Properties

Label 153.4.a.f.1.3
Level $153$
Weight $4$
Character 153.1
Self dual yes
Analytic conductor $9.027$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [153,4,Mod(1,153)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(153, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("153.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 153.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.02729223088\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.5912.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 14x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(4.55528\) of defining polynomial
Character \(\chi\) \(=\) 153.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.55528 q^{2} -1.47057 q^{4} -8.47057 q^{5} +3.66117 q^{7} -24.1999 q^{8} +O(q^{10})\) \(q+2.55528 q^{2} -1.47057 q^{4} -8.47057 q^{5} +3.66117 q^{7} -24.1999 q^{8} -21.6446 q^{10} -61.4727 q^{11} +20.9881 q^{13} +9.35531 q^{14} -50.0729 q^{16} -17.0000 q^{17} -102.753 q^{19} +12.4566 q^{20} -157.080 q^{22} +27.1763 q^{23} -53.2495 q^{25} +53.6304 q^{26} -5.38401 q^{28} +145.246 q^{29} +72.0652 q^{31} +65.6493 q^{32} -43.4397 q^{34} -31.0122 q^{35} +371.278 q^{37} -262.561 q^{38} +204.987 q^{40} -348.178 q^{41} -246.686 q^{43} +90.3998 q^{44} +69.4428 q^{46} +269.231 q^{47} -329.596 q^{49} -136.067 q^{50} -30.8645 q^{52} +349.771 q^{53} +520.709 q^{55} -88.6001 q^{56} +371.144 q^{58} -78.9826 q^{59} -410.299 q^{61} +184.147 q^{62} +568.335 q^{64} -177.781 q^{65} -493.393 q^{67} +24.9997 q^{68} -79.2448 q^{70} -480.053 q^{71} +524.867 q^{73} +948.718 q^{74} +151.105 q^{76} -225.062 q^{77} -189.939 q^{79} +424.146 q^{80} -889.692 q^{82} +1044.00 q^{83} +144.000 q^{85} -630.350 q^{86} +1487.63 q^{88} -725.237 q^{89} +76.8411 q^{91} -39.9645 q^{92} +687.960 q^{94} +870.373 q^{95} -1752.23 q^{97} -842.208 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 5 q^{2} + 13 q^{4} - 8 q^{5} - 8 q^{7} - 33 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 5 q^{2} + 13 q^{4} - 8 q^{5} - 8 q^{7} - 33 q^{8} - 38 q^{10} - 34 q^{11} + 36 q^{13} + 104 q^{14} - 79 q^{16} - 51 q^{17} - 142 q^{19} + 126 q^{20} - 248 q^{22} - 110 q^{23} - 193 q^{25} - 154 q^{26} - 472 q^{28} - 90 q^{29} - 148 q^{31} + 151 q^{32} + 85 q^{34} - 416 q^{35} + 110 q^{37} - 80 q^{38} - 202 q^{40} - 720 q^{41} - 146 q^{43} + 192 q^{44} + 748 q^{46} - 500 q^{47} + 379 q^{49} + 385 q^{50} + 1218 q^{52} - 610 q^{53} + 430 q^{55} + 1368 q^{56} + 1006 q^{58} + 216 q^{59} - 18 q^{61} + 904 q^{62} + 377 q^{64} + 966 q^{65} - 1404 q^{67} - 221 q^{68} + 1472 q^{70} + 960 q^{71} - 794 q^{73} + 1874 q^{74} - 392 q^{76} - 48 q^{77} - 276 q^{79} + 1130 q^{80} + 382 q^{82} + 1552 q^{83} + 136 q^{85} - 16 q^{86} + 1724 q^{88} - 1394 q^{89} - 3968 q^{91} - 2244 q^{92} + 3960 q^{94} + 602 q^{95} + 402 q^{97} - 4109 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.55528 0.903426 0.451713 0.892163i \(-0.350813\pi\)
0.451713 + 0.892163i \(0.350813\pi\)
\(3\) 0 0
\(4\) −1.47057 −0.183821
\(5\) −8.47057 −0.757631 −0.378815 0.925472i \(-0.623668\pi\)
−0.378815 + 0.925472i \(0.623668\pi\)
\(6\) 0 0
\(7\) 3.66117 0.197685 0.0988424 0.995103i \(-0.468486\pi\)
0.0988424 + 0.995103i \(0.468486\pi\)
\(8\) −24.1999 −1.06949
\(9\) 0 0
\(10\) −21.6446 −0.684463
\(11\) −61.4727 −1.68497 −0.842487 0.538717i \(-0.818909\pi\)
−0.842487 + 0.538717i \(0.818909\pi\)
\(12\) 0 0
\(13\) 20.9881 0.447773 0.223887 0.974615i \(-0.428125\pi\)
0.223887 + 0.974615i \(0.428125\pi\)
\(14\) 9.35531 0.178594
\(15\) 0 0
\(16\) −50.0729 −0.782389
\(17\) −17.0000 −0.242536
\(18\) 0 0
\(19\) −102.753 −1.24069 −0.620344 0.784330i \(-0.713007\pi\)
−0.620344 + 0.784330i \(0.713007\pi\)
\(20\) 12.4566 0.139268
\(21\) 0 0
\(22\) −157.080 −1.52225
\(23\) 27.1763 0.246376 0.123188 0.992383i \(-0.460688\pi\)
0.123188 + 0.992383i \(0.460688\pi\)
\(24\) 0 0
\(25\) −53.2495 −0.425996
\(26\) 53.6304 0.404530
\(27\) 0 0
\(28\) −5.38401 −0.0363386
\(29\) 145.246 0.930053 0.465026 0.885297i \(-0.346045\pi\)
0.465026 + 0.885297i \(0.346045\pi\)
\(30\) 0 0
\(31\) 72.0652 0.417526 0.208763 0.977966i \(-0.433056\pi\)
0.208763 + 0.977966i \(0.433056\pi\)
\(32\) 65.6493 0.362664
\(33\) 0 0
\(34\) −43.4397 −0.219113
\(35\) −31.0122 −0.149772
\(36\) 0 0
\(37\) 371.278 1.64967 0.824835 0.565374i \(-0.191268\pi\)
0.824835 + 0.565374i \(0.191268\pi\)
\(38\) −262.561 −1.12087
\(39\) 0 0
\(40\) 204.987 0.810282
\(41\) −348.178 −1.32625 −0.663126 0.748508i \(-0.730771\pi\)
−0.663126 + 0.748508i \(0.730771\pi\)
\(42\) 0 0
\(43\) −246.686 −0.874865 −0.437433 0.899251i \(-0.644112\pi\)
−0.437433 + 0.899251i \(0.644112\pi\)
\(44\) 90.3998 0.309734
\(45\) 0 0
\(46\) 69.4428 0.222582
\(47\) 269.231 0.835561 0.417781 0.908548i \(-0.362808\pi\)
0.417781 + 0.908548i \(0.362808\pi\)
\(48\) 0 0
\(49\) −329.596 −0.960921
\(50\) −136.067 −0.384856
\(51\) 0 0
\(52\) −30.8645 −0.0823102
\(53\) 349.771 0.906506 0.453253 0.891382i \(-0.350263\pi\)
0.453253 + 0.891382i \(0.350263\pi\)
\(54\) 0 0
\(55\) 520.709 1.27659
\(56\) −88.6001 −0.211423
\(57\) 0 0
\(58\) 371.144 0.840234
\(59\) −78.9826 −0.174282 −0.0871412 0.996196i \(-0.527773\pi\)
−0.0871412 + 0.996196i \(0.527773\pi\)
\(60\) 0 0
\(61\) −410.299 −0.861204 −0.430602 0.902542i \(-0.641699\pi\)
−0.430602 + 0.902542i \(0.641699\pi\)
\(62\) 184.147 0.377204
\(63\) 0 0
\(64\) 568.335 1.11003
\(65\) −177.781 −0.339247
\(66\) 0 0
\(67\) −493.393 −0.899664 −0.449832 0.893113i \(-0.648516\pi\)
−0.449832 + 0.893113i \(0.648516\pi\)
\(68\) 24.9997 0.0445832
\(69\) 0 0
\(70\) −79.2448 −0.135308
\(71\) −480.053 −0.802420 −0.401210 0.915986i \(-0.631410\pi\)
−0.401210 + 0.915986i \(0.631410\pi\)
\(72\) 0 0
\(73\) 524.867 0.841521 0.420760 0.907172i \(-0.361763\pi\)
0.420760 + 0.907172i \(0.361763\pi\)
\(74\) 948.718 1.49036
\(75\) 0 0
\(76\) 151.105 0.228065
\(77\) −225.062 −0.333094
\(78\) 0 0
\(79\) −189.939 −0.270505 −0.135252 0.990811i \(-0.543184\pi\)
−0.135252 + 0.990811i \(0.543184\pi\)
\(80\) 424.146 0.592762
\(81\) 0 0
\(82\) −889.692 −1.19817
\(83\) 1044.00 1.38065 0.690323 0.723501i \(-0.257468\pi\)
0.690323 + 0.723501i \(0.257468\pi\)
\(84\) 0 0
\(85\) 144.000 0.183752
\(86\) −630.350 −0.790376
\(87\) 0 0
\(88\) 1487.63 1.80207
\(89\) −725.237 −0.863764 −0.431882 0.901930i \(-0.642150\pi\)
−0.431882 + 0.901930i \(0.642150\pi\)
\(90\) 0 0
\(91\) 76.8411 0.0885180
\(92\) −39.9645 −0.0452890
\(93\) 0 0
\(94\) 687.960 0.754868
\(95\) 870.373 0.939984
\(96\) 0 0
\(97\) −1752.23 −1.83415 −0.917073 0.398720i \(-0.869455\pi\)
−0.917073 + 0.398720i \(0.869455\pi\)
\(98\) −842.208 −0.868121
\(99\) 0 0
\(100\) 78.3070 0.0783070
\(101\) −1052.52 −1.03693 −0.518463 0.855100i \(-0.673496\pi\)
−0.518463 + 0.855100i \(0.673496\pi\)
\(102\) 0 0
\(103\) −862.054 −0.824667 −0.412333 0.911033i \(-0.635286\pi\)
−0.412333 + 0.911033i \(0.635286\pi\)
\(104\) −507.910 −0.478891
\(105\) 0 0
\(106\) 893.762 0.818961
\(107\) 1503.32 1.35824 0.679120 0.734027i \(-0.262361\pi\)
0.679120 + 0.734027i \(0.262361\pi\)
\(108\) 0 0
\(109\) 1164.76 1.02352 0.511762 0.859127i \(-0.328993\pi\)
0.511762 + 0.859127i \(0.328993\pi\)
\(110\) 1330.55 1.15330
\(111\) 0 0
\(112\) −183.325 −0.154666
\(113\) −940.942 −0.783331 −0.391665 0.920108i \(-0.628101\pi\)
−0.391665 + 0.920108i \(0.628101\pi\)
\(114\) 0 0
\(115\) −230.198 −0.186662
\(116\) −213.594 −0.170963
\(117\) 0 0
\(118\) −201.822 −0.157451
\(119\) −62.2399 −0.0479456
\(120\) 0 0
\(121\) 2447.89 1.83914
\(122\) −1048.43 −0.778034
\(123\) 0 0
\(124\) −105.977 −0.0767500
\(125\) 1509.87 1.08038
\(126\) 0 0
\(127\) −2554.20 −1.78464 −0.892319 0.451405i \(-0.850923\pi\)
−0.892319 + 0.451405i \(0.850923\pi\)
\(128\) 927.058 0.640165
\(129\) 0 0
\(130\) −454.280 −0.306485
\(131\) −100.915 −0.0673055 −0.0336527 0.999434i \(-0.510714\pi\)
−0.0336527 + 0.999434i \(0.510714\pi\)
\(132\) 0 0
\(133\) −376.195 −0.245265
\(134\) −1260.75 −0.812780
\(135\) 0 0
\(136\) 411.398 0.259391
\(137\) −1745.14 −1.08830 −0.544150 0.838988i \(-0.683148\pi\)
−0.544150 + 0.838988i \(0.683148\pi\)
\(138\) 0 0
\(139\) −2022.87 −1.23437 −0.617186 0.786817i \(-0.711727\pi\)
−0.617186 + 0.786817i \(0.711727\pi\)
\(140\) 45.6056 0.0275313
\(141\) 0 0
\(142\) −1226.67 −0.724927
\(143\) −1290.20 −0.754487
\(144\) 0 0
\(145\) −1230.32 −0.704636
\(146\) 1341.18 0.760252
\(147\) 0 0
\(148\) −545.990 −0.303244
\(149\) −2319.95 −1.27555 −0.637777 0.770221i \(-0.720146\pi\)
−0.637777 + 0.770221i \(0.720146\pi\)
\(150\) 0 0
\(151\) −3332.68 −1.79609 −0.898044 0.439905i \(-0.855012\pi\)
−0.898044 + 0.439905i \(0.855012\pi\)
\(152\) 2486.61 1.32691
\(153\) 0 0
\(154\) −575.096 −0.300926
\(155\) −610.434 −0.316330
\(156\) 0 0
\(157\) 1472.78 0.748664 0.374332 0.927295i \(-0.377872\pi\)
0.374332 + 0.927295i \(0.377872\pi\)
\(158\) −485.348 −0.244381
\(159\) 0 0
\(160\) −556.087 −0.274766
\(161\) 99.4970 0.0487047
\(162\) 0 0
\(163\) 761.196 0.365776 0.182888 0.983134i \(-0.441455\pi\)
0.182888 + 0.983134i \(0.441455\pi\)
\(164\) 512.020 0.243793
\(165\) 0 0
\(166\) 2667.70 1.24731
\(167\) −1382.94 −0.640811 −0.320406 0.947280i \(-0.603819\pi\)
−0.320406 + 0.947280i \(0.603819\pi\)
\(168\) 0 0
\(169\) −1756.50 −0.799499
\(170\) 367.959 0.166007
\(171\) 0 0
\(172\) 362.768 0.160819
\(173\) 3064.45 1.34674 0.673370 0.739305i \(-0.264846\pi\)
0.673370 + 0.739305i \(0.264846\pi\)
\(174\) 0 0
\(175\) −194.956 −0.0842129
\(176\) 3078.11 1.31830
\(177\) 0 0
\(178\) −1853.18 −0.780347
\(179\) −3002.33 −1.25366 −0.626830 0.779156i \(-0.715648\pi\)
−0.626830 + 0.779156i \(0.715648\pi\)
\(180\) 0 0
\(181\) 2711.15 1.11336 0.556680 0.830727i \(-0.312075\pi\)
0.556680 + 0.830727i \(0.312075\pi\)
\(182\) 196.350 0.0799695
\(183\) 0 0
\(184\) −657.663 −0.263498
\(185\) −3144.94 −1.24984
\(186\) 0 0
\(187\) 1045.04 0.408666
\(188\) −395.923 −0.153594
\(189\) 0 0
\(190\) 2224.04 0.849206
\(191\) −1310.96 −0.496637 −0.248318 0.968678i \(-0.579878\pi\)
−0.248318 + 0.968678i \(0.579878\pi\)
\(192\) 0 0
\(193\) 4404.35 1.64265 0.821327 0.570458i \(-0.193234\pi\)
0.821327 + 0.570458i \(0.193234\pi\)
\(194\) −4477.43 −1.65702
\(195\) 0 0
\(196\) 484.693 0.176637
\(197\) 495.157 0.179078 0.0895392 0.995983i \(-0.471461\pi\)
0.0895392 + 0.995983i \(0.471461\pi\)
\(198\) 0 0
\(199\) 4019.17 1.43171 0.715857 0.698246i \(-0.246036\pi\)
0.715857 + 0.698246i \(0.246036\pi\)
\(200\) 1288.63 0.455600
\(201\) 0 0
\(202\) −2689.47 −0.936786
\(203\) 531.771 0.183857
\(204\) 0 0
\(205\) 2949.27 1.00481
\(206\) −2202.78 −0.745026
\(207\) 0 0
\(208\) −1050.94 −0.350333
\(209\) 6316.48 2.09053
\(210\) 0 0
\(211\) −3727.51 −1.21617 −0.608086 0.793871i \(-0.708062\pi\)
−0.608086 + 0.793871i \(0.708062\pi\)
\(212\) −514.363 −0.166635
\(213\) 0 0
\(214\) 3841.40 1.22707
\(215\) 2089.57 0.662825
\(216\) 0 0
\(217\) 263.843 0.0825385
\(218\) 2976.29 0.924679
\(219\) 0 0
\(220\) −765.738 −0.234664
\(221\) −356.798 −0.108601
\(222\) 0 0
\(223\) 5492.27 1.64928 0.824641 0.565657i \(-0.191377\pi\)
0.824641 + 0.565657i \(0.191377\pi\)
\(224\) 240.353 0.0716933
\(225\) 0 0
\(226\) −2404.37 −0.707682
\(227\) 3392.42 0.991907 0.495954 0.868349i \(-0.334819\pi\)
0.495954 + 0.868349i \(0.334819\pi\)
\(228\) 0 0
\(229\) 2592.52 0.748116 0.374058 0.927405i \(-0.377966\pi\)
0.374058 + 0.927405i \(0.377966\pi\)
\(230\) −588.220 −0.168635
\(231\) 0 0
\(232\) −3514.94 −0.994687
\(233\) 5964.88 1.67713 0.838567 0.544798i \(-0.183394\pi\)
0.838567 + 0.544798i \(0.183394\pi\)
\(234\) 0 0
\(235\) −2280.54 −0.633047
\(236\) 116.149 0.0320368
\(237\) 0 0
\(238\) −159.040 −0.0433153
\(239\) −4061.05 −1.09911 −0.549556 0.835457i \(-0.685203\pi\)
−0.549556 + 0.835457i \(0.685203\pi\)
\(240\) 0 0
\(241\) 2719.55 0.726894 0.363447 0.931615i \(-0.381600\pi\)
0.363447 + 0.931615i \(0.381600\pi\)
\(242\) 6255.04 1.66153
\(243\) 0 0
\(244\) 603.373 0.158307
\(245\) 2791.86 0.728023
\(246\) 0 0
\(247\) −2156.58 −0.555547
\(248\) −1743.97 −0.446542
\(249\) 0 0
\(250\) 3858.14 0.976042
\(251\) 1647.74 0.414360 0.207180 0.978303i \(-0.433571\pi\)
0.207180 + 0.978303i \(0.433571\pi\)
\(252\) 0 0
\(253\) −1670.60 −0.415137
\(254\) −6526.70 −1.61229
\(255\) 0 0
\(256\) −2177.79 −0.531687
\(257\) 1695.48 0.411523 0.205761 0.978602i \(-0.434033\pi\)
0.205761 + 0.978602i \(0.434033\pi\)
\(258\) 0 0
\(259\) 1359.31 0.326115
\(260\) 261.440 0.0623607
\(261\) 0 0
\(262\) −257.867 −0.0608055
\(263\) −5598.45 −1.31261 −0.656303 0.754498i \(-0.727881\pi\)
−0.656303 + 0.754498i \(0.727881\pi\)
\(264\) 0 0
\(265\) −2962.76 −0.686797
\(266\) −961.283 −0.221579
\(267\) 0 0
\(268\) 725.568 0.165377
\(269\) −4878.07 −1.10565 −0.552827 0.833296i \(-0.686451\pi\)
−0.552827 + 0.833296i \(0.686451\pi\)
\(270\) 0 0
\(271\) −1242.71 −0.278559 −0.139279 0.990253i \(-0.544479\pi\)
−0.139279 + 0.990253i \(0.544479\pi\)
\(272\) 851.239 0.189757
\(273\) 0 0
\(274\) −4459.30 −0.983198
\(275\) 3273.39 0.717792
\(276\) 0 0
\(277\) 2767.97 0.600402 0.300201 0.953876i \(-0.402946\pi\)
0.300201 + 0.953876i \(0.402946\pi\)
\(278\) −5168.99 −1.11516
\(279\) 0 0
\(280\) 750.493 0.160180
\(281\) 7470.07 1.58586 0.792931 0.609311i \(-0.208554\pi\)
0.792931 + 0.609311i \(0.208554\pi\)
\(282\) 0 0
\(283\) 3599.57 0.756087 0.378043 0.925788i \(-0.376597\pi\)
0.378043 + 0.925788i \(0.376597\pi\)
\(284\) 705.951 0.147502
\(285\) 0 0
\(286\) −3296.81 −0.681623
\(287\) −1274.74 −0.262180
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) −3143.80 −0.636587
\(291\) 0 0
\(292\) −771.853 −0.154689
\(293\) 5659.34 1.12840 0.564201 0.825637i \(-0.309184\pi\)
0.564201 + 0.825637i \(0.309184\pi\)
\(294\) 0 0
\(295\) 669.028 0.132042
\(296\) −8984.90 −1.76431
\(297\) 0 0
\(298\) −5928.11 −1.15237
\(299\) 570.378 0.110320
\(300\) 0 0
\(301\) −903.159 −0.172948
\(302\) −8515.91 −1.62263
\(303\) 0 0
\(304\) 5145.12 0.970701
\(305\) 3475.47 0.652474
\(306\) 0 0
\(307\) −2164.87 −0.402461 −0.201231 0.979544i \(-0.564494\pi\)
−0.201231 + 0.979544i \(0.564494\pi\)
\(308\) 330.969 0.0612297
\(309\) 0 0
\(310\) −1559.83 −0.285781
\(311\) −6424.23 −1.17133 −0.585666 0.810552i \(-0.699167\pi\)
−0.585666 + 0.810552i \(0.699167\pi\)
\(312\) 0 0
\(313\) −6872.79 −1.24113 −0.620564 0.784156i \(-0.713096\pi\)
−0.620564 + 0.784156i \(0.713096\pi\)
\(314\) 3763.35 0.676363
\(315\) 0 0
\(316\) 279.319 0.0497244
\(317\) −9341.77 −1.65516 −0.827581 0.561346i \(-0.810284\pi\)
−0.827581 + 0.561346i \(0.810284\pi\)
\(318\) 0 0
\(319\) −8928.67 −1.56711
\(320\) −4814.12 −0.840992
\(321\) 0 0
\(322\) 254.242 0.0440011
\(323\) 1746.80 0.300911
\(324\) 0 0
\(325\) −1117.61 −0.190750
\(326\) 1945.07 0.330452
\(327\) 0 0
\(328\) 8425.89 1.41842
\(329\) 985.702 0.165178
\(330\) 0 0
\(331\) 4546.85 0.755038 0.377519 0.926002i \(-0.376777\pi\)
0.377519 + 0.926002i \(0.376777\pi\)
\(332\) −1535.27 −0.253792
\(333\) 0 0
\(334\) −3533.80 −0.578926
\(335\) 4179.32 0.681613
\(336\) 0 0
\(337\) −2205.83 −0.356555 −0.178277 0.983980i \(-0.557052\pi\)
−0.178277 + 0.983980i \(0.557052\pi\)
\(338\) −4488.34 −0.722288
\(339\) 0 0
\(340\) −211.761 −0.0337776
\(341\) −4430.05 −0.703520
\(342\) 0 0
\(343\) −2462.49 −0.387644
\(344\) 5969.77 0.935664
\(345\) 0 0
\(346\) 7830.52 1.21668
\(347\) −1772.21 −0.274170 −0.137085 0.990559i \(-0.543773\pi\)
−0.137085 + 0.990559i \(0.543773\pi\)
\(348\) 0 0
\(349\) 1757.53 0.269565 0.134783 0.990875i \(-0.456966\pi\)
0.134783 + 0.990875i \(0.456966\pi\)
\(350\) −498.165 −0.0760801
\(351\) 0 0
\(352\) −4035.64 −0.611080
\(353\) 1252.22 0.188808 0.0944039 0.995534i \(-0.469905\pi\)
0.0944039 + 0.995534i \(0.469905\pi\)
\(354\) 0 0
\(355\) 4066.32 0.607938
\(356\) 1066.51 0.158778
\(357\) 0 0
\(358\) −7671.79 −1.13259
\(359\) 7383.80 1.08552 0.542761 0.839887i \(-0.317379\pi\)
0.542761 + 0.839887i \(0.317379\pi\)
\(360\) 0 0
\(361\) 3699.11 0.539307
\(362\) 6927.74 1.00584
\(363\) 0 0
\(364\) −113.000 −0.0162715
\(365\) −4445.92 −0.637562
\(366\) 0 0
\(367\) −4809.91 −0.684128 −0.342064 0.939677i \(-0.611126\pi\)
−0.342064 + 0.939677i \(0.611126\pi\)
\(368\) −1360.79 −0.192762
\(369\) 0 0
\(370\) −8036.18 −1.12914
\(371\) 1280.57 0.179202
\(372\) 0 0
\(373\) 10359.7 1.43808 0.719042 0.694967i \(-0.244581\pi\)
0.719042 + 0.694967i \(0.244581\pi\)
\(374\) 2670.35 0.369200
\(375\) 0 0
\(376\) −6515.37 −0.893629
\(377\) 3048.44 0.416453
\(378\) 0 0
\(379\) 1333.12 0.180680 0.0903401 0.995911i \(-0.471205\pi\)
0.0903401 + 0.995911i \(0.471205\pi\)
\(380\) −1279.94 −0.172789
\(381\) 0 0
\(382\) −3349.86 −0.448675
\(383\) 8185.00 1.09199 0.545997 0.837787i \(-0.316151\pi\)
0.545997 + 0.837787i \(0.316151\pi\)
\(384\) 0 0
\(385\) 1906.40 0.252362
\(386\) 11254.3 1.48402
\(387\) 0 0
\(388\) 2576.78 0.337155
\(389\) −929.154 −0.121105 −0.0605527 0.998165i \(-0.519286\pi\)
−0.0605527 + 0.998165i \(0.519286\pi\)
\(390\) 0 0
\(391\) −461.996 −0.0597549
\(392\) 7976.19 1.02770
\(393\) 0 0
\(394\) 1265.26 0.161784
\(395\) 1608.90 0.204943
\(396\) 0 0
\(397\) 7497.21 0.947794 0.473897 0.880580i \(-0.342847\pi\)
0.473897 + 0.880580i \(0.342847\pi\)
\(398\) 10270.1 1.29345
\(399\) 0 0
\(400\) 2666.35 0.333294
\(401\) 3645.49 0.453982 0.226991 0.973897i \(-0.427111\pi\)
0.226991 + 0.973897i \(0.427111\pi\)
\(402\) 0 0
\(403\) 1512.51 0.186957
\(404\) 1547.80 0.190609
\(405\) 0 0
\(406\) 1358.82 0.166101
\(407\) −22823.5 −2.77965
\(408\) 0 0
\(409\) −13585.3 −1.64242 −0.821210 0.570625i \(-0.806701\pi\)
−0.821210 + 0.570625i \(0.806701\pi\)
\(410\) 7536.19 0.907771
\(411\) 0 0
\(412\) 1267.71 0.151591
\(413\) −289.169 −0.0344530
\(414\) 0 0
\(415\) −8843.25 −1.04602
\(416\) 1377.85 0.162392
\(417\) 0 0
\(418\) 16140.4 1.88864
\(419\) −12991.8 −1.51477 −0.757386 0.652967i \(-0.773524\pi\)
−0.757386 + 0.652967i \(0.773524\pi\)
\(420\) 0 0
\(421\) 3036.69 0.351542 0.175771 0.984431i \(-0.443758\pi\)
0.175771 + 0.984431i \(0.443758\pi\)
\(422\) −9524.81 −1.09872
\(423\) 0 0
\(424\) −8464.44 −0.969503
\(425\) 905.241 0.103319
\(426\) 0 0
\(427\) −1502.18 −0.170247
\(428\) −2210.74 −0.249673
\(429\) 0 0
\(430\) 5339.42 0.598813
\(431\) −1911.68 −0.213648 −0.106824 0.994278i \(-0.534068\pi\)
−0.106824 + 0.994278i \(0.534068\pi\)
\(432\) 0 0
\(433\) 6112.37 0.678387 0.339194 0.940717i \(-0.389846\pi\)
0.339194 + 0.940717i \(0.389846\pi\)
\(434\) 674.192 0.0745675
\(435\) 0 0
\(436\) −1712.87 −0.188145
\(437\) −2792.43 −0.305675
\(438\) 0 0
\(439\) 13062.6 1.42014 0.710072 0.704129i \(-0.248662\pi\)
0.710072 + 0.704129i \(0.248662\pi\)
\(440\) −12601.1 −1.36530
\(441\) 0 0
\(442\) −911.717 −0.0981130
\(443\) −10276.7 −1.10216 −0.551082 0.834451i \(-0.685785\pi\)
−0.551082 + 0.834451i \(0.685785\pi\)
\(444\) 0 0
\(445\) 6143.17 0.654414
\(446\) 14034.3 1.49000
\(447\) 0 0
\(448\) 2080.77 0.219436
\(449\) 6486.32 0.681756 0.340878 0.940108i \(-0.389276\pi\)
0.340878 + 0.940108i \(0.389276\pi\)
\(450\) 0 0
\(451\) 21403.5 2.23470
\(452\) 1383.72 0.143993
\(453\) 0 0
\(454\) 8668.57 0.896115
\(455\) −650.888 −0.0670640
\(456\) 0 0
\(457\) −9213.29 −0.943063 −0.471531 0.881849i \(-0.656299\pi\)
−0.471531 + 0.881849i \(0.656299\pi\)
\(458\) 6624.61 0.675868
\(459\) 0 0
\(460\) 338.522 0.0343124
\(461\) −13304.1 −1.34410 −0.672052 0.740504i \(-0.734587\pi\)
−0.672052 + 0.740504i \(0.734587\pi\)
\(462\) 0 0
\(463\) −17035.1 −1.70991 −0.854955 0.518703i \(-0.826415\pi\)
−0.854955 + 0.518703i \(0.826415\pi\)
\(464\) −7272.89 −0.727663
\(465\) 0 0
\(466\) 15241.9 1.51517
\(467\) −16651.7 −1.65000 −0.824999 0.565134i \(-0.808824\pi\)
−0.824999 + 0.565134i \(0.808824\pi\)
\(468\) 0 0
\(469\) −1806.40 −0.177850
\(470\) −5827.41 −0.571911
\(471\) 0 0
\(472\) 1911.37 0.186394
\(473\) 15164.4 1.47413
\(474\) 0 0
\(475\) 5471.52 0.528528
\(476\) 91.5281 0.00881341
\(477\) 0 0
\(478\) −10377.1 −0.992966
\(479\) 8278.34 0.789660 0.394830 0.918754i \(-0.370804\pi\)
0.394830 + 0.918754i \(0.370804\pi\)
\(480\) 0 0
\(481\) 7792.43 0.738678
\(482\) 6949.19 0.656695
\(483\) 0 0
\(484\) −3599.79 −0.338072
\(485\) 14842.4 1.38960
\(486\) 0 0
\(487\) −5597.10 −0.520799 −0.260399 0.965501i \(-0.583854\pi\)
−0.260399 + 0.965501i \(0.583854\pi\)
\(488\) 9929.20 0.921053
\(489\) 0 0
\(490\) 7133.98 0.657715
\(491\) 4563.12 0.419410 0.209705 0.977765i \(-0.432750\pi\)
0.209705 + 0.977765i \(0.432750\pi\)
\(492\) 0 0
\(493\) −2469.18 −0.225571
\(494\) −5510.67 −0.501896
\(495\) 0 0
\(496\) −3608.51 −0.326668
\(497\) −1757.56 −0.158626
\(498\) 0 0
\(499\) −15257.5 −1.36878 −0.684388 0.729118i \(-0.739930\pi\)
−0.684388 + 0.729118i \(0.739930\pi\)
\(500\) −2220.37 −0.198596
\(501\) 0 0
\(502\) 4210.43 0.374344
\(503\) −4407.84 −0.390727 −0.195364 0.980731i \(-0.562589\pi\)
−0.195364 + 0.980731i \(0.562589\pi\)
\(504\) 0 0
\(505\) 8915.43 0.785607
\(506\) −4268.84 −0.375045
\(507\) 0 0
\(508\) 3756.13 0.328054
\(509\) 7762.09 0.675931 0.337965 0.941159i \(-0.390261\pi\)
0.337965 + 0.941159i \(0.390261\pi\)
\(510\) 0 0
\(511\) 1921.63 0.166356
\(512\) −12981.3 −1.12051
\(513\) 0 0
\(514\) 4332.42 0.371780
\(515\) 7302.08 0.624793
\(516\) 0 0
\(517\) −16550.4 −1.40790
\(518\) 3473.42 0.294621
\(519\) 0 0
\(520\) 4302.29 0.362823
\(521\) 4435.23 0.372957 0.186479 0.982459i \(-0.440292\pi\)
0.186479 + 0.982459i \(0.440292\pi\)
\(522\) 0 0
\(523\) −8007.36 −0.669479 −0.334739 0.942311i \(-0.608648\pi\)
−0.334739 + 0.942311i \(0.608648\pi\)
\(524\) 148.403 0.0123722
\(525\) 0 0
\(526\) −14305.6 −1.18584
\(527\) −1225.11 −0.101265
\(528\) 0 0
\(529\) −11428.5 −0.939299
\(530\) −7570.68 −0.620470
\(531\) 0 0
\(532\) 553.221 0.0450849
\(533\) −7307.61 −0.593860
\(534\) 0 0
\(535\) −12734.0 −1.02904
\(536\) 11940.1 0.962186
\(537\) 0 0
\(538\) −12464.8 −0.998878
\(539\) 20261.1 1.61913
\(540\) 0 0
\(541\) 4747.43 0.377279 0.188639 0.982046i \(-0.439592\pi\)
0.188639 + 0.982046i \(0.439592\pi\)
\(542\) −3175.47 −0.251657
\(543\) 0 0
\(544\) −1116.04 −0.0879591
\(545\) −9866.21 −0.775454
\(546\) 0 0
\(547\) −19924.5 −1.55742 −0.778712 0.627381i \(-0.784127\pi\)
−0.778712 + 0.627381i \(0.784127\pi\)
\(548\) 2566.34 0.200052
\(549\) 0 0
\(550\) 8364.41 0.648472
\(551\) −14924.4 −1.15391
\(552\) 0 0
\(553\) −695.401 −0.0534746
\(554\) 7072.93 0.542419
\(555\) 0 0
\(556\) 2974.77 0.226904
\(557\) −502.841 −0.0382515 −0.0191257 0.999817i \(-0.506088\pi\)
−0.0191257 + 0.999817i \(0.506088\pi\)
\(558\) 0 0
\(559\) −5177.47 −0.391741
\(560\) 1552.87 0.117180
\(561\) 0 0
\(562\) 19088.1 1.43271
\(563\) −3139.90 −0.235046 −0.117523 0.993070i \(-0.537495\pi\)
−0.117523 + 0.993070i \(0.537495\pi\)
\(564\) 0 0
\(565\) 7970.31 0.593475
\(566\) 9197.90 0.683068
\(567\) 0 0
\(568\) 11617.2 0.858184
\(569\) −1954.85 −0.144027 −0.0720135 0.997404i \(-0.522942\pi\)
−0.0720135 + 0.997404i \(0.522942\pi\)
\(570\) 0 0
\(571\) 5443.14 0.398928 0.199464 0.979905i \(-0.436080\pi\)
0.199464 + 0.979905i \(0.436080\pi\)
\(572\) 1897.32 0.138691
\(573\) 0 0
\(574\) −3257.32 −0.236860
\(575\) −1447.12 −0.104955
\(576\) 0 0
\(577\) 17676.5 1.27536 0.637679 0.770302i \(-0.279895\pi\)
0.637679 + 0.770302i \(0.279895\pi\)
\(578\) 738.475 0.0531427
\(579\) 0 0
\(580\) 1809.27 0.129527
\(581\) 3822.26 0.272933
\(582\) 0 0
\(583\) −21501.4 −1.52744
\(584\) −12701.7 −0.900002
\(585\) 0 0
\(586\) 14461.2 1.01943
\(587\) −4972.44 −0.349633 −0.174816 0.984601i \(-0.555933\pi\)
−0.174816 + 0.984601i \(0.555933\pi\)
\(588\) 0 0
\(589\) −7404.90 −0.518019
\(590\) 1709.55 0.119290
\(591\) 0 0
\(592\) −18591.0 −1.29068
\(593\) −5167.46 −0.357845 −0.178922 0.983863i \(-0.557261\pi\)
−0.178922 + 0.983863i \(0.557261\pi\)
\(594\) 0 0
\(595\) 527.208 0.0363251
\(596\) 3411.64 0.234474
\(597\) 0 0
\(598\) 1457.47 0.0996664
\(599\) 19327.9 1.31839 0.659196 0.751972i \(-0.270897\pi\)
0.659196 + 0.751972i \(0.270897\pi\)
\(600\) 0 0
\(601\) −21546.2 −1.46238 −0.731189 0.682175i \(-0.761034\pi\)
−0.731189 + 0.682175i \(0.761034\pi\)
\(602\) −2307.82 −0.156245
\(603\) 0 0
\(604\) 4900.93 0.330159
\(605\) −20735.0 −1.39339
\(606\) 0 0
\(607\) 18276.7 1.22212 0.611061 0.791583i \(-0.290743\pi\)
0.611061 + 0.791583i \(0.290743\pi\)
\(608\) −6745.64 −0.449954
\(609\) 0 0
\(610\) 8880.77 0.589462
\(611\) 5650.65 0.374142
\(612\) 0 0
\(613\) 1261.91 0.0831456 0.0415728 0.999135i \(-0.486763\pi\)
0.0415728 + 0.999135i \(0.486763\pi\)
\(614\) −5531.84 −0.363594
\(615\) 0 0
\(616\) 5446.49 0.356242
\(617\) 7208.71 0.470359 0.235180 0.971952i \(-0.424432\pi\)
0.235180 + 0.971952i \(0.424432\pi\)
\(618\) 0 0
\(619\) 2789.48 0.181129 0.0905643 0.995891i \(-0.471133\pi\)
0.0905643 + 0.995891i \(0.471133\pi\)
\(620\) 897.685 0.0581482
\(621\) 0 0
\(622\) −16415.7 −1.05821
\(623\) −2655.22 −0.170753
\(624\) 0 0
\(625\) −6133.31 −0.392532
\(626\) −17561.9 −1.12127
\(627\) 0 0
\(628\) −2165.82 −0.137620
\(629\) −6311.73 −0.400104
\(630\) 0 0
\(631\) 22237.3 1.40294 0.701469 0.712700i \(-0.252528\pi\)
0.701469 + 0.712700i \(0.252528\pi\)
\(632\) 4596.52 0.289303
\(633\) 0 0
\(634\) −23870.8 −1.49532
\(635\) 21635.6 1.35210
\(636\) 0 0
\(637\) −6917.59 −0.430275
\(638\) −22815.2 −1.41577
\(639\) 0 0
\(640\) −7852.71 −0.485009
\(641\) −17554.3 −1.08168 −0.540838 0.841127i \(-0.681893\pi\)
−0.540838 + 0.841127i \(0.681893\pi\)
\(642\) 0 0
\(643\) −8076.29 −0.495331 −0.247666 0.968846i \(-0.579663\pi\)
−0.247666 + 0.968846i \(0.579663\pi\)
\(644\) −146.317 −0.00895295
\(645\) 0 0
\(646\) 4463.54 0.271851
\(647\) −17091.8 −1.03856 −0.519280 0.854604i \(-0.673800\pi\)
−0.519280 + 0.854604i \(0.673800\pi\)
\(648\) 0 0
\(649\) 4855.27 0.293661
\(650\) −2855.79 −0.172328
\(651\) 0 0
\(652\) −1119.39 −0.0672373
\(653\) 1032.07 0.0618501 0.0309250 0.999522i \(-0.490155\pi\)
0.0309250 + 0.999522i \(0.490155\pi\)
\(654\) 0 0
\(655\) 854.811 0.0509927
\(656\) 17434.3 1.03764
\(657\) 0 0
\(658\) 2518.74 0.149226
\(659\) −20405.8 −1.20622 −0.603109 0.797659i \(-0.706071\pi\)
−0.603109 + 0.797659i \(0.706071\pi\)
\(660\) 0 0
\(661\) 15338.8 0.902588 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(662\) 11618.5 0.682122
\(663\) 0 0
\(664\) −25264.7 −1.47659
\(665\) 3186.59 0.185820
\(666\) 0 0
\(667\) 3947.24 0.229142
\(668\) 2033.71 0.117795
\(669\) 0 0
\(670\) 10679.3 0.615787
\(671\) 25222.2 1.45111
\(672\) 0 0
\(673\) −19367.8 −1.10932 −0.554662 0.832076i \(-0.687153\pi\)
−0.554662 + 0.832076i \(0.687153\pi\)
\(674\) −5636.49 −0.322121
\(675\) 0 0
\(676\) 2583.05 0.146965
\(677\) 16111.2 0.914629 0.457314 0.889305i \(-0.348811\pi\)
0.457314 + 0.889305i \(0.348811\pi\)
\(678\) 0 0
\(679\) −6415.22 −0.362583
\(680\) −3484.78 −0.196522
\(681\) 0 0
\(682\) −11320.0 −0.635579
\(683\) 41.7084 0.00233664 0.00116832 0.999999i \(-0.499628\pi\)
0.00116832 + 0.999999i \(0.499628\pi\)
\(684\) 0 0
\(685\) 14782.3 0.824529
\(686\) −6292.34 −0.350208
\(687\) 0 0
\(688\) 12352.3 0.684485
\(689\) 7341.04 0.405909
\(690\) 0 0
\(691\) 5712.73 0.314504 0.157252 0.987559i \(-0.449736\pi\)
0.157252 + 0.987559i \(0.449736\pi\)
\(692\) −4506.49 −0.247559
\(693\) 0 0
\(694\) −4528.48 −0.247692
\(695\) 17134.9 0.935198
\(696\) 0 0
\(697\) 5919.03 0.321663
\(698\) 4490.96 0.243532
\(699\) 0 0
\(700\) 286.695 0.0154801
\(701\) −18596.0 −1.00194 −0.500971 0.865464i \(-0.667024\pi\)
−0.500971 + 0.865464i \(0.667024\pi\)
\(702\) 0 0
\(703\) −38149.8 −2.04673
\(704\) −34937.1 −1.87037
\(705\) 0 0
\(706\) 3199.78 0.170574
\(707\) −3853.45 −0.204984
\(708\) 0 0
\(709\) 13428.3 0.711297 0.355649 0.934620i \(-0.384260\pi\)
0.355649 + 0.934620i \(0.384260\pi\)
\(710\) 10390.6 0.549227
\(711\) 0 0
\(712\) 17550.7 0.923791
\(713\) 1958.46 0.102868
\(714\) 0 0
\(715\) 10928.7 0.571622
\(716\) 4415.14 0.230449
\(717\) 0 0
\(718\) 18867.6 0.980689
\(719\) 5148.06 0.267024 0.133512 0.991047i \(-0.457375\pi\)
0.133512 + 0.991047i \(0.457375\pi\)
\(720\) 0 0
\(721\) −3156.13 −0.163024
\(722\) 9452.24 0.487224
\(723\) 0 0
\(724\) −3986.93 −0.204659
\(725\) −7734.28 −0.396198
\(726\) 0 0
\(727\) 4944.39 0.252238 0.126119 0.992015i \(-0.459748\pi\)
0.126119 + 0.992015i \(0.459748\pi\)
\(728\) −1859.55 −0.0946696
\(729\) 0 0
\(730\) −11360.6 −0.575990
\(731\) 4193.66 0.212186
\(732\) 0 0
\(733\) 9650.69 0.486298 0.243149 0.969989i \(-0.421820\pi\)
0.243149 + 0.969989i \(0.421820\pi\)
\(734\) −12290.6 −0.618059
\(735\) 0 0
\(736\) 1784.10 0.0893517
\(737\) 30330.2 1.51591
\(738\) 0 0
\(739\) −11809.7 −0.587856 −0.293928 0.955828i \(-0.594963\pi\)
−0.293928 + 0.955828i \(0.594963\pi\)
\(740\) 4624.85 0.229747
\(741\) 0 0
\(742\) 3272.22 0.161896
\(743\) −5901.27 −0.291381 −0.145691 0.989330i \(-0.546540\pi\)
−0.145691 + 0.989330i \(0.546540\pi\)
\(744\) 0 0
\(745\) 19651.3 0.966399
\(746\) 26471.9 1.29920
\(747\) 0 0
\(748\) −1536.80 −0.0751215
\(749\) 5503.93 0.268504
\(750\) 0 0
\(751\) −518.294 −0.0251835 −0.0125918 0.999921i \(-0.504008\pi\)
−0.0125918 + 0.999921i \(0.504008\pi\)
\(752\) −13481.2 −0.653734
\(753\) 0 0
\(754\) 7789.61 0.376234
\(755\) 28229.7 1.36077
\(756\) 0 0
\(757\) −16294.6 −0.782349 −0.391175 0.920316i \(-0.627931\pi\)
−0.391175 + 0.920316i \(0.627931\pi\)
\(758\) 3406.49 0.163231
\(759\) 0 0
\(760\) −21063.0 −1.00531
\(761\) −15850.1 −0.755015 −0.377507 0.926007i \(-0.623219\pi\)
−0.377507 + 0.926007i \(0.623219\pi\)
\(762\) 0 0
\(763\) 4264.40 0.202335
\(764\) 1927.85 0.0912923
\(765\) 0 0
\(766\) 20914.9 0.986537
\(767\) −1657.70 −0.0780390
\(768\) 0 0
\(769\) 39962.5 1.87397 0.936987 0.349364i \(-0.113602\pi\)
0.936987 + 0.349364i \(0.113602\pi\)
\(770\) 4871.39 0.227990
\(771\) 0 0
\(772\) −6476.90 −0.301954
\(773\) 7681.94 0.357439 0.178719 0.983900i \(-0.442805\pi\)
0.178719 + 0.983900i \(0.442805\pi\)
\(774\) 0 0
\(775\) −3837.44 −0.177864
\(776\) 42403.8 1.96161
\(777\) 0 0
\(778\) −2374.25 −0.109410
\(779\) 35776.3 1.64547
\(780\) 0 0
\(781\) 29510.1 1.35206
\(782\) −1180.53 −0.0539841
\(783\) 0 0
\(784\) 16503.8 0.751814
\(785\) −12475.2 −0.567211
\(786\) 0 0
\(787\) 16191.1 0.733357 0.366679 0.930348i \(-0.380495\pi\)
0.366679 + 0.930348i \(0.380495\pi\)
\(788\) −728.162 −0.0329184
\(789\) 0 0
\(790\) 4111.17 0.185150
\(791\) −3444.95 −0.154853
\(792\) 0 0
\(793\) −8611.40 −0.385624
\(794\) 19157.4 0.856262
\(795\) 0 0
\(796\) −5910.46 −0.263179
\(797\) 4632.12 0.205870 0.102935 0.994688i \(-0.467177\pi\)
0.102935 + 0.994688i \(0.467177\pi\)
\(798\) 0 0
\(799\) −4576.93 −0.202653
\(800\) −3495.79 −0.154494
\(801\) 0 0
\(802\) 9315.22 0.410140
\(803\) −32265.0 −1.41794
\(804\) 0 0
\(805\) −842.796 −0.0369002
\(806\) 3864.89 0.168902
\(807\) 0 0
\(808\) 25470.8 1.10899
\(809\) −10914.2 −0.474319 −0.237159 0.971471i \(-0.576216\pi\)
−0.237159 + 0.971471i \(0.576216\pi\)
\(810\) 0 0
\(811\) 2928.60 0.126803 0.0634014 0.997988i \(-0.479805\pi\)
0.0634014 + 0.997988i \(0.479805\pi\)
\(812\) −782.006 −0.0337968
\(813\) 0 0
\(814\) −58320.3 −2.51121
\(815\) −6447.76 −0.277123
\(816\) 0 0
\(817\) 25347.6 1.08543
\(818\) −34714.2 −1.48381
\(819\) 0 0
\(820\) −4337.10 −0.184705
\(821\) −10429.7 −0.443361 −0.221681 0.975119i \(-0.571154\pi\)
−0.221681 + 0.975119i \(0.571154\pi\)
\(822\) 0 0
\(823\) 25715.8 1.08918 0.544591 0.838702i \(-0.316685\pi\)
0.544591 + 0.838702i \(0.316685\pi\)
\(824\) 20861.6 0.881977
\(825\) 0 0
\(826\) −738.907 −0.0311257
\(827\) −31929.2 −1.34255 −0.671274 0.741209i \(-0.734253\pi\)
−0.671274 + 0.741209i \(0.734253\pi\)
\(828\) 0 0
\(829\) 31374.4 1.31445 0.657224 0.753695i \(-0.271730\pi\)
0.657224 + 0.753695i \(0.271730\pi\)
\(830\) −22596.9 −0.945002
\(831\) 0 0
\(832\) 11928.3 0.497042
\(833\) 5603.13 0.233058
\(834\) 0 0
\(835\) 11714.3 0.485498
\(836\) −9288.82 −0.384283
\(837\) 0 0
\(838\) −33197.6 −1.36849
\(839\) −38253.1 −1.57407 −0.787034 0.616910i \(-0.788384\pi\)
−0.787034 + 0.616910i \(0.788384\pi\)
\(840\) 0 0
\(841\) −3292.57 −0.135002
\(842\) 7759.58 0.317593
\(843\) 0 0
\(844\) 5481.56 0.223558
\(845\) 14878.5 0.605725
\(846\) 0 0
\(847\) 8962.16 0.363570
\(848\) −17514.1 −0.709240
\(849\) 0 0
\(850\) 2313.14 0.0933412
\(851\) 10090.0 0.406439
\(852\) 0 0
\(853\) 1728.49 0.0693813 0.0346906 0.999398i \(-0.488955\pi\)
0.0346906 + 0.999398i \(0.488955\pi\)
\(854\) −3838.47 −0.153805
\(855\) 0 0
\(856\) −36380.3 −1.45263
\(857\) −17426.4 −0.694603 −0.347301 0.937754i \(-0.612902\pi\)
−0.347301 + 0.937754i \(0.612902\pi\)
\(858\) 0 0
\(859\) −10053.4 −0.399323 −0.199661 0.979865i \(-0.563984\pi\)
−0.199661 + 0.979865i \(0.563984\pi\)
\(860\) −3072.85 −0.121841
\(861\) 0 0
\(862\) −4884.86 −0.193015
\(863\) 35498.0 1.40019 0.700096 0.714049i \(-0.253140\pi\)
0.700096 + 0.714049i \(0.253140\pi\)
\(864\) 0 0
\(865\) −25957.7 −1.02033
\(866\) 15618.8 0.612873
\(867\) 0 0
\(868\) −388.000 −0.0151723
\(869\) 11676.1 0.455793
\(870\) 0 0
\(871\) −10355.4 −0.402846
\(872\) −28187.2 −1.09465
\(873\) 0 0
\(874\) −7135.43 −0.276155
\(875\) 5527.91 0.213574
\(876\) 0 0
\(877\) −30475.1 −1.17340 −0.586699 0.809805i \(-0.699573\pi\)
−0.586699 + 0.809805i \(0.699573\pi\)
\(878\) 33378.5 1.28299
\(879\) 0 0
\(880\) −26073.4 −0.998788
\(881\) −2396.70 −0.0916537 −0.0458268 0.998949i \(-0.514592\pi\)
−0.0458268 + 0.998949i \(0.514592\pi\)
\(882\) 0 0
\(883\) 11248.6 0.428705 0.214352 0.976756i \(-0.431236\pi\)
0.214352 + 0.976756i \(0.431236\pi\)
\(884\) 524.696 0.0199632
\(885\) 0 0
\(886\) −26259.7 −0.995725
\(887\) −19513.0 −0.738648 −0.369324 0.929301i \(-0.620411\pi\)
−0.369324 + 0.929301i \(0.620411\pi\)
\(888\) 0 0
\(889\) −9351.39 −0.352796
\(890\) 15697.5 0.591215
\(891\) 0 0
\(892\) −8076.76 −0.303173
\(893\) −27664.2 −1.03667
\(894\) 0 0
\(895\) 25431.5 0.949811
\(896\) 3394.12 0.126551
\(897\) 0 0
\(898\) 16574.3 0.615916
\(899\) 10467.2 0.388321
\(900\) 0 0
\(901\) −5946.12 −0.219860
\(902\) 54691.7 2.01889
\(903\) 0 0
\(904\) 22770.7 0.837768
\(905\) −22965.0 −0.843516
\(906\) 0 0
\(907\) −1024.73 −0.0375146 −0.0187573 0.999824i \(-0.505971\pi\)
−0.0187573 + 0.999824i \(0.505971\pi\)
\(908\) −4988.79 −0.182333
\(909\) 0 0
\(910\) −1663.20 −0.0605873
\(911\) 46205.4 1.68041 0.840205 0.542269i \(-0.182435\pi\)
0.840205 + 0.542269i \(0.182435\pi\)
\(912\) 0 0
\(913\) −64177.4 −2.32635
\(914\) −23542.5 −0.851988
\(915\) 0 0
\(916\) −3812.48 −0.137520
\(917\) −369.469 −0.0133053
\(918\) 0 0
\(919\) −44026.2 −1.58030 −0.790148 0.612916i \(-0.789996\pi\)
−0.790148 + 0.612916i \(0.789996\pi\)
\(920\) 5570.78 0.199634
\(921\) 0 0
\(922\) −33995.5 −1.21430
\(923\) −10075.4 −0.359302
\(924\) 0 0
\(925\) −19770.4 −0.702752
\(926\) −43529.3 −1.54478
\(927\) 0 0
\(928\) 9535.30 0.337297
\(929\) 19511.4 0.689073 0.344537 0.938773i \(-0.388036\pi\)
0.344537 + 0.938773i \(0.388036\pi\)
\(930\) 0 0
\(931\) 33866.8 1.19220
\(932\) −8771.77 −0.308293
\(933\) 0 0
\(934\) −42549.7 −1.49065
\(935\) −8852.05 −0.309618
\(936\) 0 0
\(937\) −34871.5 −1.21580 −0.607900 0.794014i \(-0.707988\pi\)
−0.607900 + 0.794014i \(0.707988\pi\)
\(938\) −4615.84 −0.160674
\(939\) 0 0
\(940\) 3353.69 0.116367
\(941\) 16423.1 0.568945 0.284473 0.958684i \(-0.408182\pi\)
0.284473 + 0.958684i \(0.408182\pi\)
\(942\) 0 0
\(943\) −9462.18 −0.326756
\(944\) 3954.89 0.136357
\(945\) 0 0
\(946\) 38749.3 1.33176
\(947\) −37007.6 −1.26989 −0.634944 0.772558i \(-0.718977\pi\)
−0.634944 + 0.772558i \(0.718977\pi\)
\(948\) 0 0
\(949\) 11016.0 0.376811
\(950\) 13981.3 0.477486
\(951\) 0 0
\(952\) 1506.20 0.0512776
\(953\) −2540.43 −0.0863510 −0.0431755 0.999068i \(-0.513747\pi\)
−0.0431755 + 0.999068i \(0.513747\pi\)
\(954\) 0 0
\(955\) 11104.6 0.376267
\(956\) 5972.05 0.202040
\(957\) 0 0
\(958\) 21153.4 0.713399
\(959\) −6389.25 −0.215140
\(960\) 0 0
\(961\) −24597.6 −0.825672
\(962\) 19911.8 0.667341
\(963\) 0 0
\(964\) −3999.28 −0.133618
\(965\) −37307.4 −1.24452
\(966\) 0 0
\(967\) −29865.4 −0.993183 −0.496591 0.867984i \(-0.665415\pi\)
−0.496591 + 0.867984i \(0.665415\pi\)
\(968\) −59238.8 −1.96695
\(969\) 0 0
\(970\) 37926.4 1.25541
\(971\) 40980.9 1.35442 0.677209 0.735790i \(-0.263189\pi\)
0.677209 + 0.735790i \(0.263189\pi\)
\(972\) 0 0
\(973\) −7406.08 −0.244017
\(974\) −14302.1 −0.470503
\(975\) 0 0
\(976\) 20544.9 0.673796
\(977\) −29118.0 −0.953497 −0.476748 0.879040i \(-0.658185\pi\)
−0.476748 + 0.879040i \(0.658185\pi\)
\(978\) 0 0
\(979\) 44582.3 1.45542
\(980\) −4105.63 −0.133826
\(981\) 0 0
\(982\) 11660.0 0.378906
\(983\) 35854.0 1.16334 0.581671 0.813424i \(-0.302399\pi\)
0.581671 + 0.813424i \(0.302399\pi\)
\(984\) 0 0
\(985\) −4194.26 −0.135675
\(986\) −6309.44 −0.203787
\(987\) 0 0
\(988\) 3171.41 0.102121
\(989\) −6703.99 −0.215545
\(990\) 0 0
\(991\) 22194.9 0.711448 0.355724 0.934591i \(-0.384234\pi\)
0.355724 + 0.934591i \(0.384234\pi\)
\(992\) 4731.03 0.151422
\(993\) 0 0
\(994\) −4491.04 −0.143307
\(995\) −34044.6 −1.08471
\(996\) 0 0
\(997\) −7611.65 −0.241789 −0.120894 0.992665i \(-0.538576\pi\)
−0.120894 + 0.992665i \(0.538576\pi\)
\(998\) −38987.1 −1.23659
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.4.a.f.1.3 3
3.2 odd 2 51.4.a.e.1.1 3
4.3 odd 2 2448.4.a.bd.1.1 3
12.11 even 2 816.4.a.s.1.3 3
15.14 odd 2 1275.4.a.q.1.3 3
21.20 even 2 2499.4.a.n.1.1 3
51.50 odd 2 867.4.a.k.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.e.1.1 3 3.2 odd 2
153.4.a.f.1.3 3 1.1 even 1 trivial
816.4.a.s.1.3 3 12.11 even 2
867.4.a.k.1.1 3 51.50 odd 2
1275.4.a.q.1.3 3 15.14 odd 2
2448.4.a.bd.1.1 3 4.3 odd 2
2499.4.a.n.1.1 3 21.20 even 2