Properties

Label 153.4.a.h.1.2
Level $153$
Weight $4$
Character 153.1
Self dual yes
Analytic conductor $9.027$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [153,4,Mod(1,153)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(153, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("153.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 153.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.02729223088\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.1506848.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 17x^{2} + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.98315\) of defining polynomial
Character \(\chi\) \(=\) 153.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.47680 q^{2} +4.08814 q^{4} -7.60718 q^{5} +16.3925 q^{7} +13.6008 q^{8} +O(q^{10})\) \(q-3.47680 q^{2} +4.08814 q^{4} -7.60718 q^{5} +16.3925 q^{7} +13.6008 q^{8} +26.4486 q^{10} -42.4328 q^{11} +62.2726 q^{13} -56.9936 q^{14} -79.9922 q^{16} +17.0000 q^{17} -52.0963 q^{19} -31.0992 q^{20} +147.530 q^{22} -67.8856 q^{23} -67.1308 q^{25} -216.509 q^{26} +67.0150 q^{28} -91.7954 q^{29} -177.082 q^{31} +169.311 q^{32} -59.1056 q^{34} -124.701 q^{35} -258.046 q^{37} +181.128 q^{38} -103.463 q^{40} -262.159 q^{41} -331.883 q^{43} -173.471 q^{44} +236.025 q^{46} +49.0592 q^{47} -74.2848 q^{49} +233.400 q^{50} +254.579 q^{52} +462.443 q^{53} +322.794 q^{55} +222.951 q^{56} +319.154 q^{58} +351.772 q^{59} +41.6873 q^{61} +615.679 q^{62} +51.2773 q^{64} -473.719 q^{65} +845.771 q^{67} +69.4984 q^{68} +433.560 q^{70} +420.922 q^{71} -402.152 q^{73} +897.175 q^{74} -212.977 q^{76} -695.581 q^{77} -736.775 q^{79} +608.515 q^{80} +911.473 q^{82} -1241.26 q^{83} -129.322 q^{85} +1153.89 q^{86} -577.118 q^{88} -463.658 q^{89} +1020.81 q^{91} -277.526 q^{92} -170.569 q^{94} +396.306 q^{95} -1236.59 q^{97} +258.273 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 26 q^{4} - 22 q^{5} - 24 q^{7} - 102 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} + 26 q^{4} - 22 q^{5} - 24 q^{7} - 102 q^{8} - 2 q^{10} - 50 q^{11} + 26 q^{13} - 80 q^{14} + 138 q^{16} + 68 q^{17} + 34 q^{19} - 312 q^{20} - 254 q^{22} - 382 q^{23} + 138 q^{25} + 22 q^{26} + 52 q^{28} - 540 q^{29} - 356 q^{31} - 730 q^{32} - 68 q^{34} - 304 q^{35} - 404 q^{37} - 298 q^{38} + 332 q^{40} + 114 q^{41} + 570 q^{43} + 1368 q^{44} - 290 q^{46} - 496 q^{47} - 224 q^{49} + 1862 q^{50} - 1012 q^{52} - 92 q^{53} - 482 q^{55} + 1428 q^{56} + 1324 q^{58} + 48 q^{59} - 1036 q^{61} + 2564 q^{62} + 2898 q^{64} + 342 q^{65} + 812 q^{67} + 442 q^{68} + 152 q^{70} - 1044 q^{71} - 1212 q^{73} + 1444 q^{74} + 2268 q^{76} + 564 q^{77} + 488 q^{79} + 1000 q^{80} - 938 q^{82} - 1708 q^{83} - 374 q^{85} + 2446 q^{86} - 3868 q^{88} + 8 q^{89} + 716 q^{91} - 1356 q^{92} - 1224 q^{94} - 1010 q^{95} - 76 q^{97} + 1472 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.47680 −1.22923 −0.614617 0.788825i \(-0.710690\pi\)
−0.614617 + 0.788825i \(0.710690\pi\)
\(3\) 0 0
\(4\) 4.08814 0.511018
\(5\) −7.60718 −0.680407 −0.340203 0.940352i \(-0.610496\pi\)
−0.340203 + 0.940352i \(0.610496\pi\)
\(6\) 0 0
\(7\) 16.3925 0.885114 0.442557 0.896740i \(-0.354071\pi\)
0.442557 + 0.896740i \(0.354071\pi\)
\(8\) 13.6008 0.601074
\(9\) 0 0
\(10\) 26.4486 0.836380
\(11\) −42.4328 −1.16309 −0.581544 0.813515i \(-0.697551\pi\)
−0.581544 + 0.813515i \(0.697551\pi\)
\(12\) 0 0
\(13\) 62.2726 1.32856 0.664281 0.747483i \(-0.268738\pi\)
0.664281 + 0.747483i \(0.268738\pi\)
\(14\) −56.9936 −1.08801
\(15\) 0 0
\(16\) −79.9922 −1.24988
\(17\) 17.0000 0.242536
\(18\) 0 0
\(19\) −52.0963 −0.629037 −0.314519 0.949251i \(-0.601843\pi\)
−0.314519 + 0.949251i \(0.601843\pi\)
\(20\) −31.0992 −0.347700
\(21\) 0 0
\(22\) 147.530 1.42971
\(23\) −67.8856 −0.615440 −0.307720 0.951477i \(-0.599566\pi\)
−0.307720 + 0.951477i \(0.599566\pi\)
\(24\) 0 0
\(25\) −67.1308 −0.537046
\(26\) −216.509 −1.63311
\(27\) 0 0
\(28\) 67.0150 0.452309
\(29\) −91.7954 −0.587792 −0.293896 0.955837i \(-0.594952\pi\)
−0.293896 + 0.955837i \(0.594952\pi\)
\(30\) 0 0
\(31\) −177.082 −1.02596 −0.512982 0.858399i \(-0.671459\pi\)
−0.512982 + 0.858399i \(0.671459\pi\)
\(32\) 169.311 0.935320
\(33\) 0 0
\(34\) −59.1056 −0.298133
\(35\) −124.701 −0.602237
\(36\) 0 0
\(37\) −258.046 −1.14655 −0.573277 0.819361i \(-0.694328\pi\)
−0.573277 + 0.819361i \(0.694328\pi\)
\(38\) 181.128 0.773235
\(39\) 0 0
\(40\) −103.463 −0.408975
\(41\) −262.159 −0.998592 −0.499296 0.866431i \(-0.666408\pi\)
−0.499296 + 0.866431i \(0.666408\pi\)
\(42\) 0 0
\(43\) −331.883 −1.17701 −0.588507 0.808492i \(-0.700284\pi\)
−0.588507 + 0.808492i \(0.700284\pi\)
\(44\) −173.471 −0.594358
\(45\) 0 0
\(46\) 236.025 0.756520
\(47\) 49.0592 0.152256 0.0761278 0.997098i \(-0.475744\pi\)
0.0761278 + 0.997098i \(0.475744\pi\)
\(48\) 0 0
\(49\) −74.2848 −0.216574
\(50\) 233.400 0.660156
\(51\) 0 0
\(52\) 254.579 0.678919
\(53\) 462.443 1.19852 0.599259 0.800556i \(-0.295462\pi\)
0.599259 + 0.800556i \(0.295462\pi\)
\(54\) 0 0
\(55\) 322.794 0.791373
\(56\) 222.951 0.532019
\(57\) 0 0
\(58\) 319.154 0.722535
\(59\) 351.772 0.776217 0.388109 0.921614i \(-0.373129\pi\)
0.388109 + 0.921614i \(0.373129\pi\)
\(60\) 0 0
\(61\) 41.6873 0.0875003 0.0437501 0.999043i \(-0.486069\pi\)
0.0437501 + 0.999043i \(0.486069\pi\)
\(62\) 615.679 1.26115
\(63\) 0 0
\(64\) 51.2773 0.100151
\(65\) −473.719 −0.903963
\(66\) 0 0
\(67\) 845.771 1.54220 0.771100 0.636715i \(-0.219707\pi\)
0.771100 + 0.636715i \(0.219707\pi\)
\(68\) 69.4984 0.123940
\(69\) 0 0
\(70\) 433.560 0.740291
\(71\) 420.922 0.703580 0.351790 0.936079i \(-0.385573\pi\)
0.351790 + 0.936079i \(0.385573\pi\)
\(72\) 0 0
\(73\) −402.152 −0.644771 −0.322386 0.946608i \(-0.604485\pi\)
−0.322386 + 0.946608i \(0.604485\pi\)
\(74\) 897.175 1.40939
\(75\) 0 0
\(76\) −212.977 −0.321449
\(77\) −695.581 −1.02947
\(78\) 0 0
\(79\) −736.775 −1.04929 −0.524643 0.851322i \(-0.675801\pi\)
−0.524643 + 0.851322i \(0.675801\pi\)
\(80\) 608.515 0.850426
\(81\) 0 0
\(82\) 911.473 1.22750
\(83\) −1241.26 −1.64152 −0.820760 0.571273i \(-0.806450\pi\)
−0.820760 + 0.571273i \(0.806450\pi\)
\(84\) 0 0
\(85\) −129.322 −0.165023
\(86\) 1153.89 1.44683
\(87\) 0 0
\(88\) −577.118 −0.699102
\(89\) −463.658 −0.552221 −0.276110 0.961126i \(-0.589046\pi\)
−0.276110 + 0.961126i \(0.589046\pi\)
\(90\) 0 0
\(91\) 1020.81 1.17593
\(92\) −277.526 −0.314501
\(93\) 0 0
\(94\) −170.569 −0.187158
\(95\) 396.306 0.428001
\(96\) 0 0
\(97\) −1236.59 −1.29440 −0.647200 0.762321i \(-0.724060\pi\)
−0.647200 + 0.762321i \(0.724060\pi\)
\(98\) 258.273 0.266220
\(99\) 0 0
\(100\) −274.440 −0.274440
\(101\) −812.390 −0.800355 −0.400178 0.916438i \(-0.631052\pi\)
−0.400178 + 0.916438i \(0.631052\pi\)
\(102\) 0 0
\(103\) −762.574 −0.729501 −0.364751 0.931105i \(-0.618846\pi\)
−0.364751 + 0.931105i \(0.618846\pi\)
\(104\) 846.954 0.798564
\(105\) 0 0
\(106\) −1607.82 −1.47326
\(107\) −954.481 −0.862366 −0.431183 0.902265i \(-0.641904\pi\)
−0.431183 + 0.902265i \(0.641904\pi\)
\(108\) 0 0
\(109\) 1383.24 1.21551 0.607754 0.794125i \(-0.292071\pi\)
0.607754 + 0.794125i \(0.292071\pi\)
\(110\) −1122.29 −0.972783
\(111\) 0 0
\(112\) −1311.28 −1.10628
\(113\) 1763.42 1.46804 0.734021 0.679127i \(-0.237641\pi\)
0.734021 + 0.679127i \(0.237641\pi\)
\(114\) 0 0
\(115\) 516.418 0.418750
\(116\) −375.273 −0.300372
\(117\) 0 0
\(118\) −1223.04 −0.954153
\(119\) 278.673 0.214672
\(120\) 0 0
\(121\) 469.542 0.352774
\(122\) −144.939 −0.107558
\(123\) 0 0
\(124\) −723.937 −0.524286
\(125\) 1461.57 1.04582
\(126\) 0 0
\(127\) 2136.72 1.49294 0.746469 0.665420i \(-0.231747\pi\)
0.746469 + 0.665420i \(0.231747\pi\)
\(128\) −1532.77 −1.05843
\(129\) 0 0
\(130\) 1647.03 1.11118
\(131\) −2681.59 −1.78849 −0.894244 0.447580i \(-0.852286\pi\)
−0.894244 + 0.447580i \(0.852286\pi\)
\(132\) 0 0
\(133\) −853.990 −0.556770
\(134\) −2940.58 −1.89572
\(135\) 0 0
\(136\) 231.213 0.145782
\(137\) −2571.30 −1.60351 −0.801755 0.597653i \(-0.796100\pi\)
−0.801755 + 0.597653i \(0.796100\pi\)
\(138\) 0 0
\(139\) −483.513 −0.295043 −0.147522 0.989059i \(-0.547130\pi\)
−0.147522 + 0.989059i \(0.547130\pi\)
\(140\) −509.795 −0.307754
\(141\) 0 0
\(142\) −1463.46 −0.864865
\(143\) −2642.40 −1.54523
\(144\) 0 0
\(145\) 698.304 0.399938
\(146\) 1398.20 0.792575
\(147\) 0 0
\(148\) −1054.93 −0.585910
\(149\) 3194.69 1.75650 0.878252 0.478198i \(-0.158710\pi\)
0.878252 + 0.478198i \(0.158710\pi\)
\(150\) 0 0
\(151\) 1038.38 0.559617 0.279809 0.960056i \(-0.409729\pi\)
0.279809 + 0.960056i \(0.409729\pi\)
\(152\) −708.549 −0.378098
\(153\) 0 0
\(154\) 2418.40 1.26545
\(155\) 1347.10 0.698073
\(156\) 0 0
\(157\) 658.734 0.334858 0.167429 0.985884i \(-0.446454\pi\)
0.167429 + 0.985884i \(0.446454\pi\)
\(158\) 2561.62 1.28982
\(159\) 0 0
\(160\) −1287.98 −0.636398
\(161\) −1112.82 −0.544734
\(162\) 0 0
\(163\) −603.959 −0.290219 −0.145110 0.989416i \(-0.546353\pi\)
−0.145110 + 0.989416i \(0.546353\pi\)
\(164\) −1071.74 −0.510298
\(165\) 0 0
\(166\) 4315.62 2.01781
\(167\) −1748.74 −0.810311 −0.405155 0.914248i \(-0.632783\pi\)
−0.405155 + 0.914248i \(0.632783\pi\)
\(168\) 0 0
\(169\) 1680.87 0.765077
\(170\) 449.627 0.202852
\(171\) 0 0
\(172\) −1356.78 −0.601475
\(173\) 1821.21 0.800372 0.400186 0.916434i \(-0.368946\pi\)
0.400186 + 0.916434i \(0.368946\pi\)
\(174\) 0 0
\(175\) −1100.44 −0.475347
\(176\) 3394.29 1.45372
\(177\) 0 0
\(178\) 1612.05 0.678809
\(179\) −3269.37 −1.36516 −0.682581 0.730810i \(-0.739143\pi\)
−0.682581 + 0.730810i \(0.739143\pi\)
\(180\) 0 0
\(181\) 4270.64 1.75378 0.876890 0.480691i \(-0.159614\pi\)
0.876890 + 0.480691i \(0.159614\pi\)
\(182\) −3549.14 −1.44549
\(183\) 0 0
\(184\) −923.295 −0.369925
\(185\) 1963.00 0.780124
\(186\) 0 0
\(187\) −721.357 −0.282090
\(188\) 200.561 0.0778053
\(189\) 0 0
\(190\) −1377.88 −0.526114
\(191\) −328.693 −0.124520 −0.0622602 0.998060i \(-0.519831\pi\)
−0.0622602 + 0.998060i \(0.519831\pi\)
\(192\) 0 0
\(193\) −3214.93 −1.19904 −0.599522 0.800358i \(-0.704643\pi\)
−0.599522 + 0.800358i \(0.704643\pi\)
\(194\) 4299.38 1.59112
\(195\) 0 0
\(196\) −303.687 −0.110673
\(197\) 3436.44 1.24282 0.621411 0.783484i \(-0.286560\pi\)
0.621411 + 0.783484i \(0.286560\pi\)
\(198\) 0 0
\(199\) −3558.85 −1.26774 −0.633869 0.773440i \(-0.718534\pi\)
−0.633869 + 0.773440i \(0.718534\pi\)
\(200\) −913.029 −0.322805
\(201\) 0 0
\(202\) 2824.52 0.983824
\(203\) −1504.76 −0.520263
\(204\) 0 0
\(205\) 1994.29 0.679449
\(206\) 2651.32 0.896728
\(207\) 0 0
\(208\) −4981.32 −1.66054
\(209\) 2210.59 0.731626
\(210\) 0 0
\(211\) 984.360 0.321166 0.160583 0.987022i \(-0.448662\pi\)
0.160583 + 0.987022i \(0.448662\pi\)
\(212\) 1890.53 0.612463
\(213\) 0 0
\(214\) 3318.54 1.06005
\(215\) 2524.69 0.800849
\(216\) 0 0
\(217\) −2902.83 −0.908095
\(218\) −4809.25 −1.49414
\(219\) 0 0
\(220\) 1319.63 0.404406
\(221\) 1058.63 0.322224
\(222\) 0 0
\(223\) −1077.90 −0.323684 −0.161842 0.986817i \(-0.551744\pi\)
−0.161842 + 0.986817i \(0.551744\pi\)
\(224\) 2775.44 0.827864
\(225\) 0 0
\(226\) −6131.07 −1.80457
\(227\) 6639.72 1.94138 0.970692 0.240329i \(-0.0772552\pi\)
0.970692 + 0.240329i \(0.0772552\pi\)
\(228\) 0 0
\(229\) −5261.85 −1.51840 −0.759198 0.650860i \(-0.774409\pi\)
−0.759198 + 0.650860i \(0.774409\pi\)
\(230\) −1795.48 −0.514742
\(231\) 0 0
\(232\) −1248.49 −0.353307
\(233\) −1463.68 −0.411541 −0.205771 0.978600i \(-0.565970\pi\)
−0.205771 + 0.978600i \(0.565970\pi\)
\(234\) 0 0
\(235\) −373.202 −0.103596
\(236\) 1438.09 0.396661
\(237\) 0 0
\(238\) −968.891 −0.263882
\(239\) −2244.08 −0.607354 −0.303677 0.952775i \(-0.598214\pi\)
−0.303677 + 0.952775i \(0.598214\pi\)
\(240\) 0 0
\(241\) 4728.95 1.26398 0.631989 0.774977i \(-0.282239\pi\)
0.631989 + 0.774977i \(0.282239\pi\)
\(242\) −1632.50 −0.433642
\(243\) 0 0
\(244\) 170.424 0.0447142
\(245\) 565.098 0.147358
\(246\) 0 0
\(247\) −3244.17 −0.835715
\(248\) −2408.45 −0.616681
\(249\) 0 0
\(250\) −5081.60 −1.28555
\(251\) 4629.50 1.16419 0.582094 0.813121i \(-0.302234\pi\)
0.582094 + 0.813121i \(0.302234\pi\)
\(252\) 0 0
\(253\) 2880.57 0.715811
\(254\) −7428.95 −1.83517
\(255\) 0 0
\(256\) 4918.91 1.20091
\(257\) 7620.67 1.84967 0.924833 0.380373i \(-0.124204\pi\)
0.924833 + 0.380373i \(0.124204\pi\)
\(258\) 0 0
\(259\) −4230.03 −1.01483
\(260\) −1936.63 −0.461941
\(261\) 0 0
\(262\) 9323.37 2.19847
\(263\) −4030.59 −0.945008 −0.472504 0.881329i \(-0.656650\pi\)
−0.472504 + 0.881329i \(0.656650\pi\)
\(264\) 0 0
\(265\) −3517.89 −0.815479
\(266\) 2969.15 0.684400
\(267\) 0 0
\(268\) 3457.63 0.788091
\(269\) −356.893 −0.0808928 −0.0404464 0.999182i \(-0.512878\pi\)
−0.0404464 + 0.999182i \(0.512878\pi\)
\(270\) 0 0
\(271\) 3.71432 0.000832578 0 0.000416289 1.00000i \(-0.499867\pi\)
0.000416289 1.00000i \(0.499867\pi\)
\(272\) −1359.87 −0.303140
\(273\) 0 0
\(274\) 8939.89 1.97109
\(275\) 2848.55 0.624632
\(276\) 0 0
\(277\) 4624.45 1.00309 0.501546 0.865131i \(-0.332765\pi\)
0.501546 + 0.865131i \(0.332765\pi\)
\(278\) 1681.08 0.362677
\(279\) 0 0
\(280\) −1696.03 −0.361989
\(281\) 479.468 0.101789 0.0508945 0.998704i \(-0.483793\pi\)
0.0508945 + 0.998704i \(0.483793\pi\)
\(282\) 0 0
\(283\) 2620.73 0.550482 0.275241 0.961375i \(-0.411242\pi\)
0.275241 + 0.961375i \(0.411242\pi\)
\(284\) 1720.79 0.359542
\(285\) 0 0
\(286\) 9187.10 1.89946
\(287\) −4297.44 −0.883868
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) −2427.86 −0.491618
\(291\) 0 0
\(292\) −1644.05 −0.329489
\(293\) 1166.08 0.232502 0.116251 0.993220i \(-0.462912\pi\)
0.116251 + 0.993220i \(0.462912\pi\)
\(294\) 0 0
\(295\) −2675.99 −0.528144
\(296\) −3509.62 −0.689164
\(297\) 0 0
\(298\) −11107.3 −2.15916
\(299\) −4227.41 −0.817650
\(300\) 0 0
\(301\) −5440.40 −1.04179
\(302\) −3610.24 −0.687901
\(303\) 0 0
\(304\) 4167.30 0.786220
\(305\) −317.123 −0.0595358
\(306\) 0 0
\(307\) 7729.44 1.43695 0.718473 0.695555i \(-0.244841\pi\)
0.718473 + 0.695555i \(0.244841\pi\)
\(308\) −2843.63 −0.526075
\(309\) 0 0
\(310\) −4683.59 −0.858096
\(311\) 4549.54 0.829521 0.414760 0.909931i \(-0.363865\pi\)
0.414760 + 0.909931i \(0.363865\pi\)
\(312\) 0 0
\(313\) −2687.97 −0.485410 −0.242705 0.970100i \(-0.578035\pi\)
−0.242705 + 0.970100i \(0.578035\pi\)
\(314\) −2290.29 −0.411619
\(315\) 0 0
\(316\) −3012.04 −0.536204
\(317\) −5617.46 −0.995294 −0.497647 0.867380i \(-0.665802\pi\)
−0.497647 + 0.867380i \(0.665802\pi\)
\(318\) 0 0
\(319\) 3895.14 0.683654
\(320\) −390.076 −0.0681435
\(321\) 0 0
\(322\) 3869.04 0.669606
\(323\) −885.637 −0.152564
\(324\) 0 0
\(325\) −4180.41 −0.713499
\(326\) 2099.85 0.356748
\(327\) 0 0
\(328\) −3565.55 −0.600228
\(329\) 804.204 0.134764
\(330\) 0 0
\(331\) 8535.90 1.41745 0.708724 0.705485i \(-0.249271\pi\)
0.708724 + 0.705485i \(0.249271\pi\)
\(332\) −5074.45 −0.838846
\(333\) 0 0
\(334\) 6080.04 0.996062
\(335\) −6433.93 −1.04932
\(336\) 0 0
\(337\) 9073.71 1.46670 0.733348 0.679854i \(-0.237957\pi\)
0.733348 + 0.679854i \(0.237957\pi\)
\(338\) −5844.06 −0.940459
\(339\) 0 0
\(340\) −528.687 −0.0843296
\(341\) 7514.09 1.19329
\(342\) 0 0
\(343\) −6840.36 −1.07681
\(344\) −4513.85 −0.707473
\(345\) 0 0
\(346\) −6332.00 −0.983845
\(347\) −9087.35 −1.40586 −0.702932 0.711257i \(-0.748126\pi\)
−0.702932 + 0.711257i \(0.748126\pi\)
\(348\) 0 0
\(349\) −8381.26 −1.28550 −0.642749 0.766077i \(-0.722206\pi\)
−0.642749 + 0.766077i \(0.722206\pi\)
\(350\) 3826.02 0.584313
\(351\) 0 0
\(352\) −7184.34 −1.08786
\(353\) 7887.40 1.18925 0.594623 0.804005i \(-0.297301\pi\)
0.594623 + 0.804005i \(0.297301\pi\)
\(354\) 0 0
\(355\) −3202.03 −0.478721
\(356\) −1895.50 −0.282194
\(357\) 0 0
\(358\) 11366.9 1.67811
\(359\) −8093.44 −1.18985 −0.594924 0.803782i \(-0.702818\pi\)
−0.594924 + 0.803782i \(0.702818\pi\)
\(360\) 0 0
\(361\) −4144.98 −0.604312
\(362\) −14848.2 −2.15581
\(363\) 0 0
\(364\) 4173.20 0.600920
\(365\) 3059.24 0.438707
\(366\) 0 0
\(367\) 871.023 0.123888 0.0619442 0.998080i \(-0.480270\pi\)
0.0619442 + 0.998080i \(0.480270\pi\)
\(368\) 5430.32 0.769225
\(369\) 0 0
\(370\) −6824.97 −0.958955
\(371\) 7580.61 1.06082
\(372\) 0 0
\(373\) −11778.3 −1.63500 −0.817501 0.575927i \(-0.804641\pi\)
−0.817501 + 0.575927i \(0.804641\pi\)
\(374\) 2508.02 0.346755
\(375\) 0 0
\(376\) 667.242 0.0915169
\(377\) −5716.34 −0.780919
\(378\) 0 0
\(379\) 1344.02 0.182157 0.0910787 0.995844i \(-0.470969\pi\)
0.0910787 + 0.995844i \(0.470969\pi\)
\(380\) 1620.15 0.218716
\(381\) 0 0
\(382\) 1142.80 0.153065
\(383\) −874.156 −0.116625 −0.0583124 0.998298i \(-0.518572\pi\)
−0.0583124 + 0.998298i \(0.518572\pi\)
\(384\) 0 0
\(385\) 5291.41 0.700455
\(386\) 11177.7 1.47391
\(387\) 0 0
\(388\) −5055.35 −0.661461
\(389\) 4783.41 0.623467 0.311734 0.950170i \(-0.399090\pi\)
0.311734 + 0.950170i \(0.399090\pi\)
\(390\) 0 0
\(391\) −1154.05 −0.149266
\(392\) −1010.33 −0.130177
\(393\) 0 0
\(394\) −11947.8 −1.52772
\(395\) 5604.78 0.713942
\(396\) 0 0
\(397\) −5829.06 −0.736907 −0.368454 0.929646i \(-0.620113\pi\)
−0.368454 + 0.929646i \(0.620113\pi\)
\(398\) 12373.4 1.55835
\(399\) 0 0
\(400\) 5369.94 0.671243
\(401\) 3158.93 0.393390 0.196695 0.980465i \(-0.436979\pi\)
0.196695 + 0.980465i \(0.436979\pi\)
\(402\) 0 0
\(403\) −11027.4 −1.36306
\(404\) −3321.17 −0.408995
\(405\) 0 0
\(406\) 5231.75 0.639525
\(407\) 10949.6 1.33354
\(408\) 0 0
\(409\) 11171.5 1.35059 0.675297 0.737546i \(-0.264016\pi\)
0.675297 + 0.737546i \(0.264016\pi\)
\(410\) −6933.74 −0.835202
\(411\) 0 0
\(412\) −3117.51 −0.372788
\(413\) 5766.43 0.687040
\(414\) 0 0
\(415\) 9442.50 1.11690
\(416\) 10543.4 1.24263
\(417\) 0 0
\(418\) −7685.78 −0.899340
\(419\) −5329.40 −0.621380 −0.310690 0.950511i \(-0.600560\pi\)
−0.310690 + 0.950511i \(0.600560\pi\)
\(420\) 0 0
\(421\) 13072.6 1.51335 0.756673 0.653793i \(-0.226823\pi\)
0.756673 + 0.653793i \(0.226823\pi\)
\(422\) −3422.42 −0.394789
\(423\) 0 0
\(424\) 6289.57 0.720398
\(425\) −1141.22 −0.130253
\(426\) 0 0
\(427\) 683.361 0.0774477
\(428\) −3902.05 −0.440684
\(429\) 0 0
\(430\) −8777.84 −0.984431
\(431\) −15823.8 −1.76846 −0.884231 0.467049i \(-0.845317\pi\)
−0.884231 + 0.467049i \(0.845317\pi\)
\(432\) 0 0
\(433\) −874.552 −0.0970630 −0.0485315 0.998822i \(-0.515454\pi\)
−0.0485315 + 0.998822i \(0.515454\pi\)
\(434\) 10092.5 1.11626
\(435\) 0 0
\(436\) 5654.88 0.621146
\(437\) 3536.59 0.387135
\(438\) 0 0
\(439\) −2029.21 −0.220612 −0.110306 0.993898i \(-0.535183\pi\)
−0.110306 + 0.993898i \(0.535183\pi\)
\(440\) 4390.24 0.475674
\(441\) 0 0
\(442\) −3680.66 −0.396088
\(443\) −2473.26 −0.265255 −0.132628 0.991166i \(-0.542341\pi\)
−0.132628 + 0.991166i \(0.542341\pi\)
\(444\) 0 0
\(445\) 3527.13 0.375735
\(446\) 3747.64 0.397884
\(447\) 0 0
\(448\) 840.565 0.0886451
\(449\) −7824.08 −0.822363 −0.411182 0.911553i \(-0.634884\pi\)
−0.411182 + 0.911553i \(0.634884\pi\)
\(450\) 0 0
\(451\) 11124.1 1.16145
\(452\) 7209.12 0.750195
\(453\) 0 0
\(454\) −23085.0 −2.38642
\(455\) −7765.45 −0.800110
\(456\) 0 0
\(457\) 14341.7 1.46801 0.734003 0.679147i \(-0.237650\pi\)
0.734003 + 0.679147i \(0.237650\pi\)
\(458\) 18294.4 1.86646
\(459\) 0 0
\(460\) 2111.19 0.213988
\(461\) 14599.6 1.47499 0.737494 0.675353i \(-0.236009\pi\)
0.737494 + 0.675353i \(0.236009\pi\)
\(462\) 0 0
\(463\) 6007.86 0.603043 0.301522 0.953459i \(-0.402505\pi\)
0.301522 + 0.953459i \(0.402505\pi\)
\(464\) 7342.92 0.734669
\(465\) 0 0
\(466\) 5088.94 0.505881
\(467\) −11725.0 −1.16182 −0.580908 0.813969i \(-0.697303\pi\)
−0.580908 + 0.813969i \(0.697303\pi\)
\(468\) 0 0
\(469\) 13864.3 1.36502
\(470\) 1297.55 0.127344
\(471\) 0 0
\(472\) 4784.36 0.466564
\(473\) 14082.7 1.36897
\(474\) 0 0
\(475\) 3497.27 0.337822
\(476\) 1139.25 0.109701
\(477\) 0 0
\(478\) 7802.23 0.746581
\(479\) −15696.1 −1.49723 −0.748615 0.663005i \(-0.769281\pi\)
−0.748615 + 0.663005i \(0.769281\pi\)
\(480\) 0 0
\(481\) −16069.2 −1.52327
\(482\) −16441.6 −1.55373
\(483\) 0 0
\(484\) 1919.55 0.180274
\(485\) 9406.97 0.880718
\(486\) 0 0
\(487\) 5507.75 0.512484 0.256242 0.966613i \(-0.417516\pi\)
0.256242 + 0.966613i \(0.417516\pi\)
\(488\) 566.979 0.0525941
\(489\) 0 0
\(490\) −1964.73 −0.181138
\(491\) 4604.09 0.423177 0.211588 0.977359i \(-0.432136\pi\)
0.211588 + 0.977359i \(0.432136\pi\)
\(492\) 0 0
\(493\) −1560.52 −0.142561
\(494\) 11279.3 1.02729
\(495\) 0 0
\(496\) 14165.2 1.28233
\(497\) 6899.97 0.622749
\(498\) 0 0
\(499\) 7561.06 0.678316 0.339158 0.940729i \(-0.389858\pi\)
0.339158 + 0.940729i \(0.389858\pi\)
\(500\) 5975.12 0.534431
\(501\) 0 0
\(502\) −16095.8 −1.43106
\(503\) −16739.3 −1.48384 −0.741919 0.670490i \(-0.766084\pi\)
−0.741919 + 0.670490i \(0.766084\pi\)
\(504\) 0 0
\(505\) 6180.00 0.544567
\(506\) −10015.2 −0.879900
\(507\) 0 0
\(508\) 8735.21 0.762918
\(509\) 17.0393 0.00148380 0.000741899 1.00000i \(-0.499764\pi\)
0.000741899 1.00000i \(0.499764\pi\)
\(510\) 0 0
\(511\) −6592.29 −0.570696
\(512\) −4839.93 −0.417767
\(513\) 0 0
\(514\) −26495.5 −2.27367
\(515\) 5801.04 0.496358
\(516\) 0 0
\(517\) −2081.72 −0.177087
\(518\) 14707.0 1.24747
\(519\) 0 0
\(520\) −6442.93 −0.543349
\(521\) 2876.59 0.241892 0.120946 0.992659i \(-0.461407\pi\)
0.120946 + 0.992659i \(0.461407\pi\)
\(522\) 0 0
\(523\) 13441.9 1.12385 0.561923 0.827190i \(-0.310062\pi\)
0.561923 + 0.827190i \(0.310062\pi\)
\(524\) −10962.7 −0.913949
\(525\) 0 0
\(526\) 14013.6 1.16164
\(527\) −3010.40 −0.248833
\(528\) 0 0
\(529\) −7558.55 −0.621234
\(530\) 12231.0 1.00242
\(531\) 0 0
\(532\) −3491.23 −0.284519
\(533\) −16325.3 −1.32669
\(534\) 0 0
\(535\) 7260.91 0.586760
\(536\) 11503.1 0.926976
\(537\) 0 0
\(538\) 1240.85 0.0994362
\(539\) 3152.11 0.251894
\(540\) 0 0
\(541\) −12958.0 −1.02978 −0.514888 0.857258i \(-0.672166\pi\)
−0.514888 + 0.857258i \(0.672166\pi\)
\(542\) −12.9139 −0.00102343
\(543\) 0 0
\(544\) 2878.29 0.226848
\(545\) −10522.6 −0.827040
\(546\) 0 0
\(547\) −21637.6 −1.69133 −0.845664 0.533716i \(-0.820795\pi\)
−0.845664 + 0.533716i \(0.820795\pi\)
\(548\) −10511.8 −0.819422
\(549\) 0 0
\(550\) −9903.83 −0.767820
\(551\) 4782.20 0.369743
\(552\) 0 0
\(553\) −12077.6 −0.928738
\(554\) −16078.3 −1.23303
\(555\) 0 0
\(556\) −1976.67 −0.150772
\(557\) −21252.5 −1.61669 −0.808345 0.588709i \(-0.799636\pi\)
−0.808345 + 0.588709i \(0.799636\pi\)
\(558\) 0 0
\(559\) −20667.2 −1.56374
\(560\) 9975.11 0.752724
\(561\) 0 0
\(562\) −1667.02 −0.125122
\(563\) −21952.4 −1.64331 −0.821654 0.569987i \(-0.806948\pi\)
−0.821654 + 0.569987i \(0.806948\pi\)
\(564\) 0 0
\(565\) −13414.7 −0.998866
\(566\) −9111.76 −0.676671
\(567\) 0 0
\(568\) 5724.85 0.422904
\(569\) −5820.12 −0.428809 −0.214404 0.976745i \(-0.568781\pi\)
−0.214404 + 0.976745i \(0.568781\pi\)
\(570\) 0 0
\(571\) −17406.4 −1.27572 −0.637858 0.770154i \(-0.720179\pi\)
−0.637858 + 0.770154i \(0.720179\pi\)
\(572\) −10802.5 −0.789642
\(573\) 0 0
\(574\) 14941.4 1.08648
\(575\) 4557.21 0.330520
\(576\) 0 0
\(577\) 14297.2 1.03155 0.515773 0.856726i \(-0.327505\pi\)
0.515773 + 0.856726i \(0.327505\pi\)
\(578\) −1004.80 −0.0723079
\(579\) 0 0
\(580\) 2854.77 0.204375
\(581\) −20347.4 −1.45293
\(582\) 0 0
\(583\) −19622.7 −1.39398
\(584\) −5469.57 −0.387555
\(585\) 0 0
\(586\) −4054.23 −0.285800
\(587\) 13376.1 0.940532 0.470266 0.882525i \(-0.344158\pi\)
0.470266 + 0.882525i \(0.344158\pi\)
\(588\) 0 0
\(589\) 9225.33 0.645370
\(590\) 9303.89 0.649212
\(591\) 0 0
\(592\) 20641.7 1.43305
\(593\) 16928.6 1.17230 0.586151 0.810202i \(-0.300643\pi\)
0.586151 + 0.810202i \(0.300643\pi\)
\(594\) 0 0
\(595\) −2119.92 −0.146064
\(596\) 13060.3 0.897604
\(597\) 0 0
\(598\) 14697.9 1.00508
\(599\) −1428.93 −0.0974697 −0.0487348 0.998812i \(-0.515519\pi\)
−0.0487348 + 0.998812i \(0.515519\pi\)
\(600\) 0 0
\(601\) −11646.1 −0.790438 −0.395219 0.918587i \(-0.629331\pi\)
−0.395219 + 0.918587i \(0.629331\pi\)
\(602\) 18915.2 1.28061
\(603\) 0 0
\(604\) 4245.05 0.285974
\(605\) −3571.89 −0.240030
\(606\) 0 0
\(607\) 8424.88 0.563353 0.281677 0.959509i \(-0.409109\pi\)
0.281677 + 0.959509i \(0.409109\pi\)
\(608\) −8820.48 −0.588351
\(609\) 0 0
\(610\) 1102.57 0.0731834
\(611\) 3055.04 0.202281
\(612\) 0 0
\(613\) 6734.36 0.443717 0.221858 0.975079i \(-0.428788\pi\)
0.221858 + 0.975079i \(0.428788\pi\)
\(614\) −26873.7 −1.76634
\(615\) 0 0
\(616\) −9460.43 −0.618785
\(617\) −23683.5 −1.54532 −0.772661 0.634819i \(-0.781075\pi\)
−0.772661 + 0.634819i \(0.781075\pi\)
\(618\) 0 0
\(619\) 6795.00 0.441218 0.220609 0.975362i \(-0.429196\pi\)
0.220609 + 0.975362i \(0.429196\pi\)
\(620\) 5507.12 0.356728
\(621\) 0 0
\(622\) −15817.9 −1.01968
\(623\) −7600.53 −0.488778
\(624\) 0 0
\(625\) −2727.11 −0.174535
\(626\) 9345.54 0.596682
\(627\) 0 0
\(628\) 2693.00 0.171118
\(629\) −4386.79 −0.278080
\(630\) 0 0
\(631\) 19712.0 1.24361 0.621807 0.783170i \(-0.286399\pi\)
0.621807 + 0.783170i \(0.286399\pi\)
\(632\) −10020.7 −0.630699
\(633\) 0 0
\(634\) 19530.8 1.22345
\(635\) −16254.4 −1.01581
\(636\) 0 0
\(637\) −4625.91 −0.287732
\(638\) −13542.6 −0.840372
\(639\) 0 0
\(640\) 11660.1 0.720162
\(641\) 25070.0 1.54479 0.772393 0.635146i \(-0.219060\pi\)
0.772393 + 0.635146i \(0.219060\pi\)
\(642\) 0 0
\(643\) −13096.3 −0.803214 −0.401607 0.915812i \(-0.631548\pi\)
−0.401607 + 0.915812i \(0.631548\pi\)
\(644\) −4549.35 −0.278369
\(645\) 0 0
\(646\) 3079.18 0.187537
\(647\) −13315.1 −0.809074 −0.404537 0.914522i \(-0.632567\pi\)
−0.404537 + 0.914522i \(0.632567\pi\)
\(648\) 0 0
\(649\) −14926.7 −0.902809
\(650\) 14534.4 0.877058
\(651\) 0 0
\(652\) −2469.07 −0.148307
\(653\) −19517.3 −1.16964 −0.584818 0.811165i \(-0.698834\pi\)
−0.584818 + 0.811165i \(0.698834\pi\)
\(654\) 0 0
\(655\) 20399.4 1.21690
\(656\) 20970.6 1.24812
\(657\) 0 0
\(658\) −2796.06 −0.165656
\(659\) 16684.0 0.986216 0.493108 0.869968i \(-0.335861\pi\)
0.493108 + 0.869968i \(0.335861\pi\)
\(660\) 0 0
\(661\) 10911.1 0.642048 0.321024 0.947071i \(-0.395973\pi\)
0.321024 + 0.947071i \(0.395973\pi\)
\(662\) −29677.6 −1.74238
\(663\) 0 0
\(664\) −16882.1 −0.986675
\(665\) 6496.46 0.378830
\(666\) 0 0
\(667\) 6231.59 0.361751
\(668\) −7149.11 −0.414083
\(669\) 0 0
\(670\) 22369.5 1.28986
\(671\) −1768.91 −0.101771
\(672\) 0 0
\(673\) 12539.1 0.718198 0.359099 0.933299i \(-0.383084\pi\)
0.359099 + 0.933299i \(0.383084\pi\)
\(674\) −31547.5 −1.80291
\(675\) 0 0
\(676\) 6871.65 0.390968
\(677\) 31055.0 1.76299 0.881493 0.472198i \(-0.156539\pi\)
0.881493 + 0.472198i \(0.156539\pi\)
\(678\) 0 0
\(679\) −20270.8 −1.14569
\(680\) −1758.88 −0.0991910
\(681\) 0 0
\(682\) −26125.0 −1.46683
\(683\) 27622.0 1.54748 0.773739 0.633504i \(-0.218384\pi\)
0.773739 + 0.633504i \(0.218384\pi\)
\(684\) 0 0
\(685\) 19560.3 1.09104
\(686\) 23782.6 1.32365
\(687\) 0 0
\(688\) 26548.0 1.47112
\(689\) 28797.5 1.59230
\(690\) 0 0
\(691\) −17085.2 −0.940594 −0.470297 0.882508i \(-0.655853\pi\)
−0.470297 + 0.882508i \(0.655853\pi\)
\(692\) 7445.38 0.409004
\(693\) 0 0
\(694\) 31594.9 1.72814
\(695\) 3678.17 0.200749
\(696\) 0 0
\(697\) −4456.69 −0.242194
\(698\) 29140.0 1.58018
\(699\) 0 0
\(700\) −4498.77 −0.242911
\(701\) −1835.02 −0.0988700 −0.0494350 0.998777i \(-0.515742\pi\)
−0.0494350 + 0.998777i \(0.515742\pi\)
\(702\) 0 0
\(703\) 13443.3 0.721226
\(704\) −2175.84 −0.116484
\(705\) 0 0
\(706\) −27422.9 −1.46186
\(707\) −13317.1 −0.708405
\(708\) 0 0
\(709\) −11565.0 −0.612600 −0.306300 0.951935i \(-0.599091\pi\)
−0.306300 + 0.951935i \(0.599091\pi\)
\(710\) 11132.8 0.588460
\(711\) 0 0
\(712\) −6306.10 −0.331926
\(713\) 12021.3 0.631420
\(714\) 0 0
\(715\) 20101.2 1.05139
\(716\) −13365.6 −0.697622
\(717\) 0 0
\(718\) 28139.3 1.46260
\(719\) 23764.7 1.23265 0.616325 0.787492i \(-0.288621\pi\)
0.616325 + 0.787492i \(0.288621\pi\)
\(720\) 0 0
\(721\) −12500.5 −0.645691
\(722\) 14411.3 0.742841
\(723\) 0 0
\(724\) 17459.0 0.896213
\(725\) 6162.30 0.315672
\(726\) 0 0
\(727\) −17712.6 −0.903612 −0.451806 0.892116i \(-0.649220\pi\)
−0.451806 + 0.892116i \(0.649220\pi\)
\(728\) 13883.7 0.706820
\(729\) 0 0
\(730\) −10636.4 −0.539274
\(731\) −5642.00 −0.285468
\(732\) 0 0
\(733\) 381.951 0.0192465 0.00962324 0.999954i \(-0.496937\pi\)
0.00962324 + 0.999954i \(0.496937\pi\)
\(734\) −3028.37 −0.152288
\(735\) 0 0
\(736\) −11493.8 −0.575633
\(737\) −35888.4 −1.79371
\(738\) 0 0
\(739\) −5941.21 −0.295739 −0.147869 0.989007i \(-0.547242\pi\)
−0.147869 + 0.989007i \(0.547242\pi\)
\(740\) 8025.04 0.398657
\(741\) 0 0
\(742\) −26356.3 −1.30400
\(743\) −28444.3 −1.40447 −0.702235 0.711946i \(-0.747814\pi\)
−0.702235 + 0.711946i \(0.747814\pi\)
\(744\) 0 0
\(745\) −24302.6 −1.19514
\(746\) 40950.7 2.00980
\(747\) 0 0
\(748\) −2949.01 −0.144153
\(749\) −15646.4 −0.763292
\(750\) 0 0
\(751\) −12002.7 −0.583201 −0.291600 0.956540i \(-0.594188\pi\)
−0.291600 + 0.956540i \(0.594188\pi\)
\(752\) −3924.35 −0.190301
\(753\) 0 0
\(754\) 19874.6 0.959932
\(755\) −7899.15 −0.380768
\(756\) 0 0
\(757\) 24817.2 1.19154 0.595770 0.803155i \(-0.296847\pi\)
0.595770 + 0.803155i \(0.296847\pi\)
\(758\) −4672.89 −0.223914
\(759\) 0 0
\(760\) 5390.06 0.257261
\(761\) 23691.4 1.12853 0.564267 0.825592i \(-0.309159\pi\)
0.564267 + 0.825592i \(0.309159\pi\)
\(762\) 0 0
\(763\) 22674.8 1.07586
\(764\) −1343.74 −0.0636322
\(765\) 0 0
\(766\) 3039.27 0.143359
\(767\) 21905.7 1.03125
\(768\) 0 0
\(769\) 18595.9 0.872020 0.436010 0.899942i \(-0.356391\pi\)
0.436010 + 0.899942i \(0.356391\pi\)
\(770\) −18397.2 −0.861024
\(771\) 0 0
\(772\) −13143.1 −0.612733
\(773\) −18268.7 −0.850040 −0.425020 0.905184i \(-0.639733\pi\)
−0.425020 + 0.905184i \(0.639733\pi\)
\(774\) 0 0
\(775\) 11887.7 0.550991
\(776\) −16818.6 −0.778030
\(777\) 0 0
\(778\) −16631.0 −0.766387
\(779\) 13657.5 0.628152
\(780\) 0 0
\(781\) −17860.9 −0.818326
\(782\) 4012.42 0.183483
\(783\) 0 0
\(784\) 5942.21 0.270691
\(785\) −5011.11 −0.227840
\(786\) 0 0
\(787\) −8828.69 −0.399884 −0.199942 0.979808i \(-0.564075\pi\)
−0.199942 + 0.979808i \(0.564075\pi\)
\(788\) 14048.6 0.635104
\(789\) 0 0
\(790\) −19486.7 −0.877602
\(791\) 28907.0 1.29938
\(792\) 0 0
\(793\) 2595.98 0.116250
\(794\) 20266.5 0.905832
\(795\) 0 0
\(796\) −14549.1 −0.647837
\(797\) −2785.92 −0.123817 −0.0619086 0.998082i \(-0.519719\pi\)
−0.0619086 + 0.998082i \(0.519719\pi\)
\(798\) 0 0
\(799\) 834.006 0.0369274
\(800\) −11366.0 −0.502310
\(801\) 0 0
\(802\) −10983.0 −0.483568
\(803\) 17064.4 0.749926
\(804\) 0 0
\(805\) 8465.40 0.370641
\(806\) 38340.0 1.67552
\(807\) 0 0
\(808\) −11049.1 −0.481073
\(809\) 5946.07 0.258409 0.129204 0.991618i \(-0.458758\pi\)
0.129204 + 0.991618i \(0.458758\pi\)
\(810\) 0 0
\(811\) −36744.2 −1.59095 −0.795477 0.605983i \(-0.792780\pi\)
−0.795477 + 0.605983i \(0.792780\pi\)
\(812\) −6151.67 −0.265864
\(813\) 0 0
\(814\) −38069.6 −1.63924
\(815\) 4594.43 0.197467
\(816\) 0 0
\(817\) 17289.9 0.740386
\(818\) −38840.9 −1.66020
\(819\) 0 0
\(820\) 8152.93 0.347210
\(821\) 3372.76 0.143374 0.0716870 0.997427i \(-0.477162\pi\)
0.0716870 + 0.997427i \(0.477162\pi\)
\(822\) 0 0
\(823\) −30830.8 −1.30583 −0.652913 0.757433i \(-0.726453\pi\)
−0.652913 + 0.757433i \(0.726453\pi\)
\(824\) −10371.6 −0.438484
\(825\) 0 0
\(826\) −20048.7 −0.844534
\(827\) 18590.5 0.781685 0.390842 0.920458i \(-0.372184\pi\)
0.390842 + 0.920458i \(0.372184\pi\)
\(828\) 0 0
\(829\) −18532.2 −0.776417 −0.388209 0.921572i \(-0.626906\pi\)
−0.388209 + 0.921572i \(0.626906\pi\)
\(830\) −32829.7 −1.37293
\(831\) 0 0
\(832\) 3193.17 0.133057
\(833\) −1262.84 −0.0525268
\(834\) 0 0
\(835\) 13303.0 0.551341
\(836\) 9037.21 0.373874
\(837\) 0 0
\(838\) 18529.3 0.763822
\(839\) 31147.1 1.28166 0.640832 0.767681i \(-0.278589\pi\)
0.640832 + 0.767681i \(0.278589\pi\)
\(840\) 0 0
\(841\) −15962.6 −0.654500
\(842\) −45450.8 −1.86026
\(843\) 0 0
\(844\) 4024.20 0.164122
\(845\) −12786.7 −0.520564
\(846\) 0 0
\(847\) 7696.98 0.312245
\(848\) −36991.8 −1.49800
\(849\) 0 0
\(850\) 3967.81 0.160111
\(851\) 17517.6 0.705636
\(852\) 0 0
\(853\) 27617.8 1.10858 0.554288 0.832325i \(-0.312991\pi\)
0.554288 + 0.832325i \(0.312991\pi\)
\(854\) −2375.91 −0.0952014
\(855\) 0 0
\(856\) −12981.7 −0.518346
\(857\) 7374.42 0.293939 0.146969 0.989141i \(-0.453048\pi\)
0.146969 + 0.989141i \(0.453048\pi\)
\(858\) 0 0
\(859\) −18875.2 −0.749726 −0.374863 0.927080i \(-0.622310\pi\)
−0.374863 + 0.927080i \(0.622310\pi\)
\(860\) 10321.3 0.409248
\(861\) 0 0
\(862\) 55016.3 2.17386
\(863\) −30812.9 −1.21539 −0.607696 0.794170i \(-0.707906\pi\)
−0.607696 + 0.794170i \(0.707906\pi\)
\(864\) 0 0
\(865\) −13854.3 −0.544579
\(866\) 3040.64 0.119313
\(867\) 0 0
\(868\) −11867.2 −0.464053
\(869\) 31263.4 1.22041
\(870\) 0 0
\(871\) 52668.3 2.04891
\(872\) 18813.1 0.730610
\(873\) 0 0
\(874\) −12296.0 −0.475879
\(875\) 23958.9 0.925667
\(876\) 0 0
\(877\) 34791.0 1.33958 0.669789 0.742552i \(-0.266385\pi\)
0.669789 + 0.742552i \(0.266385\pi\)
\(878\) 7055.15 0.271184
\(879\) 0 0
\(880\) −25821.0 −0.989120
\(881\) −39390.8 −1.50637 −0.753184 0.657810i \(-0.771483\pi\)
−0.753184 + 0.657810i \(0.771483\pi\)
\(882\) 0 0
\(883\) −3249.30 −0.123837 −0.0619183 0.998081i \(-0.519722\pi\)
−0.0619183 + 0.998081i \(0.519722\pi\)
\(884\) 4327.84 0.164662
\(885\) 0 0
\(886\) 8599.03 0.326061
\(887\) 13724.9 0.519547 0.259774 0.965670i \(-0.416352\pi\)
0.259774 + 0.965670i \(0.416352\pi\)
\(888\) 0 0
\(889\) 35026.3 1.32142
\(890\) −12263.1 −0.461866
\(891\) 0 0
\(892\) −4406.61 −0.165408
\(893\) −2555.80 −0.0957745
\(894\) 0 0
\(895\) 24870.7 0.928866
\(896\) −25126.0 −0.936830
\(897\) 0 0
\(898\) 27202.8 1.01088
\(899\) 16255.3 0.603054
\(900\) 0 0
\(901\) 7861.53 0.290683
\(902\) −38676.3 −1.42770
\(903\) 0 0
\(904\) 23983.9 0.882402
\(905\) −32487.5 −1.19328
\(906\) 0 0
\(907\) −21248.3 −0.777880 −0.388940 0.921263i \(-0.627159\pi\)
−0.388940 + 0.921263i \(0.627159\pi\)
\(908\) 27144.1 0.992081
\(909\) 0 0
\(910\) 26998.9 0.983523
\(911\) −33293.3 −1.21082 −0.605410 0.795914i \(-0.706991\pi\)
−0.605410 + 0.795914i \(0.706991\pi\)
\(912\) 0 0
\(913\) 52670.2 1.90923
\(914\) −49863.4 −1.80452
\(915\) 0 0
\(916\) −21511.2 −0.775927
\(917\) −43958.1 −1.58302
\(918\) 0 0
\(919\) −23233.4 −0.833950 −0.416975 0.908918i \(-0.636910\pi\)
−0.416975 + 0.908918i \(0.636910\pi\)
\(920\) 7023.67 0.251700
\(921\) 0 0
\(922\) −50759.8 −1.81311
\(923\) 26211.9 0.934750
\(924\) 0 0
\(925\) 17322.8 0.615753
\(926\) −20888.1 −0.741282
\(927\) 0 0
\(928\) −15542.0 −0.549774
\(929\) 16773.7 0.592386 0.296193 0.955128i \(-0.404283\pi\)
0.296193 + 0.955128i \(0.404283\pi\)
\(930\) 0 0
\(931\) 3869.96 0.136233
\(932\) −5983.75 −0.210305
\(933\) 0 0
\(934\) 40765.5 1.42815
\(935\) 5487.50 0.191936
\(936\) 0 0
\(937\) −25023.9 −0.872459 −0.436229 0.899835i \(-0.643686\pi\)
−0.436229 + 0.899835i \(0.643686\pi\)
\(938\) −48203.5 −1.67793
\(939\) 0 0
\(940\) −1525.70 −0.0529393
\(941\) 14494.2 0.502122 0.251061 0.967971i \(-0.419220\pi\)
0.251061 + 0.967971i \(0.419220\pi\)
\(942\) 0 0
\(943\) 17796.8 0.614574
\(944\) −28139.0 −0.970177
\(945\) 0 0
\(946\) −48962.7 −1.68279
\(947\) −4203.16 −0.144228 −0.0721142 0.997396i \(-0.522975\pi\)
−0.0721142 + 0.997396i \(0.522975\pi\)
\(948\) 0 0
\(949\) −25043.0 −0.856619
\(950\) −12159.3 −0.415263
\(951\) 0 0
\(952\) 3790.16 0.129034
\(953\) −9623.53 −0.327111 −0.163555 0.986534i \(-0.552296\pi\)
−0.163555 + 0.986534i \(0.552296\pi\)
\(954\) 0 0
\(955\) 2500.43 0.0847246
\(956\) −9174.13 −0.310369
\(957\) 0 0
\(958\) 54572.2 1.84045
\(959\) −42150.1 −1.41929
\(960\) 0 0
\(961\) 1567.11 0.0526034
\(962\) 55869.4 1.87246
\(963\) 0 0
\(964\) 19332.6 0.645915
\(965\) 24456.5 0.815838
\(966\) 0 0
\(967\) 46366.1 1.54192 0.770959 0.636885i \(-0.219777\pi\)
0.770959 + 0.636885i \(0.219777\pi\)
\(968\) 6386.12 0.212043
\(969\) 0 0
\(970\) −32706.1 −1.08261
\(971\) 43540.7 1.43902 0.719509 0.694483i \(-0.244367\pi\)
0.719509 + 0.694483i \(0.244367\pi\)
\(972\) 0 0
\(973\) −7926.00 −0.261147
\(974\) −19149.3 −0.629963
\(975\) 0 0
\(976\) −3334.66 −0.109365
\(977\) −10563.4 −0.345910 −0.172955 0.984930i \(-0.555332\pi\)
−0.172955 + 0.984930i \(0.555332\pi\)
\(978\) 0 0
\(979\) 19674.3 0.642281
\(980\) 2310.20 0.0753027
\(981\) 0 0
\(982\) −16007.5 −0.520183
\(983\) −32907.4 −1.06774 −0.533868 0.845568i \(-0.679262\pi\)
−0.533868 + 0.845568i \(0.679262\pi\)
\(984\) 0 0
\(985\) −26141.6 −0.845625
\(986\) 5425.62 0.175240
\(987\) 0 0
\(988\) −13262.6 −0.427065
\(989\) 22530.0 0.724382
\(990\) 0 0
\(991\) 33988.3 1.08948 0.544740 0.838605i \(-0.316628\pi\)
0.544740 + 0.838605i \(0.316628\pi\)
\(992\) −29982.0 −0.959605
\(993\) 0 0
\(994\) −23989.8 −0.765504
\(995\) 27072.8 0.862578
\(996\) 0 0
\(997\) −17809.2 −0.565720 −0.282860 0.959161i \(-0.591283\pi\)
−0.282860 + 0.959161i \(0.591283\pi\)
\(998\) −26288.3 −0.833809
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.4.a.h.1.2 4
3.2 odd 2 153.4.a.i.1.3 yes 4
4.3 odd 2 2448.4.a.bo.1.2 4
12.11 even 2 2448.4.a.bs.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.4.a.h.1.2 4 1.1 even 1 trivial
153.4.a.i.1.3 yes 4 3.2 odd 2
2448.4.a.bo.1.2 4 4.3 odd 2
2448.4.a.bs.1.3 4 12.11 even 2