 + 0.567192i \(0.191970\pi\)
\(168\) 0 0
\(169\) −1977.94 −0.900291
\(170\) −1251.21 −0.564493
\(171\) 0 0
\(172\) 1824.72 0.808916
\(173\) −134.253 −0.0590006 −0.0295003 0.999565i \(-0.509392\pi\)
−0.0295003 + 0.999565i \(0.509392\pi\)
\(174\) 0 0
\(175\) −1575.50 −0.680554
\(176\) 414.044 0.177328
\(177\) 0 0
\(178\) 2376.65 1.00077
\(179\) 2368.80 0.989119 0.494559 0.869144i \(-0.335329\pi\)
0.494559 + 0.869144i \(0.335329\pi\)
\(180\) 0 0
\(181\) 1320.79 0.542396 0.271198 0.962524i \(-0.412580\pi\)
0.271198 + 0.962524i \(0.412580\pi\)
\(182\) 276.821 0.112744
\(183\) 0 0
\(184\) 1930.39 0.773423
\(185\) 6646.95 2.64158
\(186\) 0 0
\(187\) −88.5739 −0.0346373
\(188\) −1462.94 −0.567531
\(189\) 0 0
\(190\) −1932.77 −0.737987
\(191\) 549.534 0.208183 0.104091 0.994568i \(-0.466807\pi\)
0.104091 + 0.994568i \(0.466807\pi\)
\(192\) 0 0
\(193\) 4191.18 1.56315 0.781575 0.623811i \(-0.214417\pi\)
0.781575 + 0.623811i \(0.214417\pi\)
\(194\) 4822.33 1.78465
\(195\) 0 0
\(196\) −1492.32 −0.543848
\(197\) 3963.36 1.43339 0.716695 0.697386i \(-0.245654\pi\)
0.716695 + 0.697386i \(0.245654\pi\)
\(198\) 0 0
\(199\) −4603.54 −1.63988 −0.819940 0.572450i \(-0.805993\pi\)
−0.819940 + 0.572450i \(0.805993\pi\)
\(200\) −3506.76 −1.23983
\(201\) 0 0
\(202\) 5809.29 2.02347
\(203\) −222.257 −0.0768444
\(204\) 0 0
\(205\) 6632.75 2.25976
\(206\) 172.819 0.0584507
\(207\) 0 0
\(208\) 1176.17 0.392081
\(209\) −136.821 −0.0452829
\(210\) 0 0
\(211\) −3972.74 −1.29618 −0.648091 0.761563i \(-0.724432\pi\)
−0.648091 + 0.761563i \(0.724432\pi\)
\(212\) −911.423 −0.295268
\(213\) 0 0
\(214\) −5328.84 −1.70221
\(215\) −7958.56 −2.52451
\(216\) 0 0
\(217\) −1383.69 −0.432863
\(218\) 2478.40 0.769992
\(219\) 0 0
\(220\) 508.353 0.155787
\(221\) −251.611 −0.0765847
\(222\) 0 0
\(223\) 3347.58 1.00525 0.502624 0.864505i \(-0.332368\pi\)
0.502624 + 0.864505i \(0.332368\pi\)
\(224\) 996.982 0.297382
\(225\) 0 0
\(226\) −4645.91 −1.36744
\(227\) −2809.86 −0.821572 −0.410786 0.911732i \(-0.634746\pi\)
−0.410786 + 0.911732i \(0.634746\pi\)
\(228\) 0 0
\(229\) 5978.12 1.72509 0.862544 0.505981i \(-0.168870\pi\)
0.862544 + 0.505981i \(0.168870\pi\)
\(230\) 12176.8 3.49092
\(231\) 0 0
\(232\) −494.701 −0.139995
\(233\) 2877.85 0.809160 0.404580 0.914503i \(-0.367418\pi\)
0.404580 + 0.914503i \(0.367418\pi\)
\(234\) 0 0
\(235\) 6380.65 1.77118
\(236\) 2776.73 0.765888
\(237\) 0 0
\(238\) −317.955 −0.0865966
\(239\) 836.275 0.226335 0.113168 0.993576i \(-0.463900\pi\)
0.113168 + 0.993576i \(0.463900\pi\)
\(240\) 0 0
\(241\) 1336.21 0.357148 0.178574 0.983926i \(-0.442852\pi\)
0.178574 + 0.983926i \(0.442852\pi\)
\(242\) −4651.98 −1.23571
\(243\) 0 0
\(244\) −1140.63 −0.299268
\(245\) 6508.79 1.69727
\(246\) 0 0
\(247\) −388.667 −0.100123
\(248\) −3079.83 −0.788587
\(249\) 0 0
\(250\) −12920.4 −3.26862
\(251\) 5582.36 1.40381 0.701903 0.712273i \(-0.252334\pi\)
0.701903 + 0.712273i \(0.252334\pi\)
\(252\) 0 0
\(253\) 861.998 0.214203
\(254\) −7492.55 −1.85088
\(255\) 0 0
\(256\) 5225.96 1.27587
\(257\) −4627.76 −1.12324 −0.561618 0.827397i \(-0.689821\pi\)
−0.561618 + 0.827397i \(0.689821\pi\)
\(258\) 0 0
\(259\) 1689.11 0.405235
\(260\) 1444.07 0.344453
\(261\) 0 0
\(262\) 3436.78 0.810401
\(263\) −399.519 −0.0936708 −0.0468354 0.998903i \(-0.514914\pi\)
−0.0468354 + 0.998903i \(0.514914\pi\)
\(264\) 0 0
\(265\) 3975.20 0.921488
\(266\) −491.149 −0.113212
\(267\) 0 0
\(268\) 971.466 0.221424
\(269\) 2204.10 0.499577 0.249789 0.968300i \(-0.419639\pi\)
0.249789 + 0.968300i \(0.419639\pi\)
\(270\) 0 0
\(271\) −2363.70 −0.529833 −0.264916 0.964271i \(-0.585344\pi\)
−0.264916 + 0.964271i \(0.585344\pi\)
\(272\) −1350.95 −0.301152
\(273\) 0 0
\(274\) −1112.36 −0.245255
\(275\) −1565.92 −0.343376
\(276\) 0 0
\(277\) −3988.65 −0.865179 −0.432589 0.901591i \(-0.642400\pi\)
−0.432589 + 0.901591i \(0.642400\pi\)
\(278\) −3707.19 −0.799793
\(279\) 0 0
\(280\) −1261.76 −0.269302
\(281\) 1494.96 0.317373 0.158686 0.987329i \(-0.449274\pi\)
0.158686 + 0.987329i \(0.449274\pi\)
\(282\) 0 0
\(283\) 5973.29 1.25468 0.627341 0.778744i \(-0.284143\pi\)
0.627341 + 0.778744i \(0.284143\pi\)
\(284\) −4412.99 −0.922052
\(285\) 0 0
\(286\) 275.136 0.0568851
\(287\) 1685.50 0.346661
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) −3120.55 −0.631879
\(291\) 0 0
\(292\) −4114.26 −0.824551
\(293\) 5706.31 1.13777 0.568884 0.822417i \(-0.307375\pi\)
0.568884 + 0.822417i \(0.307375\pi\)
\(294\) 0 0
\(295\) −12110.8 −2.39023
\(296\) 3759.62 0.738254
\(297\) 0 0
\(298\) −1338.72 −0.260235
\(299\) 2448.67 0.473613
\(300\) 0 0
\(301\) −2022.41 −0.387275
\(302\) −9285.73 −1.76932
\(303\) 0 0
\(304\) −2086.82 −0.393709
\(305\) 4974.89 0.933973
\(306\) 0 0
\(307\) 4684.64 0.870900 0.435450 0.900213i \(-0.356589\pi\)
0.435450 + 0.900213i \(0.356589\pi\)
\(308\) 129.181 0.0238987
\(309\) 0 0
\(310\) −19427.4 −3.55936
\(311\) −4086.74 −0.745138 −0.372569 0.928005i \(-0.621523\pi\)
−0.372569 + 0.928005i \(0.621523\pi\)
\(312\) 0 0
\(313\) 6893.79 1.24492 0.622460 0.782651i \(-0.286133\pi\)
0.622460 + 0.782651i \(0.286133\pi\)
\(314\) −11184.4 −2.01011
\(315\) 0 0
\(316\) 483.193 0.0860182
\(317\) −4907.72 −0.869542 −0.434771 0.900541i \(-0.643171\pi\)
−0.434771 + 0.900541i \(0.643171\pi\)
\(318\) 0 0
\(319\) −220.905 −0.0387721
\(320\) 883.330 0.154311
\(321\) 0 0
\(322\) 3094.33 0.535529
\(323\) 446.422 0.0769027
\(324\) 0 0
\(325\) −4448.29 −0.759220
\(326\) −188.858 −0.0320855
\(327\) 0 0
\(328\) 3751.59 0.631545
\(329\) 1621.44 0.271710
\(330\) 0 0
\(331\) −8884.92 −1.47541 −0.737703 0.675126i \(-0.764089\pi\)
−0.737703 + 0.675126i \(0.764089\pi\)
\(332\) −1413.65 −0.233687
\(333\) 0 0
\(334\) 12683.0 2.07780
\(335\) −4237.07 −0.691033
\(336\) 0 0
\(337\) −5398.17 −0.872572 −0.436286 0.899808i \(-0.643706\pi\)
−0.436286 + 0.899808i \(0.643706\pi\)
\(338\) −7057.04 −1.13566
\(339\) 0 0
\(340\) −1658.66 −0.264569
\(341\) −1375.27 −0.218402
\(342\) 0 0
\(343\) 3452.05 0.543420
\(344\) −4501.49 −0.705534
\(345\) 0 0
\(346\) −478.999 −0.0744253
\(347\) −6120.24 −0.946835 −0.473417 0.880838i \(-0.656980\pi\)
−0.473417 + 0.880838i \(0.656980\pi\)
\(348\) 0 0
\(349\) −4211.65 −0.645972 −0.322986 0.946404i \(-0.604687\pi\)
−0.322986 + 0.946404i \(0.604687\pi\)
\(350\) −5621.20 −0.858473
\(351\) 0 0
\(352\) 990.915 0.150045
\(353\) 982.908 0.148201 0.0741005 0.997251i \(-0.476391\pi\)
0.0741005 + 0.997251i \(0.476391\pi\)
\(354\) 0 0
\(355\) 19247.4 2.87759
\(356\) 3150.58 0.469046
\(357\) 0 0
\(358\) 8451.57 1.24771
\(359\) −12216.9 −1.79605 −0.898027 0.439940i \(-0.855000\pi\)
−0.898027 + 0.439940i \(0.855000\pi\)
\(360\) 0 0
\(361\) −6169.41 −0.899462
\(362\) 4712.42 0.684197
\(363\) 0 0
\(364\) 366.965 0.0528411
\(365\) 17944.5 2.57330
\(366\) 0 0
\(367\) −3054.02 −0.434383 −0.217192 0.976129i \(-0.569690\pi\)
−0.217192 + 0.976129i \(0.569690\pi\)
\(368\) 13147.4 1.86237
\(369\) 0 0
\(370\) 23715.5 3.33218
\(371\) 1010.17 0.141362
\(372\) 0 0
\(373\) 5547.11 0.770023 0.385012 0.922912i \(-0.374197\pi\)
0.385012 + 0.922912i \(0.374197\pi\)
\(374\) −316.021 −0.0436926
\(375\) 0 0
\(376\) 3609.00 0.495000
\(377\) −627.523 −0.0857269
\(378\) 0 0
\(379\) 3793.70 0.514168 0.257084 0.966389i \(-0.417238\pi\)
0.257084 + 0.966389i \(0.417238\pi\)
\(380\) −2562.15 −0.345883
\(381\) 0 0
\(382\) 1960.67 0.262609
\(383\) −10645.4 −1.42024 −0.710122 0.704079i \(-0.751360\pi\)
−0.710122 + 0.704079i \(0.751360\pi\)
\(384\) 0 0
\(385\) −563.428 −0.0745843
\(386\) 14953.6 1.97181
\(387\) 0 0
\(388\) 6392.67 0.836440
\(389\) −551.008 −0.0718180 −0.0359090 0.999355i \(-0.511433\pi\)
−0.0359090 + 0.999355i \(0.511433\pi\)
\(390\) 0 0
\(391\) −2812.54 −0.363775
\(392\) 3681.48 0.474343
\(393\) 0 0
\(394\) 14140.8 1.80813
\(395\) −2107.46 −0.268450
\(396\) 0 0
\(397\) −12508.7 −1.58135 −0.790674 0.612238i \(-0.790269\pi\)
−0.790674 + 0.612238i \(0.790269\pi\)
\(398\) −16424.8 −2.06860
\(399\) 0 0
\(400\) −23883.7 −2.98546
\(401\) 9724.10 1.21097 0.605484 0.795857i \(-0.292979\pi\)
0.605484 + 0.795857i \(0.292979\pi\)
\(402\) 0 0
\(403\) −3906.73 −0.482898
\(404\) 7701.03 0.948367
\(405\) 0 0
\(406\) −792.986 −0.0969341
\(407\) 1678.83 0.204463
\(408\) 0 0
\(409\) −1698.84 −0.205385 −0.102693 0.994713i \(-0.532746\pi\)
−0.102693 + 0.994713i \(0.532746\pi\)
\(410\) 23664.8 2.85054
\(411\) 0 0
\(412\) 229.095 0.0273949
\(413\) −3077.56 −0.366675
\(414\) 0 0
\(415\) 6165.66 0.729302
\(416\) 2814.88 0.331757
\(417\) 0 0
\(418\) −488.161 −0.0571213
\(419\) −2663.86 −0.310592 −0.155296 0.987868i \(-0.549633\pi\)
−0.155296 + 0.987868i \(0.549633\pi\)
\(420\) 0 0
\(421\) 776.756 0.0899211 0.0449606 0.998989i \(-0.485684\pi\)
0.0449606 + 0.998989i \(0.485684\pi\)
\(422\) −14174.2 −1.63505
\(423\) 0 0
\(424\) 2248.43 0.257532
\(425\) 5109.29 0.583146
\(426\) 0 0
\(427\) 1264.21 0.143277
\(428\) −7064.12 −0.797798
\(429\) 0 0
\(430\) −28395.1 −3.18450
\(431\) 5951.70 0.665158 0.332579 0.943075i \(-0.392081\pi\)
0.332579 + 0.943075i \(0.392081\pi\)
\(432\) 0 0
\(433\) 154.417 0.0171382 0.00856908 0.999963i \(-0.497272\pi\)
0.00856908 + 0.999963i \(0.497272\pi\)
\(434\) −4936.84 −0.546028
\(435\) 0 0
\(436\) 3285.46 0.360883
\(437\) −4344.56 −0.475580
\(438\) 0 0
\(439\) −12859.5 −1.39806 −0.699031 0.715091i \(-0.746385\pi\)
−0.699031 + 0.715091i \(0.746385\pi\)
\(440\) −1254.08 −0.135877
\(441\) 0 0
\(442\) −897.717 −0.0966065
\(443\) 16428.4 1.76193 0.880967 0.473177i \(-0.156893\pi\)
0.880967 + 0.473177i \(0.156893\pi\)
\(444\) 0 0
\(445\) −13741.3 −1.46383
\(446\) 11943.7 1.26805
\(447\) 0 0
\(448\) 224.470 0.0236723
\(449\) 700.731 0.0736516 0.0368258 0.999322i \(-0.488275\pi\)
0.0368258 + 0.999322i \(0.488275\pi\)
\(450\) 0 0
\(451\) 1675.24 0.174909
\(452\) −6158.80 −0.640898
\(453\) 0 0
\(454\) −10025.2 −1.03636
\(455\) −1600.53 −0.164910
\(456\) 0 0
\(457\) 3127.81 0.320159 0.160080 0.987104i \(-0.448825\pi\)
0.160080 + 0.987104i \(0.448825\pi\)
\(458\) 21329.2 2.17608
\(459\) 0 0
\(460\) 16142.0 1.63614
\(461\) 12198.4 1.23240 0.616200 0.787590i \(-0.288671\pi\)
0.616200 + 0.787590i \(0.288671\pi\)
\(462\) 0 0
\(463\) −5054.14 −0.507313 −0.253657 0.967294i \(-0.581633\pi\)
−0.253657 + 0.967294i \(0.581633\pi\)
\(464\) −3369.28 −0.337102
\(465\) 0 0
\(466\) 10267.8 1.02070
\(467\) −8366.25 −0.829002 −0.414501 0.910049i \(-0.636044\pi\)
−0.414501 + 0.910049i \(0.636044\pi\)
\(468\) 0 0
\(469\) −1076.71 −0.106009
\(470\) 22765.4 2.23423
\(471\) 0 0
\(472\) −6850.05 −0.668006
\(473\) −2010.10 −0.195401
\(474\) 0 0
\(475\) 7892.38 0.762373
\(476\) −421.494 −0.0405865
\(477\) 0 0
\(478\) 2983.72 0.285507
\(479\) 3942.17 0.376038 0.188019 0.982165i \(-0.439793\pi\)
0.188019 + 0.982165i \(0.439793\pi\)
\(480\) 0 0
\(481\) 4769.03 0.452077
\(482\) 4767.42 0.450519
\(483\) 0 0
\(484\) −6166.86 −0.579156
\(485\) −27881.8 −2.61041
\(486\) 0 0
\(487\) 160.598 0.0149433 0.00747165 0.999972i \(-0.497622\pi\)
0.00747165 + 0.999972i \(0.497622\pi\)
\(488\) 2813.88 0.261021
\(489\) 0 0
\(490\) 23222.5 2.14099
\(491\) −17380.5 −1.59750 −0.798748 0.601666i \(-0.794504\pi\)
−0.798748 + 0.601666i \(0.794504\pi\)
\(492\) 0 0
\(493\) 720.770 0.0658456
\(494\) −1386.71 −0.126298
\(495\) 0 0
\(496\) −20976.0 −1.89889
\(497\) 4891.09 0.441440
\(498\) 0 0
\(499\) 17648.5 1.58328 0.791640 0.610988i \(-0.209228\pi\)
0.791640 + 0.610988i \(0.209228\pi\)
\(500\) −17127.8 −1.53195
\(501\) 0 0
\(502\) 19917.1 1.77081
\(503\) −2367.22 −0.209839 −0.104920 0.994481i \(-0.533459\pi\)
−0.104920 + 0.994481i \(0.533459\pi\)
\(504\) 0 0
\(505\) −33588.2 −2.95972
\(506\) 3075.50 0.270203
\(507\) 0 0
\(508\) −9932.42 −0.867480
\(509\) −13983.5 −1.21770 −0.608850 0.793286i \(-0.708369\pi\)
−0.608850 + 0.793286i \(0.708369\pi\)
\(510\) 0 0
\(511\) 4560.00 0.394760
\(512\) 7695.84 0.664280
\(513\) 0 0
\(514\) −16511.2 −1.41689
\(515\) −999.205 −0.0854956
\(516\) 0 0
\(517\) 1611.57 0.137092
\(518\) 6026.51 0.511177
\(519\) 0 0
\(520\) −3562.46 −0.300431
\(521\) 14012.1 1.17828 0.589139 0.808032i \(-0.299467\pi\)
0.589139 + 0.808032i \(0.299467\pi\)
\(522\) 0 0
\(523\) −6665.75 −0.557310 −0.278655 0.960391i \(-0.589889\pi\)
−0.278655 + 0.960391i \(0.589889\pi\)
\(524\) 4555.93 0.379822
\(525\) 0 0
\(526\) −1425.43 −0.118159
\(527\) 4487.26 0.370907
\(528\) 0 0
\(529\) 15204.5 1.24965
\(530\) 14183.0 1.16240
\(531\) 0 0
\(532\) −651.087 −0.0530606
\(533\) 4758.85 0.386733
\(534\) 0 0
\(535\) 30810.4 2.48981
\(536\) −2396.56 −0.193126
\(537\) 0 0
\(538\) 7863.94 0.630183
\(539\) 1643.93 0.131371
\(540\) 0 0
\(541\) −2658.37 −0.211261 −0.105631 0.994405i \(-0.533686\pi\)
−0.105631 + 0.994405i \(0.533686\pi\)
\(542\) −8433.39 −0.668349
\(543\) 0 0
\(544\) −3233.17 −0.254818
\(545\) −14329.6 −1.12626
\(546\) 0 0
\(547\) −20140.6 −1.57431 −0.787156 0.616755i \(-0.788447\pi\)
−0.787156 + 0.616755i \(0.788447\pi\)
\(548\) −1474.59 −0.114947
\(549\) 0 0
\(550\) −5586.99 −0.433146
\(551\) 1113.38 0.0860829
\(552\) 0 0
\(553\) −535.543 −0.0411819
\(554\) −14231.0 −1.09137
\(555\) 0 0
\(556\) −4914.40 −0.374851
\(557\) 10449.2 0.794874 0.397437 0.917629i \(-0.369900\pi\)
0.397437 + 0.917629i \(0.369900\pi\)
\(558\) 0 0
\(559\) −5710.08 −0.432041
\(560\) −8593.52 −0.648469
\(561\) 0 0
\(562\) 5333.82 0.400345
\(563\) −6606.44 −0.494544 −0.247272 0.968946i \(-0.579534\pi\)
−0.247272 + 0.968946i \(0.579534\pi\)
\(564\) 0 0
\(565\) 26861.8 2.00015
\(566\) 21311.9 1.58270
\(567\) 0 0
\(568\) 10886.6 0.804212
\(569\) 6016.94 0.443310 0.221655 0.975125i \(-0.428854\pi\)
0.221655 + 0.975125i \(0.428854\pi\)
\(570\) 0 0
\(571\) −10560.4 −0.773974 −0.386987 0.922085i \(-0.626484\pi\)
−0.386987 + 0.922085i \(0.626484\pi\)
\(572\) 364.731 0.0266612
\(573\) 0 0
\(574\) 6013.64 0.437290
\(575\) −49723.4 −3.60627
\(576\) 0 0
\(577\) −9374.56 −0.676374 −0.338187 0.941079i \(-0.609814\pi\)
−0.338187 + 0.941079i \(0.609814\pi\)
\(578\) 1031.12 0.0742020
\(579\) 0 0
\(580\) −4136.72 −0.296152
\(581\) 1566.80 0.111879
\(582\) 0 0
\(583\) 1004.02 0.0713246
\(584\) 10149.7 0.719172
\(585\) 0 0
\(586\) 20359.4 1.43522
\(587\) −16742.5 −1.17724 −0.588618 0.808411i \(-0.700328\pi\)
−0.588618 + 0.808411i \(0.700328\pi\)
\(588\) 0 0
\(589\) 6931.52 0.484904
\(590\) −43209.7 −3.01511
\(591\) 0 0
\(592\) 25605.8 1.77769
\(593\) −16820.2 −1.16480 −0.582398 0.812904i \(-0.697885\pi\)
−0.582398 + 0.812904i \(0.697885\pi\)
\(594\) 0 0
\(595\) 1838.36 0.126665
\(596\) −1774.66 −0.121968
\(597\) 0 0
\(598\) 8736.54 0.597431
\(599\) −16523.6 −1.12711 −0.563553 0.826080i \(-0.690566\pi\)
−0.563553 + 0.826080i \(0.690566\pi\)
\(600\) 0 0
\(601\) 1133.13 0.0769075 0.0384537 0.999260i \(-0.487757\pi\)
0.0384537 + 0.999260i \(0.487757\pi\)
\(602\) −7215.70 −0.488521
\(603\) 0 0
\(604\) −12309.5 −0.829252
\(605\) 26896.9 1.80746
\(606\) 0 0
\(607\) 210.365 0.0140667 0.00703333 0.999975i \(-0.497761\pi\)
0.00703333 + 0.999975i \(0.497761\pi\)
\(608\) −4994.31 −0.333135
\(609\) 0 0
\(610\) 17749.8 1.17814
\(611\) 4577.97 0.303118
\(612\) 0 0
\(613\) −4813.64 −0.317163 −0.158582 0.987346i \(-0.550692\pi\)
−0.158582 + 0.987346i \(0.550692\pi\)
\(614\) 16714.2 1.09858
\(615\) 0 0
\(616\) −318.684 −0.0208444
\(617\) −19782.2 −1.29076 −0.645381 0.763861i \(-0.723301\pi\)
−0.645381 + 0.763861i \(0.723301\pi\)
\(618\) 0 0
\(619\) 6340.53 0.411709 0.205854 0.978583i \(-0.434003\pi\)
0.205854 + 0.978583i \(0.434003\pi\)
\(620\) −25753.8 −1.66822
\(621\) 0 0
\(622\) −14581.0 −0.939942
\(623\) −3491.92 −0.224560
\(624\) 0 0
\(625\) 37134.8 2.37663
\(626\) 24596.2 1.57038
\(627\) 0 0
\(628\) −14826.5 −0.942108
\(629\) −5477.69 −0.347233
\(630\) 0 0
\(631\) −4591.83 −0.289696 −0.144848 0.989454i \(-0.546269\pi\)
−0.144848 + 0.989454i \(0.546269\pi\)
\(632\) −1192.01 −0.0750249
\(633\) 0 0
\(634\) −17510.1 −1.09687
\(635\) 43320.5 2.70728
\(636\) 0 0
\(637\) 4669.91 0.290469
\(638\) −788.160 −0.0489084
\(639\) 0 0
\(640\) −28234.9 −1.74388
\(641\) 3018.43 0.185992 0.0929961 0.995666i \(-0.470356\pi\)
0.0929961 + 0.995666i \(0.470356\pi\)
\(642\) 0 0
\(643\) −25834.1 −1.58444 −0.792222 0.610233i \(-0.791076\pi\)
−0.792222 + 0.610233i \(0.791076\pi\)
\(644\) 4101.97 0.250994
\(645\) 0 0
\(646\) 1592.78 0.0970076
\(647\) −4123.41 −0.250553 −0.125277 0.992122i \(-0.539982\pi\)
−0.125277 + 0.992122i \(0.539982\pi\)
\(648\) 0 0
\(649\) −3058.83 −0.185007
\(650\) −15870.9 −0.957706
\(651\) 0 0
\(652\) −250.358 −0.0150380
\(653\) 18013.5 1.07951 0.539757 0.841821i \(-0.318516\pi\)
0.539757 + 0.841821i \(0.318516\pi\)
\(654\) 0 0
\(655\) −19870.8 −1.18537
\(656\) 25551.1 1.52074
\(657\) 0 0
\(658\) 5785.08 0.342744
\(659\) −5886.59 −0.347965 −0.173982 0.984749i \(-0.555664\pi\)
−0.173982 + 0.984749i \(0.555664\pi\)
\(660\) 0 0
\(661\) −1099.06 −0.0646722 −0.0323361 0.999477i \(-0.510295\pi\)
−0.0323361 + 0.999477i \(0.510295\pi\)
\(662\) −31700.2 −1.86113
\(663\) 0 0
\(664\) 3487.39 0.203821
\(665\) 2839.74 0.165594
\(666\) 0 0
\(667\) −7014.51 −0.407201
\(668\) 16813.1 0.973832
\(669\) 0 0
\(670\) −15117.3 −0.871692
\(671\) 1256.51 0.0722909
\(672\) 0 0
\(673\) −5682.62 −0.325481 −0.162741 0.986669i \(-0.552033\pi\)
−0.162741 + 0.986669i \(0.552033\pi\)
\(674\) −19260.0 −1.10069
\(675\) 0 0
\(676\) −9355.09 −0.532265
\(677\) 4491.71 0.254993 0.127497 0.991839i \(-0.459306\pi\)
0.127497 + 0.991839i \(0.459306\pi\)
\(678\) 0 0
\(679\) −7085.25 −0.400452
\(680\) 4091.83 0.230757
\(681\) 0 0
\(682\) −4906.80 −0.275500
\(683\) 11533.2 0.646131 0.323065 0.946377i \(-0.395287\pi\)
0.323065 + 0.946377i \(0.395287\pi\)
\(684\) 0 0
\(685\) 6431.45 0.358734
\(686\) 12316.5 0.685489
\(687\) 0 0
\(688\) −30658.5 −1.69890
\(689\) 2852.11 0.157702
\(690\) 0 0
\(691\) 28818.2 1.58654 0.793268 0.608873i \(-0.208378\pi\)
0.793268 + 0.608873i \(0.208378\pi\)
\(692\) −634.980 −0.0348820
\(693\) 0 0
\(694\) −21836.2 −1.19437
\(695\) 21434.3 1.16985
\(696\) 0 0
\(697\) −5466.00 −0.297044
\(698\) −15026.6 −0.814851
\(699\) 0 0
\(700\) −7451.69 −0.402353
\(701\) −16494.8 −0.888730 −0.444365 0.895846i \(-0.646571\pi\)
−0.444365 + 0.895846i \(0.646571\pi\)
\(702\) 0 0
\(703\) −8461.45 −0.453954
\(704\) 223.104 0.0119439
\(705\) 0 0
\(706\) 3506.89 0.186946
\(707\) −8535.36 −0.454038
\(708\) 0 0
\(709\) 26363.9 1.39650 0.698248 0.715856i \(-0.253963\pi\)
0.698248 + 0.715856i \(0.253963\pi\)
\(710\) 68672.2 3.62989
\(711\) 0 0
\(712\) −7772.32 −0.409101
\(713\) −43669.8 −2.29375
\(714\) 0 0
\(715\) −1590.79 −0.0832056
\(716\) 11203.7 0.584781
\(717\) 0 0
\(718\) −43588.3 −2.26560
\(719\) 15410.9 0.799348 0.399674 0.916657i \(-0.369123\pi\)
0.399674 + 0.916657i \(0.369123\pi\)
\(720\) 0 0
\(721\) −253.915 −0.0131155
\(722\) −22011.7 −1.13461
\(723\) 0 0
\(724\) 6246.97 0.320672
\(725\) 12742.6 0.652759
\(726\) 0 0
\(727\) −3399.02 −0.173401 −0.0867005 0.996234i \(-0.527632\pi\)
−0.0867005 + 0.996234i \(0.527632\pi\)
\(728\) −905.283 −0.0460879
\(729\) 0 0
\(730\) 64023.5 3.24605
\(731\) 6558.58 0.331844
\(732\) 0 0
\(733\) −1731.67 −0.0872585 −0.0436293 0.999048i \(-0.513892\pi\)
−0.0436293 + 0.999048i \(0.513892\pi\)
\(734\) −10896.4 −0.547945
\(735\) 0 0
\(736\) 31465.0 1.57584
\(737\) −1070.16 −0.0534870
\(738\) 0 0
\(739\) −34116.1 −1.69821 −0.849107 0.528221i \(-0.822859\pi\)
−0.849107 + 0.528221i \(0.822859\pi\)
\(740\) 31438.2 1.56174
\(741\) 0 0
\(742\) 3604.15 0.178319
\(743\) −16893.3 −0.834126 −0.417063 0.908878i \(-0.636941\pi\)
−0.417063 + 0.908878i \(0.636941\pi\)
\(744\) 0 0
\(745\) 7740.24 0.380645
\(746\) 19791.4 0.971333
\(747\) 0 0
\(748\) −418.929 −0.0204780
\(749\) 7829.45 0.381952
\(750\) 0 0
\(751\) 32492.2 1.57877 0.789385 0.613898i \(-0.210399\pi\)
0.789385 + 0.613898i \(0.210399\pi\)
\(752\) 24580.0 1.19194
\(753\) 0 0
\(754\) −2238.92 −0.108139
\(755\) 53688.4 2.58797
\(756\) 0 0
\(757\) 31568.5 1.51569 0.757845 0.652434i \(-0.226252\pi\)
0.757845 + 0.652434i \(0.226252\pi\)
\(758\) 13535.5 0.648588
\(759\) 0 0
\(760\) 6320.69 0.301679
\(761\) −21878.0 −1.04215 −0.521076 0.853510i \(-0.674469\pi\)
−0.521076 + 0.853510i \(0.674469\pi\)
\(762\) 0 0
\(763\) −3641.41 −0.172776
\(764\) 2599.14 0.123081
\(765\) 0 0
\(766\) −37981.4 −1.79154
\(767\) −8689.20 −0.409060
\(768\) 0 0
\(769\) 12510.4 0.586653 0.293327 0.956012i \(-0.405238\pi\)
0.293327 + 0.956012i \(0.405238\pi\)
\(770\) −2010.24 −0.0940831
\(771\) 0 0
\(772\) 19823.1 0.924157
\(773\) −3483.57 −0.162090 −0.0810448 0.996710i \(-0.525826\pi\)
−0.0810448 + 0.996710i \(0.525826\pi\)
\(774\) 0 0
\(775\) 79331.1 3.67698
\(776\) −15770.4 −0.729541
\(777\) 0 0
\(778\) −1965.93 −0.0905936
\(779\) −8443.39 −0.388338
\(780\) 0 0
\(781\) 4861.33 0.222730
\(782\) −10034.8 −0.458878
\(783\) 0 0
\(784\) 25073.6 1.14220
\(785\) 64666.4 2.94018
\(786\) 0 0
\(787\) −21827.4 −0.988643 −0.494322 0.869279i \(-0.664584\pi\)
−0.494322 + 0.869279i \(0.664584\pi\)
\(788\) 18745.6 0.847441
\(789\) 0 0
\(790\) −7519.15 −0.338632
\(791\) 6826.05 0.306835
\(792\) 0 0
\(793\) 3569.37 0.159839
\(794\) −44629.5 −1.99476
\(795\) 0 0
\(796\) −21773.4 −0.969520
\(797\) −31873.4 −1.41658 −0.708289 0.705922i \(-0.750533\pi\)
−0.708289 + 0.705922i \(0.750533\pi\)
\(798\) 0 0
\(799\) −5258.24 −0.232820
\(800\) −57159.8 −2.52613
\(801\) 0 0
\(802\) 34694.3 1.52756
\(803\) 4532.25 0.199178
\(804\) 0 0
\(805\) −17890.8 −0.783316
\(806\) −13938.7 −0.609144
\(807\) 0 0
\(808\) −18998.0 −0.827164
\(809\) 19243.8 0.836312 0.418156 0.908375i \(-0.362677\pi\)
0.418156 + 0.908375i \(0.362677\pi\)
\(810\) 0 0
\(811\) 8969.81 0.388376 0.194188 0.980964i \(-0.437793\pi\)
0.194188 + 0.980964i \(0.437793\pi\)
\(812\) −1051.21 −0.0454315
\(813\) 0 0
\(814\) 5989.84 0.257916
\(815\) 1091.94 0.0469313
\(816\) 0 0
\(817\) 10131.1 0.433835
\(818\) −6061.26 −0.259080
\(819\) 0 0
\(820\) 31371.0 1.33600
\(821\) −3644.00 −0.154904 −0.0774522 0.996996i \(-0.524679\pi\)
−0.0774522 + 0.996996i \(0.524679\pi\)
\(822\) 0 0
\(823\) −7219.82 −0.305793 −0.152896 0.988242i \(-0.548860\pi\)
−0.152896 + 0.988242i \(0.548860\pi\)
\(824\) −565.166 −0.0238938
\(825\) 0 0
\(826\) −10980.3 −0.462536
\(827\) −5356.59 −0.225232 −0.112616 0.993639i \(-0.535923\pi\)
−0.112616 + 0.993639i \(0.535923\pi\)
\(828\) 0 0
\(829\) −14161.8 −0.593319 −0.296659 0.954983i \(-0.595873\pi\)
−0.296659 + 0.954983i \(0.595873\pi\)
\(830\) 21998.3 0.919966
\(831\) 0 0
\(832\) 633.769 0.0264086
\(833\) −5363.84 −0.223105
\(834\) 0 0
\(835\) −73330.9 −3.03919
\(836\) −647.125 −0.0267719
\(837\) 0 0
\(838\) −9504.30 −0.391791
\(839\) 12912.5 0.531333 0.265667 0.964065i \(-0.414408\pi\)
0.265667 + 0.964065i \(0.414408\pi\)
\(840\) 0 0
\(841\) −22591.4 −0.926294
\(842\) 2771.37 0.113430
\(843\) 0 0
\(844\) −18789.9 −0.766321
\(845\) 40802.5 1.66112
\(846\) 0 0
\(847\) 6834.97 0.277276
\(848\) 15313.5 0.620127
\(849\) 0 0
\(850\) 18229.3 0.735599
\(851\) 53308.7 2.14735
\(852\) 0 0
\(853\) −6526.03 −0.261954 −0.130977 0.991385i \(-0.541811\pi\)
−0.130977 + 0.991385i \(0.541811\pi\)
\(854\) 4510.53 0.180734
\(855\) 0 0
\(856\) 17426.8 0.695837
\(857\) 19431.8 0.774536 0.387268 0.921967i \(-0.373419\pi\)
0.387268 + 0.921967i \(0.373419\pi\)
\(858\) 0 0
\(859\) 8373.86 0.332610 0.166305 0.986074i \(-0.446816\pi\)
0.166305 + 0.986074i \(0.446816\pi\)
\(860\) −37641.7 −1.49253
\(861\) 0 0
\(862\) 21234.9 0.839053
\(863\) −13066.9 −0.515412 −0.257706 0.966223i \(-0.582967\pi\)
−0.257706 + 0.966223i \(0.582967\pi\)
\(864\) 0 0
\(865\) 2769.48 0.108862
\(866\) 550.941 0.0216186
\(867\) 0 0
\(868\) −6544.48 −0.255915
\(869\) −532.283 −0.0207785
\(870\) 0 0
\(871\) −3040.00 −0.118262
\(872\) −8105.06 −0.314761
\(873\) 0 0
\(874\) −15500.8 −0.599912
\(875\) 18983.4 0.733435
\(876\) 0 0
\(877\) −40889.1 −1.57438 −0.787188 0.616713i \(-0.788464\pi\)
−0.787188 + 0.616713i \(0.788464\pi\)
\(878\) −45881.0 −1.76356
\(879\) 0 0
\(880\) −8541.22 −0.327187
\(881\) −16437.8 −0.628608 −0.314304 0.949322i \(-0.601771\pi\)
−0.314304 + 0.949322i \(0.601771\pi\)
\(882\) 0 0
\(883\) −37873.1 −1.44341 −0.721705 0.692201i \(-0.756641\pi\)
−0.721705 + 0.692201i \(0.756641\pi\)
\(884\) −1190.05 −0.0452780
\(885\) 0 0
\(886\) 58614.5 2.22256
\(887\) −35145.6 −1.33041 −0.665205 0.746661i \(-0.731656\pi\)
−0.665205 + 0.746661i \(0.731656\pi\)
\(888\) 0 0
\(889\) 11008.5 0.415313
\(890\) −49027.4 −1.84652
\(891\) 0 0
\(892\) 15833.1 0.594317
\(893\) −8122.47 −0.304376
\(894\) 0 0
\(895\) −48865.4 −1.82502
\(896\) −7174.98 −0.267521
\(897\) 0 0
\(898\) 2500.12 0.0929066
\(899\) 11191.3 0.415184
\(900\) 0 0
\(901\) −3275.93 −0.121129
\(902\) 5977.05 0.220636
\(903\) 0 0
\(904\) 15193.4 0.558990
\(905\) −27246.3 −1.00077
\(906\) 0 0
\(907\) 4884.66 0.178823 0.0894116 0.995995i \(-0.471501\pi\)
0.0894116 + 0.995995i \(0.471501\pi\)
\(908\) −13289.8 −0.485725
\(909\) 0 0
\(910\) −5710.47 −0.208022
\(911\) −44687.5 −1.62521 −0.812603 0.582818i \(-0.801950\pi\)
−0.812603 + 0.582818i \(0.801950\pi\)
\(912\) 0 0
\(913\) 1557.27 0.0564491
\(914\) 11159.6 0.403860
\(915\) 0 0
\(916\) 28274.8 1.01990
\(917\) −5049.52 −0.181843
\(918\) 0 0
\(919\) 43322.8 1.55505 0.777524 0.628853i \(-0.216475\pi\)
0.777524 + 0.628853i \(0.216475\pi\)
\(920\) −39821.5 −1.42704
\(921\) 0 0
\(922\) 43522.3 1.55459
\(923\) 13809.5 0.492467
\(924\) 0 0
\(925\) −96841.2 −3.44229
\(926\) −18032.5 −0.639942
\(927\) 0 0
\(928\) −8063.57 −0.285237
\(929\) 31035.2 1.09605 0.548025 0.836462i \(-0.315380\pi\)
0.548025 + 0.836462i \(0.315380\pi\)
\(930\) 0 0
\(931\) −8285.59 −0.291675
\(932\) 13611.4 0.478387
\(933\) 0 0
\(934\) −29849.7 −1.04573
\(935\) 1827.17 0.0639090
\(936\) 0 0
\(937\) −28794.9 −1.00394 −0.501968 0.864886i \(-0.667390\pi\)
−0.501968 + 0.864886i \(0.667390\pi\)
\(938\) −3841.58 −0.133723
\(939\) 0 0
\(940\) 30178.7 1.04715
\(941\) −11949.5 −0.413966 −0.206983 0.978344i \(-0.566365\pi\)
−0.206983 + 0.978344i \(0.566365\pi\)
\(942\) 0 0
\(943\) 53194.8 1.83697
\(944\) −46653.9 −1.60853
\(945\) 0 0
\(946\) −7171.79 −0.246485
\(947\) 20143.1 0.691197 0.345599 0.938382i \(-0.387676\pi\)
0.345599 + 0.938382i \(0.387676\pi\)
\(948\) 0 0
\(949\) 12874.7 0.440391
\(950\) 28159.0 0.961683
\(951\) 0 0
\(952\) 1039.81 0.0353994
\(953\) −36544.6 −1.24218 −0.621090 0.783739i \(-0.713310\pi\)
−0.621090 + 0.783739i \(0.713310\pi\)
\(954\) 0 0
\(955\) −11336.2 −0.384117
\(956\) 3955.34 0.133813
\(957\) 0 0
\(958\) 14065.2 0.474347
\(959\) 1634.34 0.0550320
\(960\) 0 0
\(961\) 39881.9 1.33872
\(962\) 17015.3 0.570265
\(963\) 0 0
\(964\) 6319.88 0.211151
\(965\) −86459.0 −2.88416
\(966\) 0 0
\(967\) −40645.1 −1.35166 −0.675831 0.737056i \(-0.736215\pi\)
−0.675831 + 0.737056i \(0.736215\pi\)
\(968\) 15213.3 0.505139
\(969\) 0 0
\(970\) −99478.7 −3.29285
\(971\) −711.265 −0.0235073 −0.0117536 0.999931i \(-0.503741\pi\)
−0.0117536 + 0.999931i \(0.503741\pi\)
\(972\) 0 0
\(973\) 5446.83 0.179463
\(974\) 572.993 0.0188500
\(975\) 0 0
\(976\) 19164.6 0.628529
\(977\) 57865.1 1.89485 0.947425 0.319979i \(-0.103676\pi\)
0.947425 + 0.319979i \(0.103676\pi\)
\(978\) 0 0
\(979\) −3470.67 −0.113302
\(980\) 30784.7 1.00345
\(981\) 0 0
\(982\) −62011.4 −2.01514
\(983\) −4983.77 −0.161707 −0.0808534 0.996726i \(-0.525765\pi\)
−0.0808534 + 0.996726i \(0.525765\pi\)
\(984\) 0 0
\(985\) −81759.4 −2.64474
\(986\) 2571.62 0.0830598
\(987\) 0 0
\(988\) −1838.28 −0.0591939
\(989\) −63827.8 −2.05218
\(990\) 0 0
\(991\) 20463.6 0.655952 0.327976 0.944686i \(-0.393633\pi\)
0.327976 + 0.944686i \(0.393633\pi\)
\(992\) −50200.9 −1.60673
\(993\) 0 0
\(994\) 17450.8 0.556847
\(995\) 94965.3 3.02573
\(996\) 0 0
\(997\) 37140.8 1.17980 0.589900 0.807476i \(-0.299167\pi\)
0.589900 + 0.807476i \(0.299167\pi\)
\(998\) 62967.7 1.99720
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.4.a.h.1.4 4
3.2 odd 2 153.4.a.i.1.1 yes 4
4.3 odd 2 2448.4.a.bo.1.1 4
12.11 even 2 2448.4.a.bs.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.4.a.h.1.4 4 1.1 even 1 trivial
153.4.a.i.1.1 yes 4 3.2 odd 2
2448.4.a.bo.1.1 4 4.3 odd 2
2448.4.a.bs.1.4 4 12.11 even 2