Properties

Label 153.4.a.h.1.3
Level $153$
Weight $4$
Character 153.1
Self dual yes
Analytic conductor $9.027$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [153,4,Mod(1,153)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(153, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("153.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 153.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.02729223088\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.1506848.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 17x^{2} + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.98315\) of defining polynomial
Character \(\chi\) \(=\) 153.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.47680 q^{2} -5.81906 q^{4} +11.3381 q^{5} -28.3925 q^{7} -20.4080 q^{8} +O(q^{10})\) \(q+1.47680 q^{2} -5.81906 q^{4} +11.3381 q^{5} -28.3925 q^{7} -20.4080 q^{8} +16.7441 q^{10} -56.2218 q^{11} +24.3820 q^{13} -41.9301 q^{14} +16.4140 q^{16} +17.0000 q^{17} -34.0201 q^{19} -65.9771 q^{20} -83.0284 q^{22} -108.384 q^{23} +3.55252 q^{25} +36.0074 q^{26} +165.218 q^{28} -266.590 q^{29} -207.151 q^{31} +187.504 q^{32} +25.1056 q^{34} -321.917 q^{35} +380.126 q^{37} -50.2410 q^{38} -231.388 q^{40} +451.737 q^{41} +395.919 q^{43} +327.158 q^{44} -160.061 q^{46} -179.212 q^{47} +463.136 q^{49} +5.24637 q^{50} -141.880 q^{52} -184.363 q^{53} -637.449 q^{55} +579.435 q^{56} -393.700 q^{58} -151.001 q^{59} +59.0113 q^{61} -305.920 q^{62} +145.594 q^{64} +276.446 q^{65} -56.7668 q^{67} -98.9240 q^{68} -475.408 q^{70} +265.014 q^{71} -704.699 q^{73} +561.371 q^{74} +197.965 q^{76} +1596.28 q^{77} +509.385 q^{79} +186.103 q^{80} +667.125 q^{82} +122.105 q^{83} +192.748 q^{85} +584.693 q^{86} +1147.37 q^{88} -710.816 q^{89} -692.267 q^{91} +630.690 q^{92} -264.660 q^{94} -385.724 q^{95} -834.277 q^{97} +683.960 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 26 q^{4} - 22 q^{5} - 24 q^{7} - 102 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} + 26 q^{4} - 22 q^{5} - 24 q^{7} - 102 q^{8} - 2 q^{10} - 50 q^{11} + 26 q^{13} - 80 q^{14} + 138 q^{16} + 68 q^{17} + 34 q^{19} - 312 q^{20} - 254 q^{22} - 382 q^{23} + 138 q^{25} + 22 q^{26} + 52 q^{28} - 540 q^{29} - 356 q^{31} - 730 q^{32} - 68 q^{34} - 304 q^{35} - 404 q^{37} - 298 q^{38} + 332 q^{40} + 114 q^{41} + 570 q^{43} + 1368 q^{44} - 290 q^{46} - 496 q^{47} - 224 q^{49} + 1862 q^{50} - 1012 q^{52} - 92 q^{53} - 482 q^{55} + 1428 q^{56} + 1324 q^{58} + 48 q^{59} - 1036 q^{61} + 2564 q^{62} + 2898 q^{64} + 342 q^{65} + 812 q^{67} + 442 q^{68} + 152 q^{70} - 1044 q^{71} - 1212 q^{73} + 1444 q^{74} + 2268 q^{76} + 564 q^{77} + 488 q^{79} + 1000 q^{80} - 938 q^{82} - 1708 q^{83} - 374 q^{85} + 2446 q^{86} - 3868 q^{88} + 8 q^{89} + 716 q^{91} - 1356 q^{92} - 1224 q^{94} - 1010 q^{95} - 76 q^{97} + 1472 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.47680 0.522128 0.261064 0.965322i \(-0.415927\pi\)
0.261064 + 0.965322i \(0.415927\pi\)
\(3\) 0 0
\(4\) −5.81906 −0.727383
\(5\) 11.3381 1.01411 0.507055 0.861914i \(-0.330734\pi\)
0.507055 + 0.861914i \(0.330734\pi\)
\(6\) 0 0
\(7\) −28.3925 −1.53305 −0.766526 0.642213i \(-0.778017\pi\)
−0.766526 + 0.642213i \(0.778017\pi\)
\(8\) −20.4080 −0.901914
\(9\) 0 0
\(10\) 16.7441 0.529495
\(11\) −56.2218 −1.54105 −0.770523 0.637412i \(-0.780005\pi\)
−0.770523 + 0.637412i \(0.780005\pi\)
\(12\) 0 0
\(13\) 24.3820 0.520181 0.260091 0.965584i \(-0.416248\pi\)
0.260091 + 0.965584i \(0.416248\pi\)
\(14\) −41.9301 −0.800449
\(15\) 0 0
\(16\) 16.4140 0.256468
\(17\) 17.0000 0.242536
\(18\) 0 0
\(19\) −34.0201 −0.410777 −0.205388 0.978681i \(-0.565846\pi\)
−0.205388 + 0.978681i \(0.565846\pi\)
\(20\) −65.9771 −0.737646
\(21\) 0 0
\(22\) −83.0284 −0.804623
\(23\) −108.384 −0.982588 −0.491294 0.870994i \(-0.663476\pi\)
−0.491294 + 0.870994i \(0.663476\pi\)
\(24\) 0 0
\(25\) 3.55252 0.0284202
\(26\) 36.0074 0.271601
\(27\) 0 0
\(28\) 165.218 1.11512
\(29\) −266.590 −1.70705 −0.853527 0.521049i \(-0.825541\pi\)
−0.853527 + 0.521049i \(0.825541\pi\)
\(30\) 0 0
\(31\) −207.151 −1.20017 −0.600086 0.799935i \(-0.704867\pi\)
−0.600086 + 0.799935i \(0.704867\pi\)
\(32\) 187.504 1.03582
\(33\) 0 0
\(34\) 25.1056 0.126635
\(35\) −321.917 −1.55469
\(36\) 0 0
\(37\) 380.126 1.68898 0.844492 0.535568i \(-0.179903\pi\)
0.844492 + 0.535568i \(0.179903\pi\)
\(38\) −50.2410 −0.214478
\(39\) 0 0
\(40\) −231.388 −0.914641
\(41\) 451.737 1.72072 0.860359 0.509689i \(-0.170239\pi\)
0.860359 + 0.509689i \(0.170239\pi\)
\(42\) 0 0
\(43\) 395.919 1.40412 0.702059 0.712119i \(-0.252264\pi\)
0.702059 + 0.712119i \(0.252264\pi\)
\(44\) 327.158 1.12093
\(45\) 0 0
\(46\) −160.061 −0.513036
\(47\) −179.212 −0.556186 −0.278093 0.960554i \(-0.589702\pi\)
−0.278093 + 0.960554i \(0.589702\pi\)
\(48\) 0 0
\(49\) 463.136 1.35025
\(50\) 5.24637 0.0148390
\(51\) 0 0
\(52\) −141.880 −0.378371
\(53\) −184.363 −0.477814 −0.238907 0.971042i \(-0.576789\pi\)
−0.238907 + 0.971042i \(0.576789\pi\)
\(54\) 0 0
\(55\) −637.449 −1.56279
\(56\) 579.435 1.38268
\(57\) 0 0
\(58\) −393.700 −0.891300
\(59\) −151.001 −0.333197 −0.166599 0.986025i \(-0.553278\pi\)
−0.166599 + 0.986025i \(0.553278\pi\)
\(60\) 0 0
\(61\) 59.0113 0.123863 0.0619313 0.998080i \(-0.480274\pi\)
0.0619313 + 0.998080i \(0.480274\pi\)
\(62\) −305.920 −0.626644
\(63\) 0 0
\(64\) 145.594 0.284364
\(65\) 276.446 0.527521
\(66\) 0 0
\(67\) −56.7668 −0.103510 −0.0517550 0.998660i \(-0.516481\pi\)
−0.0517550 + 0.998660i \(0.516481\pi\)
\(68\) −98.9240 −0.176416
\(69\) 0 0
\(70\) −475.408 −0.811744
\(71\) 265.014 0.442977 0.221488 0.975163i \(-0.428909\pi\)
0.221488 + 0.975163i \(0.428909\pi\)
\(72\) 0 0
\(73\) −704.699 −1.12985 −0.564924 0.825143i \(-0.691094\pi\)
−0.564924 + 0.825143i \(0.691094\pi\)
\(74\) 561.371 0.881865
\(75\) 0 0
\(76\) 197.965 0.298792
\(77\) 1596.28 2.36251
\(78\) 0 0
\(79\) 509.385 0.725447 0.362724 0.931897i \(-0.381847\pi\)
0.362724 + 0.931897i \(0.381847\pi\)
\(80\) 186.103 0.260087
\(81\) 0 0
\(82\) 667.125 0.898435
\(83\) 122.105 0.161479 0.0807395 0.996735i \(-0.474272\pi\)
0.0807395 + 0.996735i \(0.474272\pi\)
\(84\) 0 0
\(85\) 192.748 0.245958
\(86\) 584.693 0.733129
\(87\) 0 0
\(88\) 1147.37 1.38989
\(89\) −710.816 −0.846588 −0.423294 0.905992i \(-0.639126\pi\)
−0.423294 + 0.905992i \(0.639126\pi\)
\(90\) 0 0
\(91\) −692.267 −0.797465
\(92\) 630.690 0.714717
\(93\) 0 0
\(94\) −264.660 −0.290400
\(95\) −385.724 −0.416573
\(96\) 0 0
\(97\) −834.277 −0.873278 −0.436639 0.899637i \(-0.643831\pi\)
−0.436639 + 0.899637i \(0.643831\pi\)
\(98\) 683.960 0.705004
\(99\) 0 0
\(100\) −20.6724 −0.0206724
\(101\) −1607.86 −1.58404 −0.792019 0.610496i \(-0.790970\pi\)
−0.792019 + 0.610496i \(0.790970\pi\)
\(102\) 0 0
\(103\) 1581.08 1.51251 0.756256 0.654276i \(-0.227026\pi\)
0.756256 + 0.654276i \(0.227026\pi\)
\(104\) −497.588 −0.469159
\(105\) 0 0
\(106\) −272.267 −0.249480
\(107\) −2077.88 −1.87734 −0.938672 0.344810i \(-0.887943\pi\)
−0.938672 + 0.344810i \(0.887943\pi\)
\(108\) 0 0
\(109\) 88.7600 0.0779970 0.0389985 0.999239i \(-0.487583\pi\)
0.0389985 + 0.999239i \(0.487583\pi\)
\(110\) −941.384 −0.815977
\(111\) 0 0
\(112\) −466.034 −0.393179
\(113\) −519.748 −0.432688 −0.216344 0.976317i \(-0.569413\pi\)
−0.216344 + 0.976317i \(0.569413\pi\)
\(114\) 0 0
\(115\) −1228.86 −0.996453
\(116\) 1551.30 1.24168
\(117\) 0 0
\(118\) −222.998 −0.173972
\(119\) −482.673 −0.371820
\(120\) 0 0
\(121\) 1829.89 1.37482
\(122\) 87.1479 0.0646721
\(123\) 0 0
\(124\) 1205.42 0.872985
\(125\) −1376.98 −0.985289
\(126\) 0 0
\(127\) −479.358 −0.334931 −0.167465 0.985878i \(-0.553558\pi\)
−0.167465 + 0.985878i \(0.553558\pi\)
\(128\) −1285.02 −0.887349
\(129\) 0 0
\(130\) 408.255 0.275433
\(131\) 1535.16 1.02387 0.511936 0.859024i \(-0.328929\pi\)
0.511936 + 0.859024i \(0.328929\pi\)
\(132\) 0 0
\(133\) 965.918 0.629742
\(134\) −83.8332 −0.0540454
\(135\) 0 0
\(136\) −346.936 −0.218746
\(137\) −655.102 −0.408534 −0.204267 0.978915i \(-0.565481\pi\)
−0.204267 + 0.978915i \(0.565481\pi\)
\(138\) 0 0
\(139\) −2539.34 −1.54952 −0.774762 0.632253i \(-0.782130\pi\)
−0.774762 + 0.632253i \(0.782130\pi\)
\(140\) 1873.26 1.13085
\(141\) 0 0
\(142\) 391.372 0.231290
\(143\) −1370.80 −0.801623
\(144\) 0 0
\(145\) −3022.63 −1.73114
\(146\) −1040.70 −0.589925
\(147\) 0 0
\(148\) −2211.98 −1.22854
\(149\) −1314.06 −0.722498 −0.361249 0.932469i \(-0.617650\pi\)
−0.361249 + 0.932469i \(0.617650\pi\)
\(150\) 0 0
\(151\) 1921.33 1.03547 0.517734 0.855542i \(-0.326776\pi\)
0.517734 + 0.855542i \(0.326776\pi\)
\(152\) 694.283 0.370485
\(153\) 0 0
\(154\) 2357.39 1.23353
\(155\) −2348.70 −1.21711
\(156\) 0 0
\(157\) −22.3766 −0.0113748 −0.00568742 0.999984i \(-0.501810\pi\)
−0.00568742 + 0.999984i \(0.501810\pi\)
\(158\) 752.260 0.378776
\(159\) 0 0
\(160\) 2125.94 1.05044
\(161\) 3077.28 1.50636
\(162\) 0 0
\(163\) 1965.65 0.944548 0.472274 0.881452i \(-0.343433\pi\)
0.472274 + 0.881452i \(0.343433\pi\)
\(164\) −2628.68 −1.25162
\(165\) 0 0
\(166\) 180.325 0.0843127
\(167\) −1382.17 −0.640454 −0.320227 0.947341i \(-0.603759\pi\)
−0.320227 + 0.947341i \(0.603759\pi\)
\(168\) 0 0
\(169\) −1602.52 −0.729412
\(170\) 284.650 0.128421
\(171\) 0 0
\(172\) −2303.88 −1.02133
\(173\) −34.0941 −0.0149834 −0.00749170 0.999972i \(-0.502385\pi\)
−0.00749170 + 0.999972i \(0.502385\pi\)
\(174\) 0 0
\(175\) −100.865 −0.0435696
\(176\) −922.822 −0.395229
\(177\) 0 0
\(178\) −1049.73 −0.442027
\(179\) 1132.44 0.472862 0.236431 0.971648i \(-0.424022\pi\)
0.236431 + 0.971648i \(0.424022\pi\)
\(180\) 0 0
\(181\) −1194.23 −0.490423 −0.245212 0.969470i \(-0.578857\pi\)
−0.245212 + 0.969470i \(0.578857\pi\)
\(182\) −1022.34 −0.416379
\(183\) 0 0
\(184\) 2211.89 0.886210
\(185\) 4309.91 1.71282
\(186\) 0 0
\(187\) −955.771 −0.373759
\(188\) 1042.84 0.404560
\(189\) 0 0
\(190\) −569.637 −0.217504
\(191\) −329.387 −0.124783 −0.0623916 0.998052i \(-0.519873\pi\)
−0.0623916 + 0.998052i \(0.519873\pi\)
\(192\) 0 0
\(193\) −2430.11 −0.906337 −0.453168 0.891425i \(-0.649706\pi\)
−0.453168 + 0.891425i \(0.649706\pi\)
\(194\) −1232.06 −0.455963
\(195\) 0 0
\(196\) −2695.02 −0.982149
\(197\) −2352.42 −0.850776 −0.425388 0.905011i \(-0.639862\pi\)
−0.425388 + 0.905011i \(0.639862\pi\)
\(198\) 0 0
\(199\) −1392.78 −0.496137 −0.248068 0.968743i \(-0.579796\pi\)
−0.248068 + 0.968743i \(0.579796\pi\)
\(200\) −72.4999 −0.0256326
\(201\) 0 0
\(202\) −2374.49 −0.827070
\(203\) 7569.17 2.61700
\(204\) 0 0
\(205\) 5121.84 1.74500
\(206\) 2334.94 0.789725
\(207\) 0 0
\(208\) 400.205 0.133410
\(209\) 1912.67 0.633026
\(210\) 0 0
\(211\) 3717.70 1.21297 0.606485 0.795095i \(-0.292579\pi\)
0.606485 + 0.795095i \(0.292579\pi\)
\(212\) 1072.82 0.347554
\(213\) 0 0
\(214\) −3068.61 −0.980214
\(215\) 4488.97 1.42393
\(216\) 0 0
\(217\) 5881.53 1.83993
\(218\) 131.081 0.0407244
\(219\) 0 0
\(220\) 3709.35 1.13675
\(221\) 414.494 0.126162
\(222\) 0 0
\(223\) 4450.20 1.33636 0.668178 0.744001i \(-0.267074\pi\)
0.668178 + 0.744001i \(0.267074\pi\)
\(224\) −5323.72 −1.58797
\(225\) 0 0
\(226\) −767.564 −0.225918
\(227\) −5374.73 −1.57151 −0.785756 0.618537i \(-0.787726\pi\)
−0.785756 + 0.618537i \(0.787726\pi\)
\(228\) 0 0
\(229\) 101.013 0.0291490 0.0145745 0.999894i \(-0.495361\pi\)
0.0145745 + 0.999894i \(0.495361\pi\)
\(230\) −1814.79 −0.520276
\(231\) 0 0
\(232\) 5440.57 1.53962
\(233\) 5256.06 1.47784 0.738918 0.673796i \(-0.235337\pi\)
0.738918 + 0.673796i \(0.235337\pi\)
\(234\) 0 0
\(235\) −2031.92 −0.564034
\(236\) 878.684 0.242362
\(237\) 0 0
\(238\) −712.812 −0.194138
\(239\) 2571.15 0.695874 0.347937 0.937518i \(-0.386882\pi\)
0.347937 + 0.937518i \(0.386882\pi\)
\(240\) 0 0
\(241\) −6085.74 −1.62663 −0.813313 0.581826i \(-0.802339\pi\)
−0.813313 + 0.581826i \(0.802339\pi\)
\(242\) 2702.38 0.717834
\(243\) 0 0
\(244\) −343.390 −0.0900956
\(245\) 5251.08 1.36930
\(246\) 0 0
\(247\) −829.480 −0.213678
\(248\) 4227.53 1.08245
\(249\) 0 0
\(250\) −2033.53 −0.514447
\(251\) −6890.40 −1.73274 −0.866371 0.499400i \(-0.833554\pi\)
−0.866371 + 0.499400i \(0.833554\pi\)
\(252\) 0 0
\(253\) 6093.52 1.51421
\(254\) −707.917 −0.174877
\(255\) 0 0
\(256\) −3062.47 −0.747674
\(257\) 3136.70 0.761332 0.380666 0.924713i \(-0.375695\pi\)
0.380666 + 0.924713i \(0.375695\pi\)
\(258\) 0 0
\(259\) −10792.8 −2.58930
\(260\) −1608.65 −0.383710
\(261\) 0 0
\(262\) 2267.12 0.534592
\(263\) −1208.72 −0.283396 −0.141698 0.989910i \(-0.545256\pi\)
−0.141698 + 0.989910i \(0.545256\pi\)
\(264\) 0 0
\(265\) −2090.32 −0.484556
\(266\) 1426.47 0.328806
\(267\) 0 0
\(268\) 330.329 0.0752913
\(269\) 810.352 0.183673 0.0918365 0.995774i \(-0.470726\pi\)
0.0918365 + 0.995774i \(0.470726\pi\)
\(270\) 0 0
\(271\) 3795.67 0.850814 0.425407 0.905002i \(-0.360131\pi\)
0.425407 + 0.905002i \(0.360131\pi\)
\(272\) 279.037 0.0622026
\(273\) 0 0
\(274\) −967.454 −0.213307
\(275\) −199.729 −0.0437968
\(276\) 0 0
\(277\) −8393.06 −1.82054 −0.910271 0.414013i \(-0.864127\pi\)
−0.910271 + 0.414013i \(0.864127\pi\)
\(278\) −3750.10 −0.809050
\(279\) 0 0
\(280\) 6569.69 1.40219
\(281\) 7161.30 1.52031 0.760156 0.649741i \(-0.225123\pi\)
0.760156 + 0.649741i \(0.225123\pi\)
\(282\) 0 0
\(283\) 4911.21 1.03159 0.515797 0.856711i \(-0.327496\pi\)
0.515797 + 0.856711i \(0.327496\pi\)
\(284\) −1542.13 −0.322214
\(285\) 0 0
\(286\) −2024.40 −0.418550
\(287\) −12826.0 −2.63795
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) −4463.81 −0.903877
\(291\) 0 0
\(292\) 4100.69 0.821831
\(293\) −1476.30 −0.294355 −0.147178 0.989110i \(-0.547019\pi\)
−0.147178 + 0.989110i \(0.547019\pi\)
\(294\) 0 0
\(295\) −1712.06 −0.337899
\(296\) −7757.62 −1.52332
\(297\) 0 0
\(298\) −1940.61 −0.377236
\(299\) −2642.61 −0.511124
\(300\) 0 0
\(301\) −11241.1 −2.15259
\(302\) 2837.42 0.540646
\(303\) 0 0
\(304\) −558.405 −0.105351
\(305\) 669.076 0.125610
\(306\) 0 0
\(307\) 2489.64 0.462839 0.231419 0.972854i \(-0.425663\pi\)
0.231419 + 0.972854i \(0.425663\pi\)
\(308\) −9288.85 −1.71845
\(309\) 0 0
\(310\) −3468.55 −0.635486
\(311\) −2546.02 −0.464217 −0.232109 0.972690i \(-0.574562\pi\)
−0.232109 + 0.972690i \(0.574562\pi\)
\(312\) 0 0
\(313\) 4425.28 0.799143 0.399571 0.916702i \(-0.369159\pi\)
0.399571 + 0.916702i \(0.369159\pi\)
\(314\) −33.0458 −0.00593912
\(315\) 0 0
\(316\) −2964.14 −0.527678
\(317\) −1345.29 −0.238356 −0.119178 0.992873i \(-0.538026\pi\)
−0.119178 + 0.992873i \(0.538026\pi\)
\(318\) 0 0
\(319\) 14988.2 2.63065
\(320\) 1650.76 0.288377
\(321\) 0 0
\(322\) 4544.53 0.786512
\(323\) −578.342 −0.0996280
\(324\) 0 0
\(325\) 86.6177 0.0147836
\(326\) 2902.87 0.493175
\(327\) 0 0
\(328\) −9219.04 −1.55194
\(329\) 5088.28 0.852662
\(330\) 0 0
\(331\) 4919.61 0.816937 0.408469 0.912772i \(-0.366063\pi\)
0.408469 + 0.912772i \(0.366063\pi\)
\(332\) −710.536 −0.117457
\(333\) 0 0
\(334\) −2041.20 −0.334399
\(335\) −643.627 −0.104971
\(336\) 0 0
\(337\) 1151.33 0.186104 0.0930520 0.995661i \(-0.470338\pi\)
0.0930520 + 0.995661i \(0.470338\pi\)
\(338\) −2366.60 −0.380846
\(339\) 0 0
\(340\) −1121.61 −0.178906
\(341\) 11646.4 1.84952
\(342\) 0 0
\(343\) −3410.97 −0.536953
\(344\) −8079.91 −1.26639
\(345\) 0 0
\(346\) −50.3502 −0.00782325
\(347\) 2488.64 0.385006 0.192503 0.981296i \(-0.438339\pi\)
0.192503 + 0.981296i \(0.438339\pi\)
\(348\) 0 0
\(349\) 9301.82 1.42669 0.713345 0.700813i \(-0.247179\pi\)
0.713345 + 0.700813i \(0.247179\pi\)
\(350\) −148.958 −0.0227489
\(351\) 0 0
\(352\) −10541.8 −1.59625
\(353\) 3382.00 0.509931 0.254966 0.966950i \(-0.417936\pi\)
0.254966 + 0.966950i \(0.417936\pi\)
\(354\) 0 0
\(355\) 3004.75 0.449227
\(356\) 4136.28 0.615793
\(357\) 0 0
\(358\) 1672.38 0.246895
\(359\) −5846.68 −0.859543 −0.429772 0.902938i \(-0.641406\pi\)
−0.429772 + 0.902938i \(0.641406\pi\)
\(360\) 0 0
\(361\) −5701.63 −0.831263
\(362\) −1763.64 −0.256064
\(363\) 0 0
\(364\) 4028.35 0.580062
\(365\) −7989.95 −1.14579
\(366\) 0 0
\(367\) −6361.98 −0.904884 −0.452442 0.891794i \(-0.649447\pi\)
−0.452442 + 0.891794i \(0.649447\pi\)
\(368\) −1779.00 −0.252002
\(369\) 0 0
\(370\) 6364.88 0.894309
\(371\) 5234.52 0.732514
\(372\) 0 0
\(373\) −3787.98 −0.525828 −0.262914 0.964819i \(-0.584684\pi\)
−0.262914 + 0.964819i \(0.584684\pi\)
\(374\) −1411.48 −0.195150
\(375\) 0 0
\(376\) 3657.35 0.501632
\(377\) −6500.00 −0.887977
\(378\) 0 0
\(379\) −11347.7 −1.53797 −0.768987 0.639264i \(-0.779239\pi\)
−0.768987 + 0.639264i \(0.779239\pi\)
\(380\) 2244.55 0.303008
\(381\) 0 0
\(382\) −486.439 −0.0651528
\(383\) −7001.57 −0.934108 −0.467054 0.884229i \(-0.654685\pi\)
−0.467054 + 0.884229i \(0.654685\pi\)
\(384\) 0 0
\(385\) 18098.8 2.39584
\(386\) −3588.78 −0.473224
\(387\) 0 0
\(388\) 4854.71 0.635207
\(389\) 9705.24 1.26498 0.632488 0.774570i \(-0.282034\pi\)
0.632488 + 0.774570i \(0.282034\pi\)
\(390\) 0 0
\(391\) −1842.52 −0.238313
\(392\) −9451.68 −1.21781
\(393\) 0 0
\(394\) −3474.05 −0.444214
\(395\) 5775.46 0.735683
\(396\) 0 0
\(397\) −5642.82 −0.713363 −0.356682 0.934226i \(-0.616092\pi\)
−0.356682 + 0.934226i \(0.616092\pi\)
\(398\) −2056.85 −0.259047
\(399\) 0 0
\(400\) 58.3110 0.00728887
\(401\) 6734.68 0.838689 0.419344 0.907827i \(-0.362260\pi\)
0.419344 + 0.907827i \(0.362260\pi\)
\(402\) 0 0
\(403\) −5050.75 −0.624307
\(404\) 9356.22 1.15220
\(405\) 0 0
\(406\) 11178.2 1.36641
\(407\) −21371.4 −2.60280
\(408\) 0 0
\(409\) 15672.4 1.89475 0.947374 0.320128i \(-0.103726\pi\)
0.947374 + 0.320128i \(0.103726\pi\)
\(410\) 7563.93 0.911112
\(411\) 0 0
\(412\) −9200.42 −1.10018
\(413\) 4287.30 0.510809
\(414\) 0 0
\(415\) 1384.44 0.163758
\(416\) 4571.73 0.538816
\(417\) 0 0
\(418\) 2824.64 0.330520
\(419\) −4868.91 −0.567690 −0.283845 0.958870i \(-0.591610\pi\)
−0.283845 + 0.958870i \(0.591610\pi\)
\(420\) 0 0
\(421\) −10710.6 −1.23991 −0.619953 0.784639i \(-0.712848\pi\)
−0.619953 + 0.784639i \(0.712848\pi\)
\(422\) 5490.29 0.633325
\(423\) 0 0
\(424\) 3762.47 0.430947
\(425\) 60.3929 0.00689291
\(426\) 0 0
\(427\) −1675.48 −0.189888
\(428\) 12091.3 1.36555
\(429\) 0 0
\(430\) 6629.31 0.743473
\(431\) 13335.4 1.49036 0.745180 0.666864i \(-0.232364\pi\)
0.745180 + 0.666864i \(0.232364\pi\)
\(432\) 0 0
\(433\) 11402.7 1.26554 0.632770 0.774340i \(-0.281918\pi\)
0.632770 + 0.774340i \(0.281918\pi\)
\(434\) 8685.85 0.960678
\(435\) 0 0
\(436\) −516.500 −0.0567336
\(437\) 3687.22 0.403624
\(438\) 0 0
\(439\) −4743.62 −0.515719 −0.257860 0.966182i \(-0.583017\pi\)
−0.257860 + 0.966182i \(0.583017\pi\)
\(440\) 13009.0 1.40950
\(441\) 0 0
\(442\) 612.125 0.0658729
\(443\) −8628.54 −0.925405 −0.462702 0.886514i \(-0.653120\pi\)
−0.462702 + 0.886514i \(0.653120\pi\)
\(444\) 0 0
\(445\) −8059.30 −0.858534
\(446\) 6572.06 0.697749
\(447\) 0 0
\(448\) −4133.80 −0.435945
\(449\) 8566.47 0.900394 0.450197 0.892929i \(-0.351354\pi\)
0.450197 + 0.892929i \(0.351354\pi\)
\(450\) 0 0
\(451\) −25397.5 −2.65171
\(452\) 3024.44 0.314730
\(453\) 0 0
\(454\) −7937.40 −0.820530
\(455\) −7849.00 −0.808718
\(456\) 0 0
\(457\) −2971.57 −0.304167 −0.152083 0.988368i \(-0.548598\pi\)
−0.152083 + 0.988368i \(0.548598\pi\)
\(458\) 149.176 0.0152195
\(459\) 0 0
\(460\) 7150.83 0.724802
\(461\) 13661.1 1.38018 0.690089 0.723724i \(-0.257571\pi\)
0.690089 + 0.723724i \(0.257571\pi\)
\(462\) 0 0
\(463\) −457.083 −0.0458800 −0.0229400 0.999737i \(-0.507303\pi\)
−0.0229400 + 0.999737i \(0.507303\pi\)
\(464\) −4375.80 −0.437804
\(465\) 0 0
\(466\) 7762.15 0.771619
\(467\) 13965.2 1.38379 0.691896 0.721997i \(-0.256776\pi\)
0.691896 + 0.721997i \(0.256776\pi\)
\(468\) 0 0
\(469\) 1611.75 0.158686
\(470\) −3000.74 −0.294498
\(471\) 0 0
\(472\) 3081.63 0.300516
\(473\) −22259.3 −2.16381
\(474\) 0 0
\(475\) −120.857 −0.0116743
\(476\) 2808.70 0.270455
\(477\) 0 0
\(478\) 3797.08 0.363335
\(479\) 13827.2 1.31896 0.659481 0.751721i \(-0.270776\pi\)
0.659481 + 0.751721i \(0.270776\pi\)
\(480\) 0 0
\(481\) 9268.25 0.878578
\(482\) −8987.43 −0.849307
\(483\) 0 0
\(484\) −10648.3 −1.00002
\(485\) −9459.11 −0.885600
\(486\) 0 0
\(487\) −616.131 −0.0573297 −0.0286648 0.999589i \(-0.509126\pi\)
−0.0286648 + 0.999589i \(0.509126\pi\)
\(488\) −1204.30 −0.111714
\(489\) 0 0
\(490\) 7754.80 0.714951
\(491\) 3845.66 0.353467 0.176733 0.984259i \(-0.443447\pi\)
0.176733 + 0.984259i \(0.443447\pi\)
\(492\) 0 0
\(493\) −4532.03 −0.414021
\(494\) −1224.98 −0.111567
\(495\) 0 0
\(496\) −3400.16 −0.307806
\(497\) −7524.41 −0.679107
\(498\) 0 0
\(499\) −12260.2 −1.09988 −0.549942 0.835203i \(-0.685350\pi\)
−0.549942 + 0.835203i \(0.685350\pi\)
\(500\) 8012.75 0.716682
\(501\) 0 0
\(502\) −10175.7 −0.904713
\(503\) −15501.4 −1.37410 −0.687050 0.726610i \(-0.741095\pi\)
−0.687050 + 0.726610i \(0.741095\pi\)
\(504\) 0 0
\(505\) −18230.1 −1.60639
\(506\) 8998.91 0.790613
\(507\) 0 0
\(508\) 2789.42 0.243623
\(509\) −1728.98 −0.150562 −0.0752808 0.997162i \(-0.523985\pi\)
−0.0752808 + 0.997162i \(0.523985\pi\)
\(510\) 0 0
\(511\) 20008.2 1.73212
\(512\) 5757.49 0.496968
\(513\) 0 0
\(514\) 4632.29 0.397512
\(515\) 17926.5 1.53385
\(516\) 0 0
\(517\) 10075.6 0.857108
\(518\) −15938.7 −1.35195
\(519\) 0 0
\(520\) −5641.70 −0.475779
\(521\) −4269.42 −0.359015 −0.179507 0.983757i \(-0.557450\pi\)
−0.179507 + 0.983757i \(0.557450\pi\)
\(522\) 0 0
\(523\) 16223.6 1.35642 0.678211 0.734867i \(-0.262755\pi\)
0.678211 + 0.734867i \(0.262755\pi\)
\(524\) −8933.17 −0.744747
\(525\) 0 0
\(526\) −1785.04 −0.147969
\(527\) −3521.56 −0.291085
\(528\) 0 0
\(529\) −420.016 −0.0345209
\(530\) −3086.99 −0.253000
\(531\) 0 0
\(532\) −5620.74 −0.458064
\(533\) 11014.3 0.895085
\(534\) 0 0
\(535\) −23559.2 −1.90384
\(536\) 1158.50 0.0933571
\(537\) 0 0
\(538\) 1196.73 0.0959008
\(539\) −26038.3 −2.08080
\(540\) 0 0
\(541\) 24052.0 1.91142 0.955708 0.294316i \(-0.0950918\pi\)
0.955708 + 0.294316i \(0.0950918\pi\)
\(542\) 5605.45 0.444234
\(543\) 0 0
\(544\) 3187.57 0.251224
\(545\) 1006.37 0.0790976
\(546\) 0 0
\(547\) 11238.4 0.878467 0.439233 0.898373i \(-0.355250\pi\)
0.439233 + 0.898373i \(0.355250\pi\)
\(548\) 3812.08 0.297160
\(549\) 0 0
\(550\) −294.960 −0.0228675
\(551\) 9069.43 0.701217
\(552\) 0 0
\(553\) −14462.7 −1.11215
\(554\) −12394.9 −0.950556
\(555\) 0 0
\(556\) 14776.6 1.12710
\(557\) −9466.87 −0.720151 −0.360075 0.932923i \(-0.617249\pi\)
−0.360075 + 0.932923i \(0.617249\pi\)
\(558\) 0 0
\(559\) 9653.30 0.730395
\(560\) −5283.94 −0.398727
\(561\) 0 0
\(562\) 10575.8 0.793797
\(563\) −11403.2 −0.853618 −0.426809 0.904342i \(-0.640362\pi\)
−0.426809 + 0.904342i \(0.640362\pi\)
\(564\) 0 0
\(565\) −5892.95 −0.438793
\(566\) 7252.88 0.538624
\(567\) 0 0
\(568\) −5408.40 −0.399527
\(569\) −12628.5 −0.930429 −0.465215 0.885198i \(-0.654023\pi\)
−0.465215 + 0.885198i \(0.654023\pi\)
\(570\) 0 0
\(571\) 19907.1 1.45899 0.729497 0.683984i \(-0.239754\pi\)
0.729497 + 0.683984i \(0.239754\pi\)
\(572\) 7976.78 0.583087
\(573\) 0 0
\(574\) −18941.4 −1.37735
\(575\) −385.035 −0.0279253
\(576\) 0 0
\(577\) −10632.5 −0.767135 −0.383567 0.923513i \(-0.625305\pi\)
−0.383567 + 0.923513i \(0.625305\pi\)
\(578\) 426.795 0.0307134
\(579\) 0 0
\(580\) 17588.8 1.25920
\(581\) −3466.87 −0.247556
\(582\) 0 0
\(583\) 10365.2 0.736334
\(584\) 14381.5 1.01903
\(585\) 0 0
\(586\) −2180.20 −0.153691
\(587\) −24373.6 −1.71381 −0.856905 0.515474i \(-0.827616\pi\)
−0.856905 + 0.515474i \(0.827616\pi\)
\(588\) 0 0
\(589\) 7047.29 0.493003
\(590\) −2528.38 −0.176426
\(591\) 0 0
\(592\) 6239.38 0.433170
\(593\) −21444.6 −1.48503 −0.742517 0.669828i \(-0.766368\pi\)
−0.742517 + 0.669828i \(0.766368\pi\)
\(594\) 0 0
\(595\) −5472.60 −0.377067
\(596\) 7646.61 0.525532
\(597\) 0 0
\(598\) −3902.61 −0.266872
\(599\) −13133.2 −0.895838 −0.447919 0.894074i \(-0.647835\pi\)
−0.447919 + 0.894074i \(0.647835\pi\)
\(600\) 0 0
\(601\) 8618.09 0.584924 0.292462 0.956277i \(-0.405526\pi\)
0.292462 + 0.956277i \(0.405526\pi\)
\(602\) −16600.9 −1.12392
\(603\) 0 0
\(604\) −11180.3 −0.753181
\(605\) 20747.5 1.39422
\(606\) 0 0
\(607\) −14744.9 −0.985956 −0.492978 0.870042i \(-0.664092\pi\)
−0.492978 + 0.870042i \(0.664092\pi\)
\(608\) −6378.92 −0.425492
\(609\) 0 0
\(610\) 988.092 0.0655847
\(611\) −4369.55 −0.289317
\(612\) 0 0
\(613\) 8793.20 0.579371 0.289685 0.957122i \(-0.406449\pi\)
0.289685 + 0.957122i \(0.406449\pi\)
\(614\) 3676.71 0.241661
\(615\) 0 0
\(616\) −32576.9 −2.13078
\(617\) −26305.5 −1.71640 −0.858199 0.513317i \(-0.828417\pi\)
−0.858199 + 0.513317i \(0.828417\pi\)
\(618\) 0 0
\(619\) 14910.3 0.968170 0.484085 0.875021i \(-0.339153\pi\)
0.484085 + 0.875021i \(0.339153\pi\)
\(620\) 13667.2 0.885303
\(621\) 0 0
\(622\) −3759.96 −0.242381
\(623\) 20181.9 1.29786
\(624\) 0 0
\(625\) −16056.4 −1.02761
\(626\) 6535.26 0.417255
\(627\) 0 0
\(628\) 130.211 0.00827386
\(629\) 6462.15 0.409639
\(630\) 0 0
\(631\) −25270.5 −1.59430 −0.797151 0.603780i \(-0.793660\pi\)
−0.797151 + 0.603780i \(0.793660\pi\)
\(632\) −10395.5 −0.654291
\(633\) 0 0
\(634\) −1986.72 −0.124453
\(635\) −5435.01 −0.339657
\(636\) 0 0
\(637\) 11292.2 0.702375
\(638\) 22134.5 1.37353
\(639\) 0 0
\(640\) −14569.7 −0.899870
\(641\) 21978.2 1.35427 0.677135 0.735859i \(-0.263221\pi\)
0.677135 + 0.735859i \(0.263221\pi\)
\(642\) 0 0
\(643\) −15814.1 −0.969902 −0.484951 0.874541i \(-0.661163\pi\)
−0.484951 + 0.874541i \(0.661163\pi\)
\(644\) −17906.9 −1.09570
\(645\) 0 0
\(646\) −854.096 −0.0520185
\(647\) −27090.8 −1.64614 −0.823068 0.567942i \(-0.807740\pi\)
−0.823068 + 0.567942i \(0.807740\pi\)
\(648\) 0 0
\(649\) 8489.55 0.513473
\(650\) 127.917 0.00771895
\(651\) 0 0
\(652\) −11438.2 −0.687048
\(653\) −27121.1 −1.62531 −0.812656 0.582743i \(-0.801979\pi\)
−0.812656 + 0.582743i \(0.801979\pi\)
\(654\) 0 0
\(655\) 17405.8 1.03832
\(656\) 7414.79 0.441309
\(657\) 0 0
\(658\) 7514.37 0.445199
\(659\) 18075.1 1.06845 0.534224 0.845343i \(-0.320604\pi\)
0.534224 + 0.845343i \(0.320604\pi\)
\(660\) 0 0
\(661\) −404.297 −0.0237902 −0.0118951 0.999929i \(-0.503786\pi\)
−0.0118951 + 0.999929i \(0.503786\pi\)
\(662\) 7265.28 0.426546
\(663\) 0 0
\(664\) −2491.92 −0.145640
\(665\) 10951.7 0.638628
\(666\) 0 0
\(667\) 28894.0 1.67733
\(668\) 8042.96 0.465855
\(669\) 0 0
\(670\) −950.509 −0.0548080
\(671\) −3317.72 −0.190878
\(672\) 0 0
\(673\) −18869.1 −1.08076 −0.540379 0.841422i \(-0.681719\pi\)
−0.540379 + 0.841422i \(0.681719\pi\)
\(674\) 1700.29 0.0971700
\(675\) 0 0
\(676\) 9325.14 0.530561
\(677\) 9061.24 0.514404 0.257202 0.966358i \(-0.417199\pi\)
0.257202 + 0.966358i \(0.417199\pi\)
\(678\) 0 0
\(679\) 23687.2 1.33878
\(680\) −3933.59 −0.221833
\(681\) 0 0
\(682\) 17199.4 0.965687
\(683\) 5991.75 0.335678 0.167839 0.985814i \(-0.446321\pi\)
0.167839 + 0.985814i \(0.446321\pi\)
\(684\) 0 0
\(685\) −7427.61 −0.414298
\(686\) −5037.32 −0.280358
\(687\) 0 0
\(688\) 6498.59 0.360111
\(689\) −4495.13 −0.248550
\(690\) 0 0
\(691\) 20027.9 1.10260 0.551300 0.834307i \(-0.314132\pi\)
0.551300 + 0.834307i \(0.314132\pi\)
\(692\) 198.396 0.0108987
\(693\) 0 0
\(694\) 3675.22 0.201022
\(695\) −28791.3 −1.57139
\(696\) 0 0
\(697\) 7679.53 0.417335
\(698\) 13736.9 0.744915
\(699\) 0 0
\(700\) 586.940 0.0316918
\(701\) −3034.01 −0.163471 −0.0817354 0.996654i \(-0.526046\pi\)
−0.0817354 + 0.996654i \(0.526046\pi\)
\(702\) 0 0
\(703\) −12932.0 −0.693795
\(704\) −8185.58 −0.438219
\(705\) 0 0
\(706\) 4994.54 0.266249
\(707\) 45651.2 2.42841
\(708\) 0 0
\(709\) −27012.7 −1.43087 −0.715433 0.698681i \(-0.753770\pi\)
−0.715433 + 0.698681i \(0.753770\pi\)
\(710\) 4437.42 0.234554
\(711\) 0 0
\(712\) 14506.3 0.763550
\(713\) 22451.7 1.17928
\(714\) 0 0
\(715\) −15542.3 −0.812935
\(716\) −6589.72 −0.343952
\(717\) 0 0
\(718\) −8634.38 −0.448791
\(719\) −18613.8 −0.965478 −0.482739 0.875764i \(-0.660358\pi\)
−0.482739 + 0.875764i \(0.660358\pi\)
\(720\) 0 0
\(721\) −44891.0 −2.31876
\(722\) −8420.17 −0.434025
\(723\) 0 0
\(724\) 6949.31 0.356725
\(725\) −947.068 −0.0485148
\(726\) 0 0
\(727\) 8277.72 0.422289 0.211144 0.977455i \(-0.432281\pi\)
0.211144 + 0.977455i \(0.432281\pi\)
\(728\) 14127.8 0.719245
\(729\) 0 0
\(730\) −11799.6 −0.598249
\(731\) 6730.62 0.340548
\(732\) 0 0
\(733\) −16336.3 −0.823188 −0.411594 0.911367i \(-0.635028\pi\)
−0.411594 + 0.911367i \(0.635028\pi\)
\(734\) −9395.37 −0.472465
\(735\) 0 0
\(736\) −20322.3 −1.01779
\(737\) 3191.53 0.159514
\(738\) 0 0
\(739\) 5768.22 0.287128 0.143564 0.989641i \(-0.454144\pi\)
0.143564 + 0.989641i \(0.454144\pi\)
\(740\) −25079.6 −1.24587
\(741\) 0 0
\(742\) 7730.34 0.382466
\(743\) 5166.75 0.255114 0.127557 0.991831i \(-0.459286\pi\)
0.127557 + 0.991831i \(0.459286\pi\)
\(744\) 0 0
\(745\) −14899.0 −0.732693
\(746\) −5594.08 −0.274550
\(747\) 0 0
\(748\) 5561.69 0.271866
\(749\) 58996.2 2.87807
\(750\) 0 0
\(751\) 5015.28 0.243689 0.121844 0.992549i \(-0.461119\pi\)
0.121844 + 0.992549i \(0.461119\pi\)
\(752\) −2941.57 −0.142644
\(753\) 0 0
\(754\) −9599.21 −0.463637
\(755\) 21784.2 1.05008
\(756\) 0 0
\(757\) 26385.2 1.26683 0.633413 0.773814i \(-0.281653\pi\)
0.633413 + 0.773814i \(0.281653\pi\)
\(758\) −16758.3 −0.803019
\(759\) 0 0
\(760\) 7871.85 0.375713
\(761\) 41519.7 1.97778 0.988889 0.148655i \(-0.0474945\pi\)
0.988889 + 0.148655i \(0.0474945\pi\)
\(762\) 0 0
\(763\) −2520.12 −0.119573
\(764\) 1916.72 0.0907652
\(765\) 0 0
\(766\) −10339.9 −0.487724
\(767\) −3681.71 −0.173323
\(768\) 0 0
\(769\) 22527.4 1.05639 0.528193 0.849124i \(-0.322870\pi\)
0.528193 + 0.849124i \(0.322870\pi\)
\(770\) 26728.3 1.25094
\(771\) 0 0
\(772\) 14140.9 0.659253
\(773\) 25447.2 1.18405 0.592026 0.805919i \(-0.298328\pi\)
0.592026 + 0.805919i \(0.298328\pi\)
\(774\) 0 0
\(775\) −735.908 −0.0341091
\(776\) 17025.9 0.787622
\(777\) 0 0
\(778\) 14332.7 0.660479
\(779\) −15368.1 −0.706831
\(780\) 0 0
\(781\) −14899.6 −0.682648
\(782\) −2721.03 −0.124430
\(783\) 0 0
\(784\) 7601.89 0.346296
\(785\) −253.708 −0.0115353
\(786\) 0 0
\(787\) −3417.03 −0.154770 −0.0773849 0.997001i \(-0.524657\pi\)
−0.0773849 + 0.997001i \(0.524657\pi\)
\(788\) 13688.9 0.618840
\(789\) 0 0
\(790\) 8529.20 0.384121
\(791\) 14757.0 0.663334
\(792\) 0 0
\(793\) 1438.81 0.0644310
\(794\) −8333.33 −0.372467
\(795\) 0 0
\(796\) 8104.64 0.360881
\(797\) 10295.8 0.457587 0.228793 0.973475i \(-0.426522\pi\)
0.228793 + 0.973475i \(0.426522\pi\)
\(798\) 0 0
\(799\) −3046.60 −0.134895
\(800\) 666.113 0.0294383
\(801\) 0 0
\(802\) 9945.78 0.437903
\(803\) 39619.5 1.74115
\(804\) 0 0
\(805\) 34890.5 1.52761
\(806\) −7458.95 −0.325968
\(807\) 0 0
\(808\) 32813.2 1.42867
\(809\) −35143.9 −1.52731 −0.763654 0.645626i \(-0.776597\pi\)
−0.763654 + 0.645626i \(0.776597\pi\)
\(810\) 0 0
\(811\) 28871.8 1.25009 0.625047 0.780587i \(-0.285080\pi\)
0.625047 + 0.780587i \(0.285080\pi\)
\(812\) −44045.5 −1.90356
\(813\) 0 0
\(814\) −31561.3 −1.35900
\(815\) 22286.7 0.957876
\(816\) 0 0
\(817\) −13469.2 −0.576778
\(818\) 23145.1 0.989301
\(819\) 0 0
\(820\) −29804.3 −1.26928
\(821\) −5993.62 −0.254785 −0.127393 0.991852i \(-0.540661\pi\)
−0.127393 + 0.991852i \(0.540661\pi\)
\(822\) 0 0
\(823\) −15532.0 −0.657853 −0.328927 0.944356i \(-0.606687\pi\)
−0.328927 + 0.944356i \(0.606687\pi\)
\(824\) −32266.7 −1.36416
\(825\) 0 0
\(826\) 6331.49 0.266708
\(827\) 13605.2 0.572068 0.286034 0.958219i \(-0.407663\pi\)
0.286034 + 0.958219i \(0.407663\pi\)
\(828\) 0 0
\(829\) 7835.02 0.328253 0.164126 0.986439i \(-0.447520\pi\)
0.164126 + 0.986439i \(0.447520\pi\)
\(830\) 2044.54 0.0855024
\(831\) 0 0
\(832\) 3549.89 0.147921
\(833\) 7873.31 0.327484
\(834\) 0 0
\(835\) −15671.2 −0.649491
\(836\) −11130.0 −0.460452
\(837\) 0 0
\(838\) −7190.41 −0.296407
\(839\) −29621.9 −1.21890 −0.609452 0.792823i \(-0.708610\pi\)
−0.609452 + 0.792823i \(0.708610\pi\)
\(840\) 0 0
\(841\) 46681.3 1.91403
\(842\) −15817.4 −0.647389
\(843\) 0 0
\(844\) −21633.5 −0.882293
\(845\) −18169.5 −0.739704
\(846\) 0 0
\(847\) −51955.3 −2.10768
\(848\) −3026.12 −0.122544
\(849\) 0 0
\(850\) 89.1883 0.00359898
\(851\) −41199.4 −1.65958
\(852\) 0 0
\(853\) −9476.96 −0.380405 −0.190202 0.981745i \(-0.560914\pi\)
−0.190202 + 0.981745i \(0.560914\pi\)
\(854\) −2474.35 −0.0991458
\(855\) 0 0
\(856\) 42405.3 1.69320
\(857\) −28763.9 −1.14651 −0.573253 0.819378i \(-0.694319\pi\)
−0.573253 + 0.819378i \(0.694319\pi\)
\(858\) 0 0
\(859\) 17233.0 0.684497 0.342249 0.939609i \(-0.388812\pi\)
0.342249 + 0.939609i \(0.388812\pi\)
\(860\) −26121.6 −1.03574
\(861\) 0 0
\(862\) 19693.8 0.778158
\(863\) −28659.4 −1.13045 −0.565225 0.824937i \(-0.691211\pi\)
−0.565225 + 0.824937i \(0.691211\pi\)
\(864\) 0 0
\(865\) −386.562 −0.0151948
\(866\) 16839.5 0.660773
\(867\) 0 0
\(868\) −34225.0 −1.33833
\(869\) −28638.6 −1.11795
\(870\) 0 0
\(871\) −1384.09 −0.0538439
\(872\) −1811.41 −0.0703466
\(873\) 0 0
\(874\) 5445.29 0.210743
\(875\) 39096.1 1.51050
\(876\) 0 0
\(877\) 3227.71 0.124278 0.0621391 0.998067i \(-0.480208\pi\)
0.0621391 + 0.998067i \(0.480208\pi\)
\(878\) −7005.38 −0.269271
\(879\) 0 0
\(880\) −10463.0 −0.400806
\(881\) −27737.4 −1.06072 −0.530361 0.847772i \(-0.677944\pi\)
−0.530361 + 0.847772i \(0.677944\pi\)
\(882\) 0 0
\(883\) 4939.63 0.188258 0.0941290 0.995560i \(-0.469993\pi\)
0.0941290 + 0.995560i \(0.469993\pi\)
\(884\) −2411.97 −0.0917684
\(885\) 0 0
\(886\) −12742.6 −0.483179
\(887\) 28594.1 1.08241 0.541204 0.840892i \(-0.317969\pi\)
0.541204 + 0.840892i \(0.317969\pi\)
\(888\) 0 0
\(889\) 13610.2 0.513466
\(890\) −11902.0 −0.448264
\(891\) 0 0
\(892\) −25896.0 −0.972042
\(893\) 6096.81 0.228468
\(894\) 0 0
\(895\) 12839.7 0.479535
\(896\) 36484.9 1.36035
\(897\) 0 0
\(898\) 12651.0 0.470121
\(899\) 55224.3 2.04876
\(900\) 0 0
\(901\) −3134.16 −0.115887
\(902\) −37507.0 −1.38453
\(903\) 0 0
\(904\) 10607.0 0.390248
\(905\) −13540.3 −0.497343
\(906\) 0 0
\(907\) −24054.7 −0.880623 −0.440311 0.897845i \(-0.645132\pi\)
−0.440311 + 0.897845i \(0.645132\pi\)
\(908\) 31275.9 1.14309
\(909\) 0 0
\(910\) −11591.4 −0.422254
\(911\) 3489.44 0.126905 0.0634525 0.997985i \(-0.479789\pi\)
0.0634525 + 0.997985i \(0.479789\pi\)
\(912\) 0 0
\(913\) −6864.96 −0.248847
\(914\) −4388.42 −0.158814
\(915\) 0 0
\(916\) −587.800 −0.0212025
\(917\) −43587.0 −1.56965
\(918\) 0 0
\(919\) −42107.0 −1.51141 −0.755703 0.654915i \(-0.772704\pi\)
−0.755703 + 0.654915i \(0.772704\pi\)
\(920\) 25078.6 0.898715
\(921\) 0 0
\(922\) 20174.8 0.720630
\(923\) 6461.57 0.230428
\(924\) 0 0
\(925\) 1350.41 0.0480012
\(926\) −675.020 −0.0239552
\(927\) 0 0
\(928\) −49986.7 −1.76821
\(929\) −20282.1 −0.716289 −0.358145 0.933666i \(-0.616591\pi\)
−0.358145 + 0.933666i \(0.616591\pi\)
\(930\) 0 0
\(931\) −15756.0 −0.554651
\(932\) −30585.3 −1.07495
\(933\) 0 0
\(934\) 20623.8 0.722516
\(935\) −10836.6 −0.379033
\(936\) 0 0
\(937\) 25524.5 0.889912 0.444956 0.895552i \(-0.353219\pi\)
0.444956 + 0.895552i \(0.353219\pi\)
\(938\) 2380.24 0.0828545
\(939\) 0 0
\(940\) 11823.9 0.410268
\(941\) 7699.76 0.266743 0.133371 0.991066i \(-0.457420\pi\)
0.133371 + 0.991066i \(0.457420\pi\)
\(942\) 0 0
\(943\) −48960.8 −1.69076
\(944\) −2478.52 −0.0854545
\(945\) 0 0
\(946\) −32872.5 −1.12979
\(947\) 8302.26 0.284886 0.142443 0.989803i \(-0.454504\pi\)
0.142443 + 0.989803i \(0.454504\pi\)
\(948\) 0 0
\(949\) −17182.0 −0.587725
\(950\) −178.482 −0.00609550
\(951\) 0 0
\(952\) 9850.39 0.335350
\(953\) −12381.3 −0.420850 −0.210425 0.977610i \(-0.567485\pi\)
−0.210425 + 0.977610i \(0.567485\pi\)
\(954\) 0 0
\(955\) −3734.62 −0.126544
\(956\) −14961.7 −0.506167
\(957\) 0 0
\(958\) 20420.1 0.688667
\(959\) 18600.0 0.626304
\(960\) 0 0
\(961\) 13120.4 0.440415
\(962\) 13687.4 0.458730
\(963\) 0 0
\(964\) 35413.3 1.18318
\(965\) −27552.8 −0.919125
\(966\) 0 0
\(967\) −28463.8 −0.946573 −0.473286 0.880909i \(-0.656932\pi\)
−0.473286 + 0.880909i \(0.656932\pi\)
\(968\) −37344.4 −1.23997
\(969\) 0 0
\(970\) −13969.2 −0.462397
\(971\) 6883.28 0.227492 0.113746 0.993510i \(-0.463715\pi\)
0.113746 + 0.993510i \(0.463715\pi\)
\(972\) 0 0
\(973\) 72098.3 2.37550
\(974\) −909.902 −0.0299334
\(975\) 0 0
\(976\) 968.609 0.0317668
\(977\) 10994.4 0.360023 0.180011 0.983665i \(-0.442387\pi\)
0.180011 + 0.983665i \(0.442387\pi\)
\(978\) 0 0
\(979\) 39963.3 1.30463
\(980\) −30556.4 −0.996008
\(981\) 0 0
\(982\) 5679.27 0.184555
\(983\) 17130.4 0.555822 0.277911 0.960607i \(-0.410358\pi\)
0.277911 + 0.960607i \(0.410358\pi\)
\(984\) 0 0
\(985\) −26672.0 −0.862781
\(986\) −6692.91 −0.216172
\(987\) 0 0
\(988\) 4826.79 0.155426
\(989\) −42911.1 −1.37967
\(990\) 0 0
\(991\) 40455.8 1.29679 0.648396 0.761304i \(-0.275440\pi\)
0.648396 + 0.761304i \(0.275440\pi\)
\(992\) −38841.6 −1.24317
\(993\) 0 0
\(994\) −11112.1 −0.354581
\(995\) −15791.4 −0.503138
\(996\) 0 0
\(997\) −61277.0 −1.94650 −0.973251 0.229746i \(-0.926210\pi\)
−0.973251 + 0.229746i \(0.926210\pi\)
\(998\) −18105.9 −0.574280
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.4.a.h.1.3 4
3.2 odd 2 153.4.a.i.1.2 yes 4
4.3 odd 2 2448.4.a.bo.1.4 4
12.11 even 2 2448.4.a.bs.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.4.a.h.1.3 4 1.1 even 1 trivial
153.4.a.i.1.2 yes 4 3.2 odd 2
2448.4.a.bo.1.4 4 4.3 odd 2
2448.4.a.bs.1.1 4 12.11 even 2