Properties

Label 153.4.a.e
Level $153$
Weight $4$
Character orbit 153.a
Self dual yes
Analytic conductor $9.027$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [153,4,Mod(1,153)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(153, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("153.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 153.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.02729223088\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + 10 q^{4} + (4 \beta - 3) q^{5} + (4 \beta - 4) q^{7} + 2 \beta q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{2} + 10 q^{4} + (4 \beta - 3) q^{5} + (4 \beta - 4) q^{7} + 2 \beta q^{8} + ( - 3 \beta + 72) q^{10} + ( - 4 \beta - 33) q^{11} + (8 \beta - 1) q^{13} + ( - 4 \beta + 72) q^{14} - 44 q^{16} + 17 q^{17} + (16 \beta - 13) q^{19} + (40 \beta - 30) q^{20} + ( - 33 \beta - 72) q^{22} + ( - 4 \beta + 99) q^{23} + ( - 24 \beta + 172) q^{25} + ( - \beta + 144) q^{26} + (40 \beta - 40) q^{28} + ( - 16 \beta - 222) q^{29} + ( - 8 \beta + 266) q^{31} - 60 \beta q^{32} + 17 \beta q^{34} + ( - 28 \beta + 300) q^{35} + ( - 64 \beta + 44) q^{37} + ( - 13 \beta + 288) q^{38} + ( - 6 \beta + 144) q^{40} + ( - 36 \beta - 285) q^{41} + ( - 16 \beta - 91) q^{43} + ( - 40 \beta - 330) q^{44} + (99 \beta - 72) q^{46} + (12 \beta - 210) q^{47} + ( - 32 \beta - 39) q^{49} + (172 \beta - 432) q^{50} + (80 \beta - 10) q^{52} + ( - 124 \beta + 150) q^{53} + ( - 120 \beta - 189) q^{55} + ( - 8 \beta + 144) q^{56} + ( - 222 \beta - 288) q^{58} + (96 \beta - 222) q^{59} + (156 \beta + 200) q^{61} + (266 \beta - 144) q^{62} - 728 q^{64} + ( - 28 \beta + 579) q^{65} + (72 \beta - 484) q^{67} + 170 q^{68} + (300 \beta - 504) q^{70} + (56 \beta + 924) q^{71} + ( - 12 \beta + 434) q^{73} + (44 \beta - 1152) q^{74} + (160 \beta - 130) q^{76} + ( - 116 \beta - 156) q^{77} + 254 q^{79} + ( - 176 \beta + 132) q^{80} + ( - 285 \beta - 648) q^{82} + (12 \beta - 498) q^{83} + (68 \beta - 51) q^{85} + ( - 91 \beta - 288) q^{86} + ( - 66 \beta - 144) q^{88} + (252 \beta + 144) q^{89} + ( - 36 \beta + 580) q^{91} + ( - 40 \beta + 990) q^{92} + ( - 210 \beta + 216) q^{94} + ( - 100 \beta + 1191) q^{95} + ( - 52 \beta + 512) q^{97} + ( - 39 \beta - 576) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 20 q^{4} - 6 q^{5} - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 20 q^{4} - 6 q^{5} - 8 q^{7} + 144 q^{10} - 66 q^{11} - 2 q^{13} + 144 q^{14} - 88 q^{16} + 34 q^{17} - 26 q^{19} - 60 q^{20} - 144 q^{22} + 198 q^{23} + 344 q^{25} + 288 q^{26} - 80 q^{28} - 444 q^{29} + 532 q^{31} + 600 q^{35} + 88 q^{37} + 576 q^{38} + 288 q^{40} - 570 q^{41} - 182 q^{43} - 660 q^{44} - 144 q^{46} - 420 q^{47} - 78 q^{49} - 864 q^{50} - 20 q^{52} + 300 q^{53} - 378 q^{55} + 288 q^{56} - 576 q^{58} - 444 q^{59} + 400 q^{61} - 288 q^{62} - 1456 q^{64} + 1158 q^{65} - 968 q^{67} + 340 q^{68} - 1008 q^{70} + 1848 q^{71} + 868 q^{73} - 2304 q^{74} - 260 q^{76} - 312 q^{77} + 508 q^{79} + 264 q^{80} - 1296 q^{82} - 996 q^{83} - 102 q^{85} - 576 q^{86} - 288 q^{88} + 288 q^{89} + 1160 q^{91} + 1980 q^{92} + 432 q^{94} + 2382 q^{95} + 1024 q^{97} - 1152 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−4.24264 0 10.0000 −19.9706 0 −20.9706 −8.48528 0 84.7279
1.2 4.24264 0 10.0000 13.9706 0 12.9706 8.48528 0 59.2721
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 153.4.a.e 2
3.b odd 2 1 51.4.a.d 2
4.b odd 2 1 2448.4.a.v 2
12.b even 2 1 816.4.a.o 2
15.d odd 2 1 1275.4.a.m 2
21.c even 2 1 2499.4.a.l 2
51.c odd 2 1 867.4.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.4.a.d 2 3.b odd 2 1
153.4.a.e 2 1.a even 1 1 trivial
816.4.a.o 2 12.b even 2 1
867.4.a.j 2 51.c odd 2 1
1275.4.a.m 2 15.d odd 2 1
2448.4.a.v 2 4.b odd 2 1
2499.4.a.l 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(153))\):

\( T_{2}^{2} - 18 \) Copy content Toggle raw display
\( T_{5}^{2} + 6T_{5} - 279 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 18 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 6T - 279 \) Copy content Toggle raw display
$7$ \( T^{2} + 8T - 272 \) Copy content Toggle raw display
$11$ \( T^{2} + 66T + 801 \) Copy content Toggle raw display
$13$ \( T^{2} + 2T - 1151 \) Copy content Toggle raw display
$17$ \( (T - 17)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 26T - 4439 \) Copy content Toggle raw display
$23$ \( T^{2} - 198T + 9513 \) Copy content Toggle raw display
$29$ \( T^{2} + 444T + 44676 \) Copy content Toggle raw display
$31$ \( T^{2} - 532T + 69604 \) Copy content Toggle raw display
$37$ \( T^{2} - 88T - 71792 \) Copy content Toggle raw display
$41$ \( T^{2} + 570T + 57897 \) Copy content Toggle raw display
$43$ \( T^{2} + 182T + 3673 \) Copy content Toggle raw display
$47$ \( T^{2} + 420T + 41508 \) Copy content Toggle raw display
$53$ \( T^{2} - 300T - 254268 \) Copy content Toggle raw display
$59$ \( T^{2} + 444T - 116604 \) Copy content Toggle raw display
$61$ \( T^{2} - 400T - 398048 \) Copy content Toggle raw display
$67$ \( T^{2} + 968T + 140944 \) Copy content Toggle raw display
$71$ \( T^{2} - 1848 T + 797328 \) Copy content Toggle raw display
$73$ \( T^{2} - 868T + 185764 \) Copy content Toggle raw display
$79$ \( (T - 254)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 996T + 245412 \) Copy content Toggle raw display
$89$ \( T^{2} - 288 T - 1122336 \) Copy content Toggle raw display
$97$ \( T^{2} - 1024 T + 213472 \) Copy content Toggle raw display
show more
show less