Properties

Label 153.4.a.f.1.1
Level $153$
Weight $4$
Character 153.1
Self dual yes
Analytic conductor $9.027$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [153,4,Mod(1,153)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(153, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("153.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 153.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.02729223088\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.5912.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 14x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.75985\) of defining polynomial
Character \(\chi\) \(=\) 153.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.75985 q^{2} +14.6562 q^{4} +7.65616 q^{5} -31.5852 q^{7} -31.6823 q^{8} +O(q^{10})\) \(q-4.75985 q^{2} +14.6562 q^{4} +7.65616 q^{5} -31.5852 q^{7} -31.6823 q^{8} -36.4422 q^{10} +7.18910 q^{11} +84.3331 q^{13} +150.341 q^{14} +33.5537 q^{16} -17.0000 q^{17} -37.0838 q^{19} +112.210 q^{20} -34.2190 q^{22} -150.218 q^{23} -66.3832 q^{25} -401.413 q^{26} -462.918 q^{28} +11.5846 q^{29} -53.2865 q^{31} +93.7478 q^{32} +80.9174 q^{34} -241.822 q^{35} -99.2134 q^{37} +176.513 q^{38} -242.565 q^{40} -118.249 q^{41} -456.016 q^{43} +105.365 q^{44} +715.014 q^{46} -571.014 q^{47} +654.627 q^{49} +315.974 q^{50} +1236.00 q^{52} -462.867 q^{53} +55.0409 q^{55} +1000.69 q^{56} -55.1407 q^{58} -48.0674 q^{59} +59.5236 q^{61} +253.636 q^{62} -714.655 q^{64} +645.668 q^{65} -740.787 q^{67} -249.155 q^{68} +1151.03 q^{70} +930.437 q^{71} -697.419 q^{73} +472.241 q^{74} -543.506 q^{76} -227.070 q^{77} +1036.04 q^{79} +256.893 q^{80} +562.849 q^{82} +22.2043 q^{83} -130.155 q^{85} +2170.57 q^{86} -227.767 q^{88} +369.726 q^{89} -2663.68 q^{91} -2201.62 q^{92} +2717.94 q^{94} -283.920 q^{95} +1139.56 q^{97} -3115.93 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 5 q^{2} + 13 q^{4} - 8 q^{5} - 8 q^{7} - 33 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 5 q^{2} + 13 q^{4} - 8 q^{5} - 8 q^{7} - 33 q^{8} - 38 q^{10} - 34 q^{11} + 36 q^{13} + 104 q^{14} - 79 q^{16} - 51 q^{17} - 142 q^{19} + 126 q^{20} - 248 q^{22} - 110 q^{23} - 193 q^{25} - 154 q^{26} - 472 q^{28} - 90 q^{29} - 148 q^{31} + 151 q^{32} + 85 q^{34} - 416 q^{35} + 110 q^{37} - 80 q^{38} - 202 q^{40} - 720 q^{41} - 146 q^{43} + 192 q^{44} + 748 q^{46} - 500 q^{47} + 379 q^{49} + 385 q^{50} + 1218 q^{52} - 610 q^{53} + 430 q^{55} + 1368 q^{56} + 1006 q^{58} + 216 q^{59} - 18 q^{61} + 904 q^{62} + 377 q^{64} + 966 q^{65} - 1404 q^{67} - 221 q^{68} + 1472 q^{70} + 960 q^{71} - 794 q^{73} + 1874 q^{74} - 392 q^{76} - 48 q^{77} - 276 q^{79} + 1130 q^{80} + 382 q^{82} + 1552 q^{83} + 136 q^{85} - 16 q^{86} + 1724 q^{88} - 1394 q^{89} - 3968 q^{91} - 2244 q^{92} + 3960 q^{94} + 602 q^{95} + 402 q^{97} - 4109 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.75985 −1.68286 −0.841430 0.540366i \(-0.818286\pi\)
−0.841430 + 0.540366i \(0.818286\pi\)
\(3\) 0 0
\(4\) 14.6562 1.83202
\(5\) 7.65616 0.684788 0.342394 0.939557i \(-0.388762\pi\)
0.342394 + 0.939557i \(0.388762\pi\)
\(6\) 0 0
\(7\) −31.5852 −1.70544 −0.852721 0.522366i \(-0.825049\pi\)
−0.852721 + 0.522366i \(0.825049\pi\)
\(8\) −31.6823 −1.40017
\(9\) 0 0
\(10\) −36.4422 −1.15240
\(11\) 7.18910 0.197054 0.0985271 0.995134i \(-0.468587\pi\)
0.0985271 + 0.995134i \(0.468587\pi\)
\(12\) 0 0
\(13\) 84.3331 1.79921 0.899607 0.436700i \(-0.143853\pi\)
0.899607 + 0.436700i \(0.143853\pi\)
\(14\) 150.341 2.87002
\(15\) 0 0
\(16\) 33.5537 0.524277
\(17\) −17.0000 −0.242536
\(18\) 0 0
\(19\) −37.0838 −0.447769 −0.223885 0.974616i \(-0.571874\pi\)
−0.223885 + 0.974616i \(0.571874\pi\)
\(20\) 112.210 1.25454
\(21\) 0 0
\(22\) −34.2190 −0.331615
\(23\) −150.218 −1.36185 −0.680925 0.732353i \(-0.738422\pi\)
−0.680925 + 0.732353i \(0.738422\pi\)
\(24\) 0 0
\(25\) −66.3832 −0.531066
\(26\) −401.413 −3.02783
\(27\) 0 0
\(28\) −462.918 −3.12440
\(29\) 11.5846 0.0741792 0.0370896 0.999312i \(-0.488191\pi\)
0.0370896 + 0.999312i \(0.488191\pi\)
\(30\) 0 0
\(31\) −53.2865 −0.308727 −0.154364 0.988014i \(-0.549333\pi\)
−0.154364 + 0.988014i \(0.549333\pi\)
\(32\) 93.7478 0.517889
\(33\) 0 0
\(34\) 80.9174 0.408154
\(35\) −241.822 −1.16787
\(36\) 0 0
\(37\) −99.2134 −0.440827 −0.220413 0.975407i \(-0.570741\pi\)
−0.220413 + 0.975407i \(0.570741\pi\)
\(38\) 176.513 0.753533
\(39\) 0 0
\(40\) −242.565 −0.958821
\(41\) −118.249 −0.450425 −0.225213 0.974310i \(-0.572308\pi\)
−0.225213 + 0.974310i \(0.572308\pi\)
\(42\) 0 0
\(43\) −456.016 −1.61725 −0.808626 0.588323i \(-0.799789\pi\)
−0.808626 + 0.588323i \(0.799789\pi\)
\(44\) 105.365 0.361007
\(45\) 0 0
\(46\) 715.014 2.29180
\(47\) −571.014 −1.77215 −0.886073 0.463545i \(-0.846577\pi\)
−0.886073 + 0.463545i \(0.846577\pi\)
\(48\) 0 0
\(49\) 654.627 1.90853
\(50\) 315.974 0.893710
\(51\) 0 0
\(52\) 1236.00 3.29620
\(53\) −462.867 −1.19962 −0.599809 0.800143i \(-0.704757\pi\)
−0.599809 + 0.800143i \(0.704757\pi\)
\(54\) 0 0
\(55\) 55.0409 0.134940
\(56\) 1000.69 2.38792
\(57\) 0 0
\(58\) −55.1407 −0.124833
\(59\) −48.0674 −0.106065 −0.0530325 0.998593i \(-0.516889\pi\)
−0.0530325 + 0.998593i \(0.516889\pi\)
\(60\) 0 0
\(61\) 59.5236 0.124938 0.0624689 0.998047i \(-0.480103\pi\)
0.0624689 + 0.998047i \(0.480103\pi\)
\(62\) 253.636 0.519545
\(63\) 0 0
\(64\) −714.655 −1.39581
\(65\) 645.668 1.23208
\(66\) 0 0
\(67\) −740.787 −1.35077 −0.675384 0.737466i \(-0.736022\pi\)
−0.675384 + 0.737466i \(0.736022\pi\)
\(68\) −249.155 −0.444330
\(69\) 0 0
\(70\) 1151.03 1.96536
\(71\) 930.437 1.55525 0.777623 0.628730i \(-0.216425\pi\)
0.777623 + 0.628730i \(0.216425\pi\)
\(72\) 0 0
\(73\) −697.419 −1.11817 −0.559087 0.829109i \(-0.688848\pi\)
−0.559087 + 0.829109i \(0.688848\pi\)
\(74\) 472.241 0.741850
\(75\) 0 0
\(76\) −543.506 −0.820322
\(77\) −227.070 −0.336065
\(78\) 0 0
\(79\) 1036.04 1.47549 0.737747 0.675077i \(-0.235890\pi\)
0.737747 + 0.675077i \(0.235890\pi\)
\(80\) 256.893 0.359018
\(81\) 0 0
\(82\) 562.849 0.758003
\(83\) 22.2043 0.0293643 0.0146822 0.999892i \(-0.495326\pi\)
0.0146822 + 0.999892i \(0.495326\pi\)
\(84\) 0 0
\(85\) −130.155 −0.166085
\(86\) 2170.57 2.72161
\(87\) 0 0
\(88\) −227.767 −0.275910
\(89\) 369.726 0.440346 0.220173 0.975461i \(-0.429338\pi\)
0.220173 + 0.975461i \(0.429338\pi\)
\(90\) 0 0
\(91\) −2663.68 −3.06846
\(92\) −2201.62 −2.49494
\(93\) 0 0
\(94\) 2717.94 2.98228
\(95\) −283.920 −0.306627
\(96\) 0 0
\(97\) 1139.56 1.19283 0.596415 0.802676i \(-0.296591\pi\)
0.596415 + 0.802676i \(0.296591\pi\)
\(98\) −3115.93 −3.21180
\(99\) 0 0
\(100\) −972.923 −0.972923
\(101\) −703.083 −0.692667 −0.346334 0.938111i \(-0.612573\pi\)
−0.346334 + 0.938111i \(0.612573\pi\)
\(102\) 0 0
\(103\) −897.160 −0.858250 −0.429125 0.903245i \(-0.641178\pi\)
−0.429125 + 0.903245i \(0.641178\pi\)
\(104\) −2671.87 −2.51921
\(105\) 0 0
\(106\) 2203.18 2.01879
\(107\) 1901.21 1.71773 0.858864 0.512203i \(-0.171171\pi\)
0.858864 + 0.512203i \(0.171171\pi\)
\(108\) 0 0
\(109\) 584.555 0.513671 0.256836 0.966455i \(-0.417320\pi\)
0.256836 + 0.966455i \(0.417320\pi\)
\(110\) −261.986 −0.227086
\(111\) 0 0
\(112\) −1059.80 −0.894124
\(113\) 63.4225 0.0527990 0.0263995 0.999651i \(-0.491596\pi\)
0.0263995 + 0.999651i \(0.491596\pi\)
\(114\) 0 0
\(115\) −1150.09 −0.932578
\(116\) 169.785 0.135898
\(117\) 0 0
\(118\) 228.793 0.178493
\(119\) 536.949 0.413631
\(120\) 0 0
\(121\) −1279.32 −0.961170
\(122\) −283.323 −0.210253
\(123\) 0 0
\(124\) −780.976 −0.565594
\(125\) −1465.26 −1.04845
\(126\) 0 0
\(127\) 175.543 0.122653 0.0613266 0.998118i \(-0.480467\pi\)
0.0613266 + 0.998118i \(0.480467\pi\)
\(128\) 2651.67 1.83107
\(129\) 0 0
\(130\) −3073.28 −2.07342
\(131\) −1865.42 −1.24414 −0.622070 0.782961i \(-0.713708\pi\)
−0.622070 + 0.782961i \(0.713708\pi\)
\(132\) 0 0
\(133\) 1171.30 0.763644
\(134\) 3526.03 2.27315
\(135\) 0 0
\(136\) 538.599 0.339592
\(137\) −1057.57 −0.659519 −0.329760 0.944065i \(-0.606968\pi\)
−0.329760 + 0.944065i \(0.606968\pi\)
\(138\) 0 0
\(139\) 904.833 0.552136 0.276068 0.961138i \(-0.410968\pi\)
0.276068 + 0.961138i \(0.410968\pi\)
\(140\) −3544.18 −2.13955
\(141\) 0 0
\(142\) −4428.74 −2.61726
\(143\) 606.279 0.354543
\(144\) 0 0
\(145\) 88.6932 0.0507970
\(146\) 3319.61 1.88173
\(147\) 0 0
\(148\) −1454.09 −0.807603
\(149\) −809.001 −0.444805 −0.222402 0.974955i \(-0.571390\pi\)
−0.222402 + 0.974955i \(0.571390\pi\)
\(150\) 0 0
\(151\) −352.121 −0.189769 −0.0948847 0.995488i \(-0.530248\pi\)
−0.0948847 + 0.995488i \(0.530248\pi\)
\(152\) 1174.90 0.626954
\(153\) 0 0
\(154\) 1080.82 0.565550
\(155\) −407.970 −0.211413
\(156\) 0 0
\(157\) 537.882 0.273424 0.136712 0.990611i \(-0.456346\pi\)
0.136712 + 0.990611i \(0.456346\pi\)
\(158\) −4931.41 −2.48305
\(159\) 0 0
\(160\) 717.748 0.354644
\(161\) 4744.66 2.32256
\(162\) 0 0
\(163\) 1922.74 0.923933 0.461966 0.886897i \(-0.347144\pi\)
0.461966 + 0.886897i \(0.347144\pi\)
\(164\) −1733.08 −0.825188
\(165\) 0 0
\(166\) −105.689 −0.0494160
\(167\) 2971.76 1.37702 0.688509 0.725228i \(-0.258266\pi\)
0.688509 + 0.725228i \(0.258266\pi\)
\(168\) 0 0
\(169\) 4915.07 2.23717
\(170\) 619.517 0.279499
\(171\) 0 0
\(172\) −6683.45 −2.96284
\(173\) −988.564 −0.434446 −0.217223 0.976122i \(-0.569700\pi\)
−0.217223 + 0.976122i \(0.569700\pi\)
\(174\) 0 0
\(175\) 2096.73 0.905702
\(176\) 241.221 0.103311
\(177\) 0 0
\(178\) −1759.84 −0.741042
\(179\) 1937.65 0.809089 0.404545 0.914518i \(-0.367430\pi\)
0.404545 + 0.914518i \(0.367430\pi\)
\(180\) 0 0
\(181\) −2180.07 −0.895267 −0.447634 0.894217i \(-0.647733\pi\)
−0.447634 + 0.894217i \(0.647733\pi\)
\(182\) 12678.7 5.16379
\(183\) 0 0
\(184\) 4759.24 1.90683
\(185\) −759.594 −0.301873
\(186\) 0 0
\(187\) −122.215 −0.0477927
\(188\) −8368.86 −3.24661
\(189\) 0 0
\(190\) 1351.41 0.516010
\(191\) −1675.78 −0.634845 −0.317423 0.948284i \(-0.602817\pi\)
−0.317423 + 0.948284i \(0.602817\pi\)
\(192\) 0 0
\(193\) −257.961 −0.0962094 −0.0481047 0.998842i \(-0.515318\pi\)
−0.0481047 + 0.998842i \(0.515318\pi\)
\(194\) −5424.12 −2.00737
\(195\) 0 0
\(196\) 9594.32 3.49647
\(197\) 693.466 0.250799 0.125399 0.992106i \(-0.459979\pi\)
0.125399 + 0.992106i \(0.459979\pi\)
\(198\) 0 0
\(199\) −240.295 −0.0855984 −0.0427992 0.999084i \(-0.513628\pi\)
−0.0427992 + 0.999084i \(0.513628\pi\)
\(200\) 2103.17 0.743584
\(201\) 0 0
\(202\) 3346.57 1.16566
\(203\) −365.901 −0.126508
\(204\) 0 0
\(205\) −905.335 −0.308446
\(206\) 4270.34 1.44432
\(207\) 0 0
\(208\) 2829.69 0.943287
\(209\) −266.599 −0.0882348
\(210\) 0 0
\(211\) 268.114 0.0874774 0.0437387 0.999043i \(-0.486073\pi\)
0.0437387 + 0.999043i \(0.486073\pi\)
\(212\) −6783.86 −2.19772
\(213\) 0 0
\(214\) −9049.47 −2.89070
\(215\) −3491.33 −1.10747
\(216\) 0 0
\(217\) 1683.07 0.526516
\(218\) −2782.39 −0.864437
\(219\) 0 0
\(220\) 806.688 0.247213
\(221\) −1433.66 −0.436374
\(222\) 0 0
\(223\) −5524.43 −1.65894 −0.829468 0.558554i \(-0.811357\pi\)
−0.829468 + 0.558554i \(0.811357\pi\)
\(224\) −2961.05 −0.883229
\(225\) 0 0
\(226\) −301.882 −0.0888534
\(227\) 384.400 0.112394 0.0561972 0.998420i \(-0.482102\pi\)
0.0561972 + 0.998420i \(0.482102\pi\)
\(228\) 0 0
\(229\) 1395.48 0.402690 0.201345 0.979520i \(-0.435469\pi\)
0.201345 + 0.979520i \(0.435469\pi\)
\(230\) 5474.26 1.56940
\(231\) 0 0
\(232\) −367.025 −0.103864
\(233\) −3409.39 −0.958613 −0.479307 0.877648i \(-0.659112\pi\)
−0.479307 + 0.877648i \(0.659112\pi\)
\(234\) 0 0
\(235\) −4371.77 −1.21354
\(236\) −704.483 −0.194313
\(237\) 0 0
\(238\) −2555.80 −0.696083
\(239\) 1509.18 0.408456 0.204228 0.978923i \(-0.434532\pi\)
0.204228 + 0.978923i \(0.434532\pi\)
\(240\) 0 0
\(241\) 3406.91 0.910615 0.455307 0.890334i \(-0.349529\pi\)
0.455307 + 0.890334i \(0.349529\pi\)
\(242\) 6089.35 1.61751
\(243\) 0 0
\(244\) 872.387 0.228889
\(245\) 5011.93 1.30694
\(246\) 0 0
\(247\) −3127.39 −0.805633
\(248\) 1688.24 0.432271
\(249\) 0 0
\(250\) 6974.42 1.76440
\(251\) −3394.43 −0.853605 −0.426802 0.904345i \(-0.640360\pi\)
−0.426802 + 0.904345i \(0.640360\pi\)
\(252\) 0 0
\(253\) −1079.93 −0.268358
\(254\) −835.560 −0.206408
\(255\) 0 0
\(256\) −6904.30 −1.68562
\(257\) −1778.91 −0.431772 −0.215886 0.976419i \(-0.569264\pi\)
−0.215886 + 0.976419i \(0.569264\pi\)
\(258\) 0 0
\(259\) 3133.68 0.751804
\(260\) 9463.01 2.25719
\(261\) 0 0
\(262\) 8879.11 2.09372
\(263\) 4316.88 1.01213 0.506065 0.862495i \(-0.331100\pi\)
0.506065 + 0.862495i \(0.331100\pi\)
\(264\) 0 0
\(265\) −3543.79 −0.821483
\(266\) −5575.22 −1.28511
\(267\) 0 0
\(268\) −10857.1 −2.47463
\(269\) −6546.31 −1.48378 −0.741888 0.670524i \(-0.766069\pi\)
−0.741888 + 0.670524i \(0.766069\pi\)
\(270\) 0 0
\(271\) 3785.20 0.848466 0.424233 0.905553i \(-0.360544\pi\)
0.424233 + 0.905553i \(0.360544\pi\)
\(272\) −570.413 −0.127156
\(273\) 0 0
\(274\) 5033.86 1.10988
\(275\) −477.236 −0.104649
\(276\) 0 0
\(277\) −3521.06 −0.763755 −0.381878 0.924213i \(-0.624722\pi\)
−0.381878 + 0.924213i \(0.624722\pi\)
\(278\) −4306.87 −0.929168
\(279\) 0 0
\(280\) 7661.47 1.63521
\(281\) 2922.30 0.620391 0.310195 0.950673i \(-0.399606\pi\)
0.310195 + 0.950673i \(0.399606\pi\)
\(282\) 0 0
\(283\) 735.075 0.154402 0.0772008 0.997016i \(-0.475402\pi\)
0.0772008 + 0.997016i \(0.475402\pi\)
\(284\) 13636.6 2.84924
\(285\) 0 0
\(286\) −2885.80 −0.596646
\(287\) 3734.93 0.768175
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) −422.166 −0.0854843
\(291\) 0 0
\(292\) −10221.5 −2.04852
\(293\) 8702.92 1.73526 0.867628 0.497213i \(-0.165643\pi\)
0.867628 + 0.497213i \(0.165643\pi\)
\(294\) 0 0
\(295\) −368.011 −0.0726320
\(296\) 3143.31 0.617234
\(297\) 0 0
\(298\) 3850.72 0.748545
\(299\) −12668.3 −2.45026
\(300\) 0 0
\(301\) 14403.4 2.75813
\(302\) 1676.04 0.319355
\(303\) 0 0
\(304\) −1244.30 −0.234755
\(305\) 455.722 0.0855559
\(306\) 0 0
\(307\) 2516.95 0.467916 0.233958 0.972247i \(-0.424832\pi\)
0.233958 + 0.972247i \(0.424832\pi\)
\(308\) −3327.97 −0.615677
\(309\) 0 0
\(310\) 1941.88 0.355778
\(311\) −6593.31 −1.20216 −0.601081 0.799188i \(-0.705263\pi\)
−0.601081 + 0.799188i \(0.705263\pi\)
\(312\) 0 0
\(313\) 4392.99 0.793312 0.396656 0.917967i \(-0.370171\pi\)
0.396656 + 0.917967i \(0.370171\pi\)
\(314\) −2560.24 −0.460135
\(315\) 0 0
\(316\) 15184.4 2.70314
\(317\) −2601.23 −0.460882 −0.230441 0.973086i \(-0.574017\pi\)
−0.230441 + 0.973086i \(0.574017\pi\)
\(318\) 0 0
\(319\) 83.2825 0.0146173
\(320\) −5471.51 −0.955834
\(321\) 0 0
\(322\) −22583.9 −3.90854
\(323\) 630.425 0.108600
\(324\) 0 0
\(325\) −5598.30 −0.955502
\(326\) −9151.97 −1.55485
\(327\) 0 0
\(328\) 3746.41 0.630674
\(329\) 18035.6 3.02229
\(330\) 0 0
\(331\) −4670.49 −0.775568 −0.387784 0.921750i \(-0.626759\pi\)
−0.387784 + 0.921750i \(0.626759\pi\)
\(332\) 325.430 0.0537960
\(333\) 0 0
\(334\) −14145.1 −2.31733
\(335\) −5671.58 −0.924989
\(336\) 0 0
\(337\) 1801.67 0.291226 0.145613 0.989342i \(-0.453485\pi\)
0.145613 + 0.989342i \(0.453485\pi\)
\(338\) −23395.0 −3.76485
\(339\) 0 0
\(340\) −1907.57 −0.304272
\(341\) −383.082 −0.0608360
\(342\) 0 0
\(343\) −9842.83 −1.54945
\(344\) 14447.7 2.26443
\(345\) 0 0
\(346\) 4705.41 0.731112
\(347\) −168.340 −0.0260431 −0.0130216 0.999915i \(-0.504145\pi\)
−0.0130216 + 0.999915i \(0.504145\pi\)
\(348\) 0 0
\(349\) −4447.85 −0.682200 −0.341100 0.940027i \(-0.610799\pi\)
−0.341100 + 0.940027i \(0.610799\pi\)
\(350\) −9980.12 −1.52417
\(351\) 0 0
\(352\) 673.963 0.102052
\(353\) 10509.5 1.58460 0.792298 0.610135i \(-0.208885\pi\)
0.792298 + 0.610135i \(0.208885\pi\)
\(354\) 0 0
\(355\) 7123.57 1.06501
\(356\) 5418.76 0.806723
\(357\) 0 0
\(358\) −9222.93 −1.36158
\(359\) −8342.99 −1.22654 −0.613268 0.789875i \(-0.710145\pi\)
−0.613268 + 0.789875i \(0.710145\pi\)
\(360\) 0 0
\(361\) −5483.79 −0.799503
\(362\) 10376.8 1.50661
\(363\) 0 0
\(364\) −39039.3 −5.62147
\(365\) −5339.55 −0.765712
\(366\) 0 0
\(367\) 352.402 0.0501232 0.0250616 0.999686i \(-0.492022\pi\)
0.0250616 + 0.999686i \(0.492022\pi\)
\(368\) −5040.36 −0.713987
\(369\) 0 0
\(370\) 3615.55 0.508009
\(371\) 14619.8 2.04588
\(372\) 0 0
\(373\) 12563.2 1.74397 0.871983 0.489537i \(-0.162834\pi\)
0.871983 + 0.489537i \(0.162834\pi\)
\(374\) 581.724 0.0804284
\(375\) 0 0
\(376\) 18091.0 2.48131
\(377\) 976.961 0.133464
\(378\) 0 0
\(379\) −1770.57 −0.239969 −0.119984 0.992776i \(-0.538284\pi\)
−0.119984 + 0.992776i \(0.538284\pi\)
\(380\) −4161.17 −0.561746
\(381\) 0 0
\(382\) 7976.47 1.06836
\(383\) −4330.57 −0.577759 −0.288880 0.957365i \(-0.593283\pi\)
−0.288880 + 0.957365i \(0.593283\pi\)
\(384\) 0 0
\(385\) −1738.48 −0.230133
\(386\) 1227.85 0.161907
\(387\) 0 0
\(388\) 16701.5 2.18529
\(389\) −10295.5 −1.34191 −0.670957 0.741496i \(-0.734117\pi\)
−0.670957 + 0.741496i \(0.734117\pi\)
\(390\) 0 0
\(391\) 2553.70 0.330297
\(392\) −20740.1 −2.67228
\(393\) 0 0
\(394\) −3300.79 −0.422060
\(395\) 7932.12 1.01040
\(396\) 0 0
\(397\) 93.1792 0.0117797 0.00588983 0.999983i \(-0.498125\pi\)
0.00588983 + 0.999983i \(0.498125\pi\)
\(398\) 1143.77 0.144050
\(399\) 0 0
\(400\) −2227.40 −0.278426
\(401\) 13320.9 1.65889 0.829443 0.558591i \(-0.188658\pi\)
0.829443 + 0.558591i \(0.188658\pi\)
\(402\) 0 0
\(403\) −4493.82 −0.555466
\(404\) −10304.5 −1.26898
\(405\) 0 0
\(406\) 1741.63 0.212896
\(407\) −713.255 −0.0868667
\(408\) 0 0
\(409\) 9272.21 1.12098 0.560491 0.828161i \(-0.310613\pi\)
0.560491 + 0.828161i \(0.310613\pi\)
\(410\) 4309.26 0.519071
\(411\) 0 0
\(412\) −13148.9 −1.57233
\(413\) 1518.22 0.180888
\(414\) 0 0
\(415\) 170.000 0.0201083
\(416\) 7906.05 0.931793
\(417\) 0 0
\(418\) 1268.97 0.148487
\(419\) −11325.4 −1.32049 −0.660244 0.751051i \(-0.729547\pi\)
−0.660244 + 0.751051i \(0.729547\pi\)
\(420\) 0 0
\(421\) 6934.54 0.802776 0.401388 0.915908i \(-0.368528\pi\)
0.401388 + 0.915908i \(0.368528\pi\)
\(422\) −1276.18 −0.147212
\(423\) 0 0
\(424\) 14664.7 1.67967
\(425\) 1128.52 0.128802
\(426\) 0 0
\(427\) −1880.07 −0.213074
\(428\) 27864.4 3.14691
\(429\) 0 0
\(430\) 16618.2 1.86373
\(431\) 2776.55 0.310306 0.155153 0.987890i \(-0.450413\pi\)
0.155153 + 0.987890i \(0.450413\pi\)
\(432\) 0 0
\(433\) −3252.22 −0.360951 −0.180476 0.983579i \(-0.557764\pi\)
−0.180476 + 0.983579i \(0.557764\pi\)
\(434\) −8011.15 −0.886054
\(435\) 0 0
\(436\) 8567.32 0.941056
\(437\) 5570.65 0.609795
\(438\) 0 0
\(439\) −13345.7 −1.45093 −0.725464 0.688260i \(-0.758375\pi\)
−0.725464 + 0.688260i \(0.758375\pi\)
\(440\) −1743.82 −0.188940
\(441\) 0 0
\(442\) 6824.02 0.734356
\(443\) −11639.6 −1.24834 −0.624169 0.781290i \(-0.714562\pi\)
−0.624169 + 0.781290i \(0.714562\pi\)
\(444\) 0 0
\(445\) 2830.68 0.301544
\(446\) 26295.4 2.79176
\(447\) 0 0
\(448\) 22572.6 2.38048
\(449\) 6937.72 0.729201 0.364601 0.931164i \(-0.381206\pi\)
0.364601 + 0.931164i \(0.381206\pi\)
\(450\) 0 0
\(451\) −850.106 −0.0887582
\(452\) 929.531 0.0967289
\(453\) 0 0
\(454\) −1829.69 −0.189144
\(455\) −20393.6 −2.10124
\(456\) 0 0
\(457\) −10285.8 −1.05284 −0.526422 0.850224i \(-0.676467\pi\)
−0.526422 + 0.850224i \(0.676467\pi\)
\(458\) −6642.28 −0.677671
\(459\) 0 0
\(460\) −16855.9 −1.70850
\(461\) 625.833 0.0632277 0.0316138 0.999500i \(-0.489935\pi\)
0.0316138 + 0.999500i \(0.489935\pi\)
\(462\) 0 0
\(463\) −6055.97 −0.607872 −0.303936 0.952692i \(-0.598301\pi\)
−0.303936 + 0.952692i \(0.598301\pi\)
\(464\) 388.705 0.0388904
\(465\) 0 0
\(466\) 16228.2 1.61321
\(467\) 815.966 0.0808531 0.0404265 0.999183i \(-0.487128\pi\)
0.0404265 + 0.999183i \(0.487128\pi\)
\(468\) 0 0
\(469\) 23397.9 2.30366
\(470\) 20809.0 2.04223
\(471\) 0 0
\(472\) 1522.88 0.148509
\(473\) −3278.35 −0.318686
\(474\) 0 0
\(475\) 2461.74 0.237795
\(476\) 7869.61 0.757779
\(477\) 0 0
\(478\) −7183.49 −0.687375
\(479\) 16219.1 1.54712 0.773559 0.633724i \(-0.218475\pi\)
0.773559 + 0.633724i \(0.218475\pi\)
\(480\) 0 0
\(481\) −8366.97 −0.793142
\(482\) −16216.4 −1.53244
\(483\) 0 0
\(484\) −18749.9 −1.76088
\(485\) 8724.63 0.816835
\(486\) 0 0
\(487\) 2725.13 0.253568 0.126784 0.991930i \(-0.459535\pi\)
0.126784 + 0.991930i \(0.459535\pi\)
\(488\) −1885.84 −0.174935
\(489\) 0 0
\(490\) −23856.0 −2.19940
\(491\) 8344.13 0.766935 0.383468 0.923554i \(-0.374730\pi\)
0.383468 + 0.923554i \(0.374730\pi\)
\(492\) 0 0
\(493\) −196.937 −0.0179911
\(494\) 14885.9 1.35577
\(495\) 0 0
\(496\) −1787.96 −0.161858
\(497\) −29388.1 −2.65238
\(498\) 0 0
\(499\) 13762.0 1.23461 0.617306 0.786723i \(-0.288224\pi\)
0.617306 + 0.786723i \(0.288224\pi\)
\(500\) −21475.1 −1.92079
\(501\) 0 0
\(502\) 16157.0 1.43650
\(503\) 11909.5 1.05570 0.527852 0.849336i \(-0.322997\pi\)
0.527852 + 0.849336i \(0.322997\pi\)
\(504\) 0 0
\(505\) −5382.92 −0.474330
\(506\) 5140.31 0.451610
\(507\) 0 0
\(508\) 2572.79 0.224703
\(509\) −742.666 −0.0646721 −0.0323360 0.999477i \(-0.510295\pi\)
−0.0323360 + 0.999477i \(0.510295\pi\)
\(510\) 0 0
\(511\) 22028.1 1.90698
\(512\) 11650.1 1.00560
\(513\) 0 0
\(514\) 8467.35 0.726612
\(515\) −6868.80 −0.587719
\(516\) 0 0
\(517\) −4105.07 −0.349209
\(518\) −14915.8 −1.26518
\(519\) 0 0
\(520\) −20456.2 −1.72513
\(521\) 4815.73 0.404953 0.202477 0.979287i \(-0.435101\pi\)
0.202477 + 0.979287i \(0.435101\pi\)
\(522\) 0 0
\(523\) −16249.5 −1.35858 −0.679291 0.733869i \(-0.737713\pi\)
−0.679291 + 0.733869i \(0.737713\pi\)
\(524\) −27339.9 −2.27929
\(525\) 0 0
\(526\) −20547.7 −1.70327
\(527\) 905.871 0.0748773
\(528\) 0 0
\(529\) 10398.4 0.854637
\(530\) 16867.9 1.38244
\(531\) 0 0
\(532\) 17166.8 1.39901
\(533\) −9972.33 −0.810412
\(534\) 0 0
\(535\) 14556.0 1.17628
\(536\) 23469.8 1.89131
\(537\) 0 0
\(538\) 31159.4 2.49699
\(539\) 4706.18 0.376085
\(540\) 0 0
\(541\) −5458.04 −0.433751 −0.216876 0.976199i \(-0.569587\pi\)
−0.216876 + 0.976199i \(0.569587\pi\)
\(542\) −18017.0 −1.42785
\(543\) 0 0
\(544\) −1593.71 −0.125606
\(545\) 4475.44 0.351756
\(546\) 0 0
\(547\) 17237.0 1.34735 0.673677 0.739026i \(-0.264714\pi\)
0.673677 + 0.739026i \(0.264714\pi\)
\(548\) −15499.9 −1.20825
\(549\) 0 0
\(550\) 2271.57 0.176109
\(551\) −429.600 −0.0332152
\(552\) 0 0
\(553\) −32723.7 −2.51637
\(554\) 16759.7 1.28529
\(555\) 0 0
\(556\) 13261.4 1.01152
\(557\) 8452.71 0.643003 0.321502 0.946909i \(-0.395812\pi\)
0.321502 + 0.946909i \(0.395812\pi\)
\(558\) 0 0
\(559\) −38457.3 −2.90978
\(560\) −8114.01 −0.612285
\(561\) 0 0
\(562\) −13909.7 −1.04403
\(563\) 8547.32 0.639834 0.319917 0.947446i \(-0.396345\pi\)
0.319917 + 0.947446i \(0.396345\pi\)
\(564\) 0 0
\(565\) 485.573 0.0361561
\(566\) −3498.85 −0.259836
\(567\) 0 0
\(568\) −29478.4 −2.17762
\(569\) −19464.8 −1.43411 −0.717055 0.697017i \(-0.754510\pi\)
−0.717055 + 0.697017i \(0.754510\pi\)
\(570\) 0 0
\(571\) −3839.06 −0.281366 −0.140683 0.990055i \(-0.544930\pi\)
−0.140683 + 0.990055i \(0.544930\pi\)
\(572\) 8885.72 0.649529
\(573\) 0 0
\(574\) −17777.7 −1.29273
\(575\) 9971.94 0.723232
\(576\) 0 0
\(577\) −18797.7 −1.35625 −0.678127 0.734945i \(-0.737208\pi\)
−0.678127 + 0.734945i \(0.737208\pi\)
\(578\) −1375.60 −0.0989918
\(579\) 0 0
\(580\) 1299.90 0.0930611
\(581\) −701.328 −0.0500791
\(582\) 0 0
\(583\) −3327.60 −0.236390
\(584\) 22095.8 1.56564
\(585\) 0 0
\(586\) −41424.6 −2.92020
\(587\) −4217.92 −0.296580 −0.148290 0.988944i \(-0.547377\pi\)
−0.148290 + 0.988944i \(0.547377\pi\)
\(588\) 0 0
\(589\) 1976.07 0.138238
\(590\) 1751.68 0.122230
\(591\) 0 0
\(592\) −3328.98 −0.231115
\(593\) 3011.92 0.208575 0.104287 0.994547i \(-0.466744\pi\)
0.104287 + 0.994547i \(0.466744\pi\)
\(594\) 0 0
\(595\) 4110.97 0.283249
\(596\) −11856.8 −0.814891
\(597\) 0 0
\(598\) 60299.3 4.12345
\(599\) −15137.1 −1.03253 −0.516266 0.856428i \(-0.672678\pi\)
−0.516266 + 0.856428i \(0.672678\pi\)
\(600\) 0 0
\(601\) −18980.1 −1.28821 −0.644104 0.764938i \(-0.722770\pi\)
−0.644104 + 0.764938i \(0.722770\pi\)
\(602\) −68558.0 −4.64155
\(603\) 0 0
\(604\) −5160.74 −0.347661
\(605\) −9794.65 −0.658197
\(606\) 0 0
\(607\) −4593.63 −0.307166 −0.153583 0.988136i \(-0.549081\pi\)
−0.153583 + 0.988136i \(0.549081\pi\)
\(608\) −3476.53 −0.231894
\(609\) 0 0
\(610\) −2169.17 −0.143979
\(611\) −48155.3 −3.18847
\(612\) 0 0
\(613\) −25654.3 −1.69032 −0.845160 0.534513i \(-0.820495\pi\)
−0.845160 + 0.534513i \(0.820495\pi\)
\(614\) −11980.3 −0.787437
\(615\) 0 0
\(616\) 7194.09 0.470549
\(617\) 7170.97 0.467897 0.233948 0.972249i \(-0.424835\pi\)
0.233948 + 0.972249i \(0.424835\pi\)
\(618\) 0 0
\(619\) −13560.6 −0.880525 −0.440263 0.897869i \(-0.645115\pi\)
−0.440263 + 0.897869i \(0.645115\pi\)
\(620\) −5979.27 −0.387312
\(621\) 0 0
\(622\) 31383.2 2.02307
\(623\) −11677.9 −0.750985
\(624\) 0 0
\(625\) −2920.36 −0.186903
\(626\) −20910.0 −1.33503
\(627\) 0 0
\(628\) 7883.28 0.500919
\(629\) 1686.63 0.106916
\(630\) 0 0
\(631\) −1414.98 −0.0892700 −0.0446350 0.999003i \(-0.514212\pi\)
−0.0446350 + 0.999003i \(0.514212\pi\)
\(632\) −32824.3 −2.06595
\(633\) 0 0
\(634\) 12381.4 0.775600
\(635\) 1343.99 0.0839914
\(636\) 0 0
\(637\) 55206.7 3.43386
\(638\) −396.412 −0.0245989
\(639\) 0 0
\(640\) 20301.6 1.25389
\(641\) 21708.4 1.33764 0.668822 0.743422i \(-0.266799\pi\)
0.668822 + 0.743422i \(0.266799\pi\)
\(642\) 0 0
\(643\) 7537.23 0.462270 0.231135 0.972922i \(-0.425756\pi\)
0.231135 + 0.972922i \(0.425756\pi\)
\(644\) 69538.5 4.25497
\(645\) 0 0
\(646\) −3000.73 −0.182759
\(647\) 32667.3 1.98498 0.992491 0.122316i \(-0.0390320\pi\)
0.992491 + 0.122316i \(0.0390320\pi\)
\(648\) 0 0
\(649\) −345.561 −0.0209006
\(650\) 26647.1 1.60798
\(651\) 0 0
\(652\) 28180.1 1.69266
\(653\) 25845.8 1.54889 0.774443 0.632644i \(-0.218030\pi\)
0.774443 + 0.632644i \(0.218030\pi\)
\(654\) 0 0
\(655\) −14281.9 −0.851972
\(656\) −3967.70 −0.236148
\(657\) 0 0
\(658\) −85846.7 −5.08610
\(659\) 15741.2 0.930485 0.465243 0.885183i \(-0.345967\pi\)
0.465243 + 0.885183i \(0.345967\pi\)
\(660\) 0 0
\(661\) 23495.2 1.38254 0.691269 0.722598i \(-0.257052\pi\)
0.691269 + 0.722598i \(0.257052\pi\)
\(662\) 22230.8 1.30517
\(663\) 0 0
\(664\) −703.483 −0.0411151
\(665\) 8967.67 0.522934
\(666\) 0 0
\(667\) −1740.21 −0.101021
\(668\) 43554.7 2.52272
\(669\) 0 0
\(670\) 26995.9 1.55663
\(671\) 427.921 0.0246195
\(672\) 0 0
\(673\) −7057.34 −0.404221 −0.202110 0.979363i \(-0.564780\pi\)
−0.202110 + 0.979363i \(0.564780\pi\)
\(674\) −8575.67 −0.490092
\(675\) 0 0
\(676\) 72036.0 4.09855
\(677\) −20756.4 −1.17833 −0.589167 0.808011i \(-0.700544\pi\)
−0.589167 + 0.808011i \(0.700544\pi\)
\(678\) 0 0
\(679\) −35993.2 −2.03430
\(680\) 4123.60 0.232548
\(681\) 0 0
\(682\) 1823.41 0.102378
\(683\) 7013.65 0.392928 0.196464 0.980511i \(-0.437054\pi\)
0.196464 + 0.980511i \(0.437054\pi\)
\(684\) 0 0
\(685\) −8096.91 −0.451631
\(686\) 46850.4 2.60751
\(687\) 0 0
\(688\) −15301.0 −0.847888
\(689\) −39035.0 −2.15837
\(690\) 0 0
\(691\) −4897.47 −0.269622 −0.134811 0.990871i \(-0.543043\pi\)
−0.134811 + 0.990871i \(0.543043\pi\)
\(692\) −14488.5 −0.795913
\(693\) 0 0
\(694\) 801.273 0.0438269
\(695\) 6927.54 0.378096
\(696\) 0 0
\(697\) 2010.24 0.109244
\(698\) 21171.1 1.14805
\(699\) 0 0
\(700\) 30730.0 1.65926
\(701\) −17525.5 −0.944264 −0.472132 0.881528i \(-0.656515\pi\)
−0.472132 + 0.881528i \(0.656515\pi\)
\(702\) 0 0
\(703\) 3679.21 0.197388
\(704\) −5137.73 −0.275050
\(705\) 0 0
\(706\) −50023.4 −2.66665
\(707\) 22207.1 1.18130
\(708\) 0 0
\(709\) 32564.3 1.72493 0.862466 0.506115i \(-0.168919\pi\)
0.862466 + 0.506115i \(0.168919\pi\)
\(710\) −33907.1 −1.79227
\(711\) 0 0
\(712\) −11713.8 −0.616561
\(713\) 8004.58 0.420440
\(714\) 0 0
\(715\) 4641.77 0.242786
\(716\) 28398.5 1.48227
\(717\) 0 0
\(718\) 39711.4 2.06409
\(719\) −14498.2 −0.752007 −0.376004 0.926618i \(-0.622702\pi\)
−0.376004 + 0.926618i \(0.622702\pi\)
\(720\) 0 0
\(721\) 28337.0 1.46370
\(722\) 26102.0 1.34545
\(723\) 0 0
\(724\) −31951.5 −1.64015
\(725\) −769.020 −0.0393941
\(726\) 0 0
\(727\) −25787.6 −1.31556 −0.657778 0.753212i \(-0.728503\pi\)
−0.657778 + 0.753212i \(0.728503\pi\)
\(728\) 84391.6 4.29637
\(729\) 0 0
\(730\) 25415.4 1.28859
\(731\) 7752.28 0.392241
\(732\) 0 0
\(733\) −4177.45 −0.210502 −0.105251 0.994446i \(-0.533565\pi\)
−0.105251 + 0.994446i \(0.533565\pi\)
\(734\) −1677.38 −0.0843504
\(735\) 0 0
\(736\) −14082.6 −0.705287
\(737\) −5325.59 −0.266175
\(738\) 0 0
\(739\) 14115.5 0.702636 0.351318 0.936256i \(-0.385734\pi\)
0.351318 + 0.936256i \(0.385734\pi\)
\(740\) −11132.7 −0.553037
\(741\) 0 0
\(742\) −69587.9 −3.44293
\(743\) −17992.0 −0.888376 −0.444188 0.895934i \(-0.646508\pi\)
−0.444188 + 0.895934i \(0.646508\pi\)
\(744\) 0 0
\(745\) −6193.84 −0.304597
\(746\) −59799.0 −2.93485
\(747\) 0 0
\(748\) −1791.20 −0.0875571
\(749\) −60050.2 −2.92949
\(750\) 0 0
\(751\) 2055.99 0.0998989 0.0499495 0.998752i \(-0.484094\pi\)
0.0499495 + 0.998752i \(0.484094\pi\)
\(752\) −19159.6 −0.929095
\(753\) 0 0
\(754\) −4650.19 −0.224602
\(755\) −2695.89 −0.129952
\(756\) 0 0
\(757\) 12132.4 0.582508 0.291254 0.956646i \(-0.405927\pi\)
0.291254 + 0.956646i \(0.405927\pi\)
\(758\) 8427.65 0.403834
\(759\) 0 0
\(760\) 8995.23 0.429331
\(761\) −9319.01 −0.443908 −0.221954 0.975057i \(-0.571243\pi\)
−0.221954 + 0.975057i \(0.571243\pi\)
\(762\) 0 0
\(763\) −18463.3 −0.876037
\(764\) −24560.5 −1.16305
\(765\) 0 0
\(766\) 20612.9 0.972288
\(767\) −4053.67 −0.190834
\(768\) 0 0
\(769\) 38790.8 1.81903 0.909514 0.415672i \(-0.136454\pi\)
0.909514 + 0.415672i \(0.136454\pi\)
\(770\) 8274.90 0.387282
\(771\) 0 0
\(772\) −3780.71 −0.176257
\(773\) −12857.4 −0.598252 −0.299126 0.954214i \(-0.596695\pi\)
−0.299126 + 0.954214i \(0.596695\pi\)
\(774\) 0 0
\(775\) 3537.33 0.163954
\(776\) −36103.8 −1.67017
\(777\) 0 0
\(778\) 49005.2 2.25825
\(779\) 4385.14 0.201687
\(780\) 0 0
\(781\) 6689.00 0.306468
\(782\) −12155.2 −0.555844
\(783\) 0 0
\(784\) 21965.2 1.00060
\(785\) 4118.11 0.187238
\(786\) 0 0
\(787\) −26862.0 −1.21668 −0.608339 0.793677i \(-0.708164\pi\)
−0.608339 + 0.793677i \(0.708164\pi\)
\(788\) 10163.5 0.459468
\(789\) 0 0
\(790\) −37755.7 −1.70036
\(791\) −2003.22 −0.0900457
\(792\) 0 0
\(793\) 5019.81 0.224790
\(794\) −443.519 −0.0198235
\(795\) 0 0
\(796\) −3521.81 −0.156818
\(797\) 12471.5 0.554285 0.277142 0.960829i \(-0.410613\pi\)
0.277142 + 0.960829i \(0.410613\pi\)
\(798\) 0 0
\(799\) 9707.23 0.429809
\(800\) −6223.29 −0.275033
\(801\) 0 0
\(802\) −63405.4 −2.79168
\(803\) −5013.82 −0.220341
\(804\) 0 0
\(805\) 36325.9 1.59046
\(806\) 21389.9 0.934772
\(807\) 0 0
\(808\) 22275.3 0.969854
\(809\) 24760.8 1.07607 0.538037 0.842921i \(-0.319166\pi\)
0.538037 + 0.842921i \(0.319166\pi\)
\(810\) 0 0
\(811\) 11237.3 0.486556 0.243278 0.969957i \(-0.421777\pi\)
0.243278 + 0.969957i \(0.421777\pi\)
\(812\) −5362.70 −0.231766
\(813\) 0 0
\(814\) 3394.99 0.146185
\(815\) 14720.8 0.632698
\(816\) 0 0
\(817\) 16910.8 0.724156
\(818\) −44134.3 −1.88645
\(819\) 0 0
\(820\) −13268.7 −0.565079
\(821\) −39976.4 −1.69937 −0.849687 0.527287i \(-0.823209\pi\)
−0.849687 + 0.527287i \(0.823209\pi\)
\(822\) 0 0
\(823\) 36877.0 1.56191 0.780955 0.624588i \(-0.214733\pi\)
0.780955 + 0.624588i \(0.214733\pi\)
\(824\) 28424.1 1.20170
\(825\) 0 0
\(826\) −7226.49 −0.304409
\(827\) 14311.9 0.601781 0.300890 0.953659i \(-0.402716\pi\)
0.300890 + 0.953659i \(0.402716\pi\)
\(828\) 0 0
\(829\) −12629.7 −0.529130 −0.264565 0.964368i \(-0.585228\pi\)
−0.264565 + 0.964368i \(0.585228\pi\)
\(830\) −809.172 −0.0338395
\(831\) 0 0
\(832\) −60269.1 −2.51136
\(833\) −11128.7 −0.462888
\(834\) 0 0
\(835\) 22752.3 0.942965
\(836\) −3907.32 −0.161648
\(837\) 0 0
\(838\) 53907.4 2.22220
\(839\) 18683.1 0.768786 0.384393 0.923170i \(-0.374411\pi\)
0.384393 + 0.923170i \(0.374411\pi\)
\(840\) 0 0
\(841\) −24254.8 −0.994497
\(842\) −33007.3 −1.35096
\(843\) 0 0
\(844\) 3929.52 0.160260
\(845\) 37630.6 1.53199
\(846\) 0 0
\(847\) 40407.5 1.63922
\(848\) −15530.9 −0.628932
\(849\) 0 0
\(850\) −5371.56 −0.216756
\(851\) 14903.6 0.600340
\(852\) 0 0
\(853\) −35648.7 −1.43094 −0.715468 0.698646i \(-0.753786\pi\)
−0.715468 + 0.698646i \(0.753786\pi\)
\(854\) 8948.83 0.358575
\(855\) 0 0
\(856\) −60234.7 −2.40512
\(857\) 49860.8 1.98741 0.993707 0.112010i \(-0.0357290\pi\)
0.993707 + 0.112010i \(0.0357290\pi\)
\(858\) 0 0
\(859\) 21487.0 0.853466 0.426733 0.904378i \(-0.359664\pi\)
0.426733 + 0.904378i \(0.359664\pi\)
\(860\) −51169.6 −2.02892
\(861\) 0 0
\(862\) −13216.0 −0.522201
\(863\) 15067.6 0.594330 0.297165 0.954826i \(-0.403959\pi\)
0.297165 + 0.954826i \(0.403959\pi\)
\(864\) 0 0
\(865\) −7568.60 −0.297503
\(866\) 15480.1 0.607431
\(867\) 0 0
\(868\) 24667.3 0.964588
\(869\) 7448.23 0.290752
\(870\) 0 0
\(871\) −62472.8 −2.43032
\(872\) −18520.0 −0.719229
\(873\) 0 0
\(874\) −26515.4 −1.02620
\(875\) 46280.6 1.78808
\(876\) 0 0
\(877\) −24852.6 −0.956912 −0.478456 0.878111i \(-0.658803\pi\)
−0.478456 + 0.878111i \(0.658803\pi\)
\(878\) 63523.7 2.44171
\(879\) 0 0
\(880\) 1846.83 0.0707460
\(881\) −1840.51 −0.0703842 −0.0351921 0.999381i \(-0.511204\pi\)
−0.0351921 + 0.999381i \(0.511204\pi\)
\(882\) 0 0
\(883\) 49803.7 1.89811 0.949054 0.315115i \(-0.102043\pi\)
0.949054 + 0.315115i \(0.102043\pi\)
\(884\) −21012.0 −0.799445
\(885\) 0 0
\(886\) 55402.7 2.10078
\(887\) −36314.7 −1.37467 −0.687333 0.726342i \(-0.741219\pi\)
−0.687333 + 0.726342i \(0.741219\pi\)
\(888\) 0 0
\(889\) −5544.58 −0.209178
\(890\) −13473.6 −0.507456
\(891\) 0 0
\(892\) −80966.9 −3.03921
\(893\) 21175.4 0.793512
\(894\) 0 0
\(895\) 14835.0 0.554054
\(896\) −83753.6 −3.12278
\(897\) 0 0
\(898\) −33022.5 −1.22714
\(899\) −617.300 −0.0229011
\(900\) 0 0
\(901\) 7868.75 0.290950
\(902\) 4046.38 0.149368
\(903\) 0 0
\(904\) −2009.37 −0.0739278
\(905\) −16691.0 −0.613068
\(906\) 0 0
\(907\) 33679.5 1.23297 0.616487 0.787365i \(-0.288555\pi\)
0.616487 + 0.787365i \(0.288555\pi\)
\(908\) 5633.83 0.205909
\(909\) 0 0
\(910\) 97070.3 3.53610
\(911\) −32437.2 −1.17968 −0.589841 0.807519i \(-0.700810\pi\)
−0.589841 + 0.807519i \(0.700810\pi\)
\(912\) 0 0
\(913\) 159.629 0.00578636
\(914\) 48958.8 1.77179
\(915\) 0 0
\(916\) 20452.4 0.737736
\(917\) 58919.7 2.12181
\(918\) 0 0
\(919\) −3511.45 −0.126042 −0.0630208 0.998012i \(-0.520073\pi\)
−0.0630208 + 0.998012i \(0.520073\pi\)
\(920\) 36437.5 1.30577
\(921\) 0 0
\(922\) −2978.87 −0.106403
\(923\) 78466.6 2.79822
\(924\) 0 0
\(925\) 6586.11 0.234108
\(926\) 28825.5 1.02296
\(927\) 0 0
\(928\) 1086.03 0.0384166
\(929\) −13527.2 −0.477733 −0.238866 0.971052i \(-0.576776\pi\)
−0.238866 + 0.971052i \(0.576776\pi\)
\(930\) 0 0
\(931\) −24276.1 −0.854583
\(932\) −49968.6 −1.75620
\(933\) 0 0
\(934\) −3883.87 −0.136064
\(935\) −935.695 −0.0327278
\(936\) 0 0
\(937\) −8862.80 −0.309002 −0.154501 0.987993i \(-0.549377\pi\)
−0.154501 + 0.987993i \(0.549377\pi\)
\(938\) −111371. −3.87674
\(939\) 0 0
\(940\) −64073.4 −2.22324
\(941\) −22824.0 −0.790693 −0.395346 0.918532i \(-0.629375\pi\)
−0.395346 + 0.918532i \(0.629375\pi\)
\(942\) 0 0
\(943\) 17763.1 0.613412
\(944\) −1612.84 −0.0556074
\(945\) 0 0
\(946\) 15604.4 0.536305
\(947\) 26308.4 0.902754 0.451377 0.892333i \(-0.350933\pi\)
0.451377 + 0.892333i \(0.350933\pi\)
\(948\) 0 0
\(949\) −58815.5 −2.01184
\(950\) −11717.5 −0.400176
\(951\) 0 0
\(952\) −17011.8 −0.579155
\(953\) −11947.5 −0.406106 −0.203053 0.979168i \(-0.565086\pi\)
−0.203053 + 0.979168i \(0.565086\pi\)
\(954\) 0 0
\(955\) −12830.1 −0.434734
\(956\) 22118.9 0.748300
\(957\) 0 0
\(958\) −77200.5 −2.60358
\(959\) 33403.5 1.12477
\(960\) 0 0
\(961\) −26951.5 −0.904688
\(962\) 39825.5 1.33475
\(963\) 0 0
\(964\) 49932.2 1.66826
\(965\) −1974.99 −0.0658830
\(966\) 0 0
\(967\) 21505.3 0.715163 0.357581 0.933882i \(-0.383601\pi\)
0.357581 + 0.933882i \(0.383601\pi\)
\(968\) 40531.7 1.34580
\(969\) 0 0
\(970\) −41527.9 −1.37462
\(971\) −45685.3 −1.50990 −0.754950 0.655783i \(-0.772339\pi\)
−0.754950 + 0.655783i \(0.772339\pi\)
\(972\) 0 0
\(973\) −28579.4 −0.941636
\(974\) −12971.2 −0.426719
\(975\) 0 0
\(976\) 1997.24 0.0655020
\(977\) −31710.3 −1.03839 −0.519193 0.854657i \(-0.673767\pi\)
−0.519193 + 0.854657i \(0.673767\pi\)
\(978\) 0 0
\(979\) 2657.99 0.0867721
\(980\) 73455.7 2.39434
\(981\) 0 0
\(982\) −39716.8 −1.29065
\(983\) −46038.9 −1.49381 −0.746904 0.664932i \(-0.768460\pi\)
−0.746904 + 0.664932i \(0.768460\pi\)
\(984\) 0 0
\(985\) 5309.28 0.171744
\(986\) 937.392 0.0302765
\(987\) 0 0
\(988\) −45835.6 −1.47593
\(989\) 68501.8 2.20246
\(990\) 0 0
\(991\) 14394.9 0.461420 0.230710 0.973023i \(-0.425895\pi\)
0.230710 + 0.973023i \(0.425895\pi\)
\(992\) −4995.50 −0.159886
\(993\) 0 0
\(994\) 139883. 4.46359
\(995\) −1839.74 −0.0586167
\(996\) 0 0
\(997\) −33473.4 −1.06330 −0.531652 0.846963i \(-0.678428\pi\)
−0.531652 + 0.846963i \(0.678428\pi\)
\(998\) −65505.0 −2.07768
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.4.a.f.1.1 3
3.2 odd 2 51.4.a.e.1.3 3
4.3 odd 2 2448.4.a.bd.1.3 3
12.11 even 2 816.4.a.s.1.1 3
15.14 odd 2 1275.4.a.q.1.1 3
21.20 even 2 2499.4.a.n.1.3 3
51.50 odd 2 867.4.a.k.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.e.1.3 3 3.2 odd 2
153.4.a.f.1.1 3 1.1 even 1 trivial
816.4.a.s.1.1 3 12.11 even 2
867.4.a.k.1.3 3 51.50 odd 2
1275.4.a.q.1.1 3 15.14 odd 2
2448.4.a.bd.1.3 3 4.3 odd 2
2499.4.a.n.1.3 3 21.20 even 2