Properties

Label 153.4.a.d.1.1
Level $153$
Weight $4$
Character 153.1
Self dual yes
Analytic conductor $9.027$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [153,4,Mod(1,153)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(153, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("153.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 153.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.02729223088\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 153.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{2} +1.00000 q^{4} -6.00000 q^{5} -28.0000 q^{7} -21.0000 q^{8} +O(q^{10})\) \(q+3.00000 q^{2} +1.00000 q^{4} -6.00000 q^{5} -28.0000 q^{7} -21.0000 q^{8} -18.0000 q^{10} +24.0000 q^{11} -58.0000 q^{13} -84.0000 q^{14} -71.0000 q^{16} -17.0000 q^{17} +116.000 q^{19} -6.00000 q^{20} +72.0000 q^{22} +60.0000 q^{23} -89.0000 q^{25} -174.000 q^{26} -28.0000 q^{28} -30.0000 q^{29} -172.000 q^{31} -45.0000 q^{32} -51.0000 q^{34} +168.000 q^{35} -58.0000 q^{37} +348.000 q^{38} +126.000 q^{40} +342.000 q^{41} -148.000 q^{43} +24.0000 q^{44} +180.000 q^{46} -288.000 q^{47} +441.000 q^{49} -267.000 q^{50} -58.0000 q^{52} -318.000 q^{53} -144.000 q^{55} +588.000 q^{56} -90.0000 q^{58} -252.000 q^{59} +110.000 q^{61} -516.000 q^{62} +433.000 q^{64} +348.000 q^{65} -484.000 q^{67} -17.0000 q^{68} +504.000 q^{70} +708.000 q^{71} +362.000 q^{73} -174.000 q^{74} +116.000 q^{76} -672.000 q^{77} -484.000 q^{79} +426.000 q^{80} +1026.00 q^{82} -756.000 q^{83} +102.000 q^{85} -444.000 q^{86} -504.000 q^{88} +774.000 q^{89} +1624.00 q^{91} +60.0000 q^{92} -864.000 q^{94} -696.000 q^{95} -382.000 q^{97} +1323.00 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.00000 1.06066 0.530330 0.847791i \(-0.322068\pi\)
0.530330 + 0.847791i \(0.322068\pi\)
\(3\) 0 0
\(4\) 1.00000 0.125000
\(5\) −6.00000 −0.536656 −0.268328 0.963328i \(-0.586471\pi\)
−0.268328 + 0.963328i \(0.586471\pi\)
\(6\) 0 0
\(7\) −28.0000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) −21.0000 −0.928078
\(9\) 0 0
\(10\) −18.0000 −0.569210
\(11\) 24.0000 0.657843 0.328921 0.944357i \(-0.393315\pi\)
0.328921 + 0.944357i \(0.393315\pi\)
\(12\) 0 0
\(13\) −58.0000 −1.23741 −0.618704 0.785624i \(-0.712342\pi\)
−0.618704 + 0.785624i \(0.712342\pi\)
\(14\) −84.0000 −1.60357
\(15\) 0 0
\(16\) −71.0000 −1.10938
\(17\) −17.0000 −0.242536
\(18\) 0 0
\(19\) 116.000 1.40064 0.700322 0.713827i \(-0.253040\pi\)
0.700322 + 0.713827i \(0.253040\pi\)
\(20\) −6.00000 −0.0670820
\(21\) 0 0
\(22\) 72.0000 0.697748
\(23\) 60.0000 0.543951 0.271975 0.962304i \(-0.412323\pi\)
0.271975 + 0.962304i \(0.412323\pi\)
\(24\) 0 0
\(25\) −89.0000 −0.712000
\(26\) −174.000 −1.31247
\(27\) 0 0
\(28\) −28.0000 −0.188982
\(29\) −30.0000 −0.192099 −0.0960493 0.995377i \(-0.530621\pi\)
−0.0960493 + 0.995377i \(0.530621\pi\)
\(30\) 0 0
\(31\) −172.000 −0.996520 −0.498260 0.867028i \(-0.666027\pi\)
−0.498260 + 0.867028i \(0.666027\pi\)
\(32\) −45.0000 −0.248592
\(33\) 0 0
\(34\) −51.0000 −0.257248
\(35\) 168.000 0.811348
\(36\) 0 0
\(37\) −58.0000 −0.257707 −0.128853 0.991664i \(-0.541130\pi\)
−0.128853 + 0.991664i \(0.541130\pi\)
\(38\) 348.000 1.48561
\(39\) 0 0
\(40\) 126.000 0.498059
\(41\) 342.000 1.30272 0.651359 0.758770i \(-0.274199\pi\)
0.651359 + 0.758770i \(0.274199\pi\)
\(42\) 0 0
\(43\) −148.000 −0.524879 −0.262439 0.964948i \(-0.584527\pi\)
−0.262439 + 0.964948i \(0.584527\pi\)
\(44\) 24.0000 0.0822304
\(45\) 0 0
\(46\) 180.000 0.576947
\(47\) −288.000 −0.893811 −0.446906 0.894581i \(-0.647474\pi\)
−0.446906 + 0.894581i \(0.647474\pi\)
\(48\) 0 0
\(49\) 441.000 1.28571
\(50\) −267.000 −0.755190
\(51\) 0 0
\(52\) −58.0000 −0.154676
\(53\) −318.000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) −144.000 −0.353036
\(56\) 588.000 1.40312
\(57\) 0 0
\(58\) −90.0000 −0.203751
\(59\) −252.000 −0.556061 −0.278031 0.960572i \(-0.589682\pi\)
−0.278031 + 0.960572i \(0.589682\pi\)
\(60\) 0 0
\(61\) 110.000 0.230886 0.115443 0.993314i \(-0.463171\pi\)
0.115443 + 0.993314i \(0.463171\pi\)
\(62\) −516.000 −1.05697
\(63\) 0 0
\(64\) 433.000 0.845703
\(65\) 348.000 0.664063
\(66\) 0 0
\(67\) −484.000 −0.882537 −0.441269 0.897375i \(-0.645471\pi\)
−0.441269 + 0.897375i \(0.645471\pi\)
\(68\) −17.0000 −0.0303170
\(69\) 0 0
\(70\) 504.000 0.860565
\(71\) 708.000 1.18344 0.591719 0.806144i \(-0.298449\pi\)
0.591719 + 0.806144i \(0.298449\pi\)
\(72\) 0 0
\(73\) 362.000 0.580396 0.290198 0.956967i \(-0.406279\pi\)
0.290198 + 0.956967i \(0.406279\pi\)
\(74\) −174.000 −0.273339
\(75\) 0 0
\(76\) 116.000 0.175080
\(77\) −672.000 −0.994565
\(78\) 0 0
\(79\) −484.000 −0.689294 −0.344647 0.938732i \(-0.612001\pi\)
−0.344647 + 0.938732i \(0.612001\pi\)
\(80\) 426.000 0.595353
\(81\) 0 0
\(82\) 1026.00 1.38174
\(83\) −756.000 −0.999780 −0.499890 0.866089i \(-0.666626\pi\)
−0.499890 + 0.866089i \(0.666626\pi\)
\(84\) 0 0
\(85\) 102.000 0.130158
\(86\) −444.000 −0.556718
\(87\) 0 0
\(88\) −504.000 −0.610529
\(89\) 774.000 0.921841 0.460920 0.887441i \(-0.347519\pi\)
0.460920 + 0.887441i \(0.347519\pi\)
\(90\) 0 0
\(91\) 1624.00 1.87079
\(92\) 60.0000 0.0679938
\(93\) 0 0
\(94\) −864.000 −0.948030
\(95\) −696.000 −0.751664
\(96\) 0 0
\(97\) −382.000 −0.399858 −0.199929 0.979810i \(-0.564071\pi\)
−0.199929 + 0.979810i \(0.564071\pi\)
\(98\) 1323.00 1.36371
\(99\) 0 0
\(100\) −89.0000 −0.0890000
\(101\) 210.000 0.206889 0.103444 0.994635i \(-0.467014\pi\)
0.103444 + 0.994635i \(0.467014\pi\)
\(102\) 0 0
\(103\) −232.000 −0.221938 −0.110969 0.993824i \(-0.535395\pi\)
−0.110969 + 0.993824i \(0.535395\pi\)
\(104\) 1218.00 1.14841
\(105\) 0 0
\(106\) −954.000 −0.874157
\(107\) −432.000 −0.390309 −0.195154 0.980773i \(-0.562521\pi\)
−0.195154 + 0.980773i \(0.562521\pi\)
\(108\) 0 0
\(109\) −1186.00 −1.04219 −0.521093 0.853500i \(-0.674475\pi\)
−0.521093 + 0.853500i \(0.674475\pi\)
\(110\) −432.000 −0.374451
\(111\) 0 0
\(112\) 1988.00 1.67722
\(113\) 366.000 0.304694 0.152347 0.988327i \(-0.451317\pi\)
0.152347 + 0.988327i \(0.451317\pi\)
\(114\) 0 0
\(115\) −360.000 −0.291915
\(116\) −30.0000 −0.0240123
\(117\) 0 0
\(118\) −756.000 −0.589792
\(119\) 476.000 0.366679
\(120\) 0 0
\(121\) −755.000 −0.567243
\(122\) 330.000 0.244892
\(123\) 0 0
\(124\) −172.000 −0.124565
\(125\) 1284.00 0.918756
\(126\) 0 0
\(127\) −472.000 −0.329789 −0.164895 0.986311i \(-0.552728\pi\)
−0.164895 + 0.986311i \(0.552728\pi\)
\(128\) 1659.00 1.14560
\(129\) 0 0
\(130\) 1044.00 0.704345
\(131\) −2760.00 −1.84078 −0.920391 0.391000i \(-0.872129\pi\)
−0.920391 + 0.391000i \(0.872129\pi\)
\(132\) 0 0
\(133\) −3248.00 −2.11757
\(134\) −1452.00 −0.936072
\(135\) 0 0
\(136\) 357.000 0.225092
\(137\) −1098.00 −0.684733 −0.342367 0.939566i \(-0.611229\pi\)
−0.342367 + 0.939566i \(0.611229\pi\)
\(138\) 0 0
\(139\) 2528.00 1.54261 0.771303 0.636468i \(-0.219605\pi\)
0.771303 + 0.636468i \(0.219605\pi\)
\(140\) 168.000 0.101419
\(141\) 0 0
\(142\) 2124.00 1.25523
\(143\) −1392.00 −0.814020
\(144\) 0 0
\(145\) 180.000 0.103091
\(146\) 1086.00 0.615603
\(147\) 0 0
\(148\) −58.0000 −0.0322133
\(149\) −1614.00 −0.887410 −0.443705 0.896173i \(-0.646336\pi\)
−0.443705 + 0.896173i \(0.646336\pi\)
\(150\) 0 0
\(151\) −3328.00 −1.79357 −0.896784 0.442468i \(-0.854103\pi\)
−0.896784 + 0.442468i \(0.854103\pi\)
\(152\) −2436.00 −1.29991
\(153\) 0 0
\(154\) −2016.00 −1.05490
\(155\) 1032.00 0.534789
\(156\) 0 0
\(157\) −2458.00 −1.24949 −0.624744 0.780829i \(-0.714797\pi\)
−0.624744 + 0.780829i \(0.714797\pi\)
\(158\) −1452.00 −0.731107
\(159\) 0 0
\(160\) 270.000 0.133409
\(161\) −1680.00 −0.822376
\(162\) 0 0
\(163\) 272.000 0.130704 0.0653518 0.997862i \(-0.479183\pi\)
0.0653518 + 0.997862i \(0.479183\pi\)
\(164\) 342.000 0.162840
\(165\) 0 0
\(166\) −2268.00 −1.06043
\(167\) −3516.00 −1.62920 −0.814600 0.580024i \(-0.803043\pi\)
−0.814600 + 0.580024i \(0.803043\pi\)
\(168\) 0 0
\(169\) 1167.00 0.531179
\(170\) 306.000 0.138054
\(171\) 0 0
\(172\) −148.000 −0.0656099
\(173\) 1842.00 0.809507 0.404753 0.914426i \(-0.367357\pi\)
0.404753 + 0.914426i \(0.367357\pi\)
\(174\) 0 0
\(175\) 2492.00 1.07644
\(176\) −1704.00 −0.729795
\(177\) 0 0
\(178\) 2322.00 0.977760
\(179\) 3516.00 1.46815 0.734073 0.679070i \(-0.237617\pi\)
0.734073 + 0.679070i \(0.237617\pi\)
\(180\) 0 0
\(181\) 3398.00 1.39542 0.697711 0.716379i \(-0.254202\pi\)
0.697711 + 0.716379i \(0.254202\pi\)
\(182\) 4872.00 1.98427
\(183\) 0 0
\(184\) −1260.00 −0.504828
\(185\) 348.000 0.138300
\(186\) 0 0
\(187\) −408.000 −0.159550
\(188\) −288.000 −0.111726
\(189\) 0 0
\(190\) −2088.00 −0.797260
\(191\) 2640.00 1.00012 0.500062 0.865990i \(-0.333311\pi\)
0.500062 + 0.865990i \(0.333311\pi\)
\(192\) 0 0
\(193\) 2882.00 1.07488 0.537438 0.843304i \(-0.319392\pi\)
0.537438 + 0.843304i \(0.319392\pi\)
\(194\) −1146.00 −0.424113
\(195\) 0 0
\(196\) 441.000 0.160714
\(197\) 42.0000 0.0151897 0.00759486 0.999971i \(-0.497582\pi\)
0.00759486 + 0.999971i \(0.497582\pi\)
\(198\) 0 0
\(199\) −3220.00 −1.14703 −0.573517 0.819194i \(-0.694421\pi\)
−0.573517 + 0.819194i \(0.694421\pi\)
\(200\) 1869.00 0.660791
\(201\) 0 0
\(202\) 630.000 0.219439
\(203\) 840.000 0.290426
\(204\) 0 0
\(205\) −2052.00 −0.699112
\(206\) −696.000 −0.235401
\(207\) 0 0
\(208\) 4118.00 1.37275
\(209\) 2784.00 0.921403
\(210\) 0 0
\(211\) −2080.00 −0.678640 −0.339320 0.940671i \(-0.610197\pi\)
−0.339320 + 0.940671i \(0.610197\pi\)
\(212\) −318.000 −0.103020
\(213\) 0 0
\(214\) −1296.00 −0.413985
\(215\) 888.000 0.281680
\(216\) 0 0
\(217\) 4816.00 1.50660
\(218\) −3558.00 −1.10540
\(219\) 0 0
\(220\) −144.000 −0.0441294
\(221\) 986.000 0.300116
\(222\) 0 0
\(223\) 4664.00 1.40056 0.700279 0.713869i \(-0.253059\pi\)
0.700279 + 0.713869i \(0.253059\pi\)
\(224\) 1260.00 0.375836
\(225\) 0 0
\(226\) 1098.00 0.323176
\(227\) 1440.00 0.421040 0.210520 0.977590i \(-0.432484\pi\)
0.210520 + 0.977590i \(0.432484\pi\)
\(228\) 0 0
\(229\) −1186.00 −0.342241 −0.171120 0.985250i \(-0.554739\pi\)
−0.171120 + 0.985250i \(0.554739\pi\)
\(230\) −1080.00 −0.309622
\(231\) 0 0
\(232\) 630.000 0.178282
\(233\) 5334.00 1.49975 0.749875 0.661579i \(-0.230113\pi\)
0.749875 + 0.661579i \(0.230113\pi\)
\(234\) 0 0
\(235\) 1728.00 0.479669
\(236\) −252.000 −0.0695076
\(237\) 0 0
\(238\) 1428.00 0.388922
\(239\) −5328.00 −1.44201 −0.721003 0.692931i \(-0.756319\pi\)
−0.721003 + 0.692931i \(0.756319\pi\)
\(240\) 0 0
\(241\) 5618.00 1.50161 0.750803 0.660526i \(-0.229667\pi\)
0.750803 + 0.660526i \(0.229667\pi\)
\(242\) −2265.00 −0.601652
\(243\) 0 0
\(244\) 110.000 0.0288608
\(245\) −2646.00 −0.689987
\(246\) 0 0
\(247\) −6728.00 −1.73317
\(248\) 3612.00 0.924848
\(249\) 0 0
\(250\) 3852.00 0.974487
\(251\) 2028.00 0.509985 0.254992 0.966943i \(-0.417927\pi\)
0.254992 + 0.966943i \(0.417927\pi\)
\(252\) 0 0
\(253\) 1440.00 0.357834
\(254\) −1416.00 −0.349794
\(255\) 0 0
\(256\) 1513.00 0.369385
\(257\) 1902.00 0.461648 0.230824 0.972996i \(-0.425858\pi\)
0.230824 + 0.972996i \(0.425858\pi\)
\(258\) 0 0
\(259\) 1624.00 0.389616
\(260\) 348.000 0.0830079
\(261\) 0 0
\(262\) −8280.00 −1.95244
\(263\) 5472.00 1.28296 0.641479 0.767141i \(-0.278321\pi\)
0.641479 + 0.767141i \(0.278321\pi\)
\(264\) 0 0
\(265\) 1908.00 0.442292
\(266\) −9744.00 −2.24603
\(267\) 0 0
\(268\) −484.000 −0.110317
\(269\) 3570.00 0.809170 0.404585 0.914500i \(-0.367416\pi\)
0.404585 + 0.914500i \(0.367416\pi\)
\(270\) 0 0
\(271\) 272.000 0.0609698 0.0304849 0.999535i \(-0.490295\pi\)
0.0304849 + 0.999535i \(0.490295\pi\)
\(272\) 1207.00 0.269063
\(273\) 0 0
\(274\) −3294.00 −0.726269
\(275\) −2136.00 −0.468384
\(276\) 0 0
\(277\) 3830.00 0.830767 0.415383 0.909646i \(-0.363647\pi\)
0.415383 + 0.909646i \(0.363647\pi\)
\(278\) 7584.00 1.63618
\(279\) 0 0
\(280\) −3528.00 −0.752994
\(281\) −8874.00 −1.88391 −0.941955 0.335740i \(-0.891014\pi\)
−0.941955 + 0.335740i \(0.891014\pi\)
\(282\) 0 0
\(283\) −2632.00 −0.552849 −0.276424 0.961036i \(-0.589150\pi\)
−0.276424 + 0.961036i \(0.589150\pi\)
\(284\) 708.000 0.147930
\(285\) 0 0
\(286\) −4176.00 −0.863399
\(287\) −9576.00 −1.96952
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) 540.000 0.109344
\(291\) 0 0
\(292\) 362.000 0.0725495
\(293\) 6402.00 1.27648 0.638240 0.769837i \(-0.279663\pi\)
0.638240 + 0.769837i \(0.279663\pi\)
\(294\) 0 0
\(295\) 1512.00 0.298414
\(296\) 1218.00 0.239172
\(297\) 0 0
\(298\) −4842.00 −0.941240
\(299\) −3480.00 −0.673089
\(300\) 0 0
\(301\) 4144.00 0.793542
\(302\) −9984.00 −1.90237
\(303\) 0 0
\(304\) −8236.00 −1.55384
\(305\) −660.000 −0.123907
\(306\) 0 0
\(307\) −8980.00 −1.66943 −0.834716 0.550681i \(-0.814368\pi\)
−0.834716 + 0.550681i \(0.814368\pi\)
\(308\) −672.000 −0.124321
\(309\) 0 0
\(310\) 3096.00 0.567229
\(311\) 3972.00 0.724217 0.362108 0.932136i \(-0.382057\pi\)
0.362108 + 0.932136i \(0.382057\pi\)
\(312\) 0 0
\(313\) 4730.00 0.854171 0.427085 0.904211i \(-0.359540\pi\)
0.427085 + 0.904211i \(0.359540\pi\)
\(314\) −7374.00 −1.32528
\(315\) 0 0
\(316\) −484.000 −0.0861618
\(317\) 2898.00 0.513463 0.256732 0.966483i \(-0.417354\pi\)
0.256732 + 0.966483i \(0.417354\pi\)
\(318\) 0 0
\(319\) −720.000 −0.126371
\(320\) −2598.00 −0.453852
\(321\) 0 0
\(322\) −5040.00 −0.872262
\(323\) −1972.00 −0.339706
\(324\) 0 0
\(325\) 5162.00 0.881035
\(326\) 816.000 0.138632
\(327\) 0 0
\(328\) −7182.00 −1.20902
\(329\) 8064.00 1.35132
\(330\) 0 0
\(331\) −4564.00 −0.757886 −0.378943 0.925420i \(-0.623712\pi\)
−0.378943 + 0.925420i \(0.623712\pi\)
\(332\) −756.000 −0.124973
\(333\) 0 0
\(334\) −10548.0 −1.72803
\(335\) 2904.00 0.473619
\(336\) 0 0
\(337\) 722.000 0.116706 0.0583529 0.998296i \(-0.481415\pi\)
0.0583529 + 0.998296i \(0.481415\pi\)
\(338\) 3501.00 0.563400
\(339\) 0 0
\(340\) 102.000 0.0162698
\(341\) −4128.00 −0.655553
\(342\) 0 0
\(343\) −2744.00 −0.431959
\(344\) 3108.00 0.487128
\(345\) 0 0
\(346\) 5526.00 0.858612
\(347\) −5544.00 −0.857687 −0.428844 0.903379i \(-0.641079\pi\)
−0.428844 + 0.903379i \(0.641079\pi\)
\(348\) 0 0
\(349\) 11126.0 1.70648 0.853239 0.521519i \(-0.174635\pi\)
0.853239 + 0.521519i \(0.174635\pi\)
\(350\) 7476.00 1.14174
\(351\) 0 0
\(352\) −1080.00 −0.163535
\(353\) −7842.00 −1.18240 −0.591200 0.806525i \(-0.701346\pi\)
−0.591200 + 0.806525i \(0.701346\pi\)
\(354\) 0 0
\(355\) −4248.00 −0.635100
\(356\) 774.000 0.115230
\(357\) 0 0
\(358\) 10548.0 1.55720
\(359\) −5040.00 −0.740950 −0.370475 0.928842i \(-0.620805\pi\)
−0.370475 + 0.928842i \(0.620805\pi\)
\(360\) 0 0
\(361\) 6597.00 0.961802
\(362\) 10194.0 1.48007
\(363\) 0 0
\(364\) 1624.00 0.233848
\(365\) −2172.00 −0.311473
\(366\) 0 0
\(367\) −8404.00 −1.19533 −0.597664 0.801747i \(-0.703904\pi\)
−0.597664 + 0.801747i \(0.703904\pi\)
\(368\) −4260.00 −0.603445
\(369\) 0 0
\(370\) 1044.00 0.146689
\(371\) 8904.00 1.24602
\(372\) 0 0
\(373\) −8098.00 −1.12412 −0.562062 0.827095i \(-0.689992\pi\)
−0.562062 + 0.827095i \(0.689992\pi\)
\(374\) −1224.00 −0.169229
\(375\) 0 0
\(376\) 6048.00 0.829526
\(377\) 1740.00 0.237704
\(378\) 0 0
\(379\) 320.000 0.0433702 0.0216851 0.999765i \(-0.493097\pi\)
0.0216851 + 0.999765i \(0.493097\pi\)
\(380\) −696.000 −0.0939580
\(381\) 0 0
\(382\) 7920.00 1.06079
\(383\) 10872.0 1.45048 0.725239 0.688497i \(-0.241729\pi\)
0.725239 + 0.688497i \(0.241729\pi\)
\(384\) 0 0
\(385\) 4032.00 0.533740
\(386\) 8646.00 1.14008
\(387\) 0 0
\(388\) −382.000 −0.0499822
\(389\) −1374.00 −0.179086 −0.0895431 0.995983i \(-0.528541\pi\)
−0.0895431 + 0.995983i \(0.528541\pi\)
\(390\) 0 0
\(391\) −1020.00 −0.131927
\(392\) −9261.00 −1.19324
\(393\) 0 0
\(394\) 126.000 0.0161111
\(395\) 2904.00 0.369914
\(396\) 0 0
\(397\) −7522.00 −0.950928 −0.475464 0.879735i \(-0.657720\pi\)
−0.475464 + 0.879735i \(0.657720\pi\)
\(398\) −9660.00 −1.21661
\(399\) 0 0
\(400\) 6319.00 0.789875
\(401\) −2706.00 −0.336986 −0.168493 0.985703i \(-0.553890\pi\)
−0.168493 + 0.985703i \(0.553890\pi\)
\(402\) 0 0
\(403\) 9976.00 1.23310
\(404\) 210.000 0.0258611
\(405\) 0 0
\(406\) 2520.00 0.308043
\(407\) −1392.00 −0.169530
\(408\) 0 0
\(409\) 266.000 0.0321586 0.0160793 0.999871i \(-0.494882\pi\)
0.0160793 + 0.999871i \(0.494882\pi\)
\(410\) −6156.00 −0.741520
\(411\) 0 0
\(412\) −232.000 −0.0277423
\(413\) 7056.00 0.840685
\(414\) 0 0
\(415\) 4536.00 0.536539
\(416\) 2610.00 0.307610
\(417\) 0 0
\(418\) 8352.00 0.977296
\(419\) −2688.00 −0.313407 −0.156703 0.987646i \(-0.550087\pi\)
−0.156703 + 0.987646i \(0.550087\pi\)
\(420\) 0 0
\(421\) −13810.0 −1.59871 −0.799357 0.600857i \(-0.794826\pi\)
−0.799357 + 0.600857i \(0.794826\pi\)
\(422\) −6240.00 −0.719807
\(423\) 0 0
\(424\) 6678.00 0.764888
\(425\) 1513.00 0.172685
\(426\) 0 0
\(427\) −3080.00 −0.349067
\(428\) −432.000 −0.0487886
\(429\) 0 0
\(430\) 2664.00 0.298766
\(431\) −3036.00 −0.339302 −0.169651 0.985504i \(-0.554264\pi\)
−0.169651 + 0.985504i \(0.554264\pi\)
\(432\) 0 0
\(433\) −11422.0 −1.26768 −0.633841 0.773463i \(-0.718523\pi\)
−0.633841 + 0.773463i \(0.718523\pi\)
\(434\) 14448.0 1.59799
\(435\) 0 0
\(436\) −1186.00 −0.130273
\(437\) 6960.00 0.761881
\(438\) 0 0
\(439\) −52.0000 −0.00565336 −0.00282668 0.999996i \(-0.500900\pi\)
−0.00282668 + 0.999996i \(0.500900\pi\)
\(440\) 3024.00 0.327644
\(441\) 0 0
\(442\) 2958.00 0.318321
\(443\) −3108.00 −0.333331 −0.166665 0.986014i \(-0.553300\pi\)
−0.166665 + 0.986014i \(0.553300\pi\)
\(444\) 0 0
\(445\) −4644.00 −0.494712
\(446\) 13992.0 1.48552
\(447\) 0 0
\(448\) −12124.0 −1.27858
\(449\) −6114.00 −0.642622 −0.321311 0.946974i \(-0.604124\pi\)
−0.321311 + 0.946974i \(0.604124\pi\)
\(450\) 0 0
\(451\) 8208.00 0.856984
\(452\) 366.000 0.0380867
\(453\) 0 0
\(454\) 4320.00 0.446581
\(455\) −9744.00 −1.00397
\(456\) 0 0
\(457\) 4106.00 0.420286 0.210143 0.977671i \(-0.432607\pi\)
0.210143 + 0.977671i \(0.432607\pi\)
\(458\) −3558.00 −0.363001
\(459\) 0 0
\(460\) −360.000 −0.0364893
\(461\) −3366.00 −0.340066 −0.170033 0.985438i \(-0.554387\pi\)
−0.170033 + 0.985438i \(0.554387\pi\)
\(462\) 0 0
\(463\) 896.000 0.0899366 0.0449683 0.998988i \(-0.485681\pi\)
0.0449683 + 0.998988i \(0.485681\pi\)
\(464\) 2130.00 0.213109
\(465\) 0 0
\(466\) 16002.0 1.59073
\(467\) 10236.0 1.01427 0.507137 0.861866i \(-0.330704\pi\)
0.507137 + 0.861866i \(0.330704\pi\)
\(468\) 0 0
\(469\) 13552.0 1.33427
\(470\) 5184.00 0.508766
\(471\) 0 0
\(472\) 5292.00 0.516068
\(473\) −3552.00 −0.345288
\(474\) 0 0
\(475\) −10324.0 −0.997258
\(476\) 476.000 0.0458349
\(477\) 0 0
\(478\) −15984.0 −1.52948
\(479\) −5172.00 −0.493350 −0.246675 0.969098i \(-0.579338\pi\)
−0.246675 + 0.969098i \(0.579338\pi\)
\(480\) 0 0
\(481\) 3364.00 0.318888
\(482\) 16854.0 1.59269
\(483\) 0 0
\(484\) −755.000 −0.0709053
\(485\) 2292.00 0.214586
\(486\) 0 0
\(487\) −15052.0 −1.40056 −0.700278 0.713870i \(-0.746941\pi\)
−0.700278 + 0.713870i \(0.746941\pi\)
\(488\) −2310.00 −0.214280
\(489\) 0 0
\(490\) −7938.00 −0.731841
\(491\) −8700.00 −0.799645 −0.399822 0.916593i \(-0.630928\pi\)
−0.399822 + 0.916593i \(0.630928\pi\)
\(492\) 0 0
\(493\) 510.000 0.0465908
\(494\) −20184.0 −1.83830
\(495\) 0 0
\(496\) 12212.0 1.10551
\(497\) −19824.0 −1.78919
\(498\) 0 0
\(499\) −1168.00 −0.104783 −0.0523916 0.998627i \(-0.516684\pi\)
−0.0523916 + 0.998627i \(0.516684\pi\)
\(500\) 1284.00 0.114844
\(501\) 0 0
\(502\) 6084.00 0.540921
\(503\) 1740.00 0.154240 0.0771200 0.997022i \(-0.475428\pi\)
0.0771200 + 0.997022i \(0.475428\pi\)
\(504\) 0 0
\(505\) −1260.00 −0.111028
\(506\) 4320.00 0.379540
\(507\) 0 0
\(508\) −472.000 −0.0412236
\(509\) 12570.0 1.09461 0.547304 0.836934i \(-0.315654\pi\)
0.547304 + 0.836934i \(0.315654\pi\)
\(510\) 0 0
\(511\) −10136.0 −0.877476
\(512\) −8733.00 −0.753804
\(513\) 0 0
\(514\) 5706.00 0.489651
\(515\) 1392.00 0.119105
\(516\) 0 0
\(517\) −6912.00 −0.587987
\(518\) 4872.00 0.413250
\(519\) 0 0
\(520\) −7308.00 −0.616302
\(521\) −11658.0 −0.980319 −0.490160 0.871633i \(-0.663061\pi\)
−0.490160 + 0.871633i \(0.663061\pi\)
\(522\) 0 0
\(523\) 13700.0 1.14543 0.572714 0.819755i \(-0.305890\pi\)
0.572714 + 0.819755i \(0.305890\pi\)
\(524\) −2760.00 −0.230098
\(525\) 0 0
\(526\) 16416.0 1.36078
\(527\) 2924.00 0.241692
\(528\) 0 0
\(529\) −8567.00 −0.704118
\(530\) 5724.00 0.469122
\(531\) 0 0
\(532\) −3248.00 −0.264697
\(533\) −19836.0 −1.61199
\(534\) 0 0
\(535\) 2592.00 0.209462
\(536\) 10164.0 0.819063
\(537\) 0 0
\(538\) 10710.0 0.858254
\(539\) 10584.0 0.845798
\(540\) 0 0
\(541\) 17822.0 1.41632 0.708159 0.706053i \(-0.249526\pi\)
0.708159 + 0.706053i \(0.249526\pi\)
\(542\) 816.000 0.0646683
\(543\) 0 0
\(544\) 765.000 0.0602925
\(545\) 7116.00 0.559295
\(546\) 0 0
\(547\) 3800.00 0.297032 0.148516 0.988910i \(-0.452550\pi\)
0.148516 + 0.988910i \(0.452550\pi\)
\(548\) −1098.00 −0.0855917
\(549\) 0 0
\(550\) −6408.00 −0.496796
\(551\) −3480.00 −0.269062
\(552\) 0 0
\(553\) 13552.0 1.04212
\(554\) 11490.0 0.881161
\(555\) 0 0
\(556\) 2528.00 0.192826
\(557\) 10074.0 0.766336 0.383168 0.923679i \(-0.374833\pi\)
0.383168 + 0.923679i \(0.374833\pi\)
\(558\) 0 0
\(559\) 8584.00 0.649489
\(560\) −11928.0 −0.900089
\(561\) 0 0
\(562\) −26622.0 −1.99819
\(563\) 15948.0 1.19383 0.596917 0.802303i \(-0.296392\pi\)
0.596917 + 0.802303i \(0.296392\pi\)
\(564\) 0 0
\(565\) −2196.00 −0.163516
\(566\) −7896.00 −0.586385
\(567\) 0 0
\(568\) −14868.0 −1.09832
\(569\) −21834.0 −1.60866 −0.804331 0.594181i \(-0.797476\pi\)
−0.804331 + 0.594181i \(0.797476\pi\)
\(570\) 0 0
\(571\) −21208.0 −1.55434 −0.777169 0.629292i \(-0.783345\pi\)
−0.777169 + 0.629292i \(0.783345\pi\)
\(572\) −1392.00 −0.101753
\(573\) 0 0
\(574\) −28728.0 −2.08900
\(575\) −5340.00 −0.387293
\(576\) 0 0
\(577\) 12530.0 0.904039 0.452020 0.892008i \(-0.350704\pi\)
0.452020 + 0.892008i \(0.350704\pi\)
\(578\) 867.000 0.0623918
\(579\) 0 0
\(580\) 180.000 0.0128864
\(581\) 21168.0 1.51153
\(582\) 0 0
\(583\) −7632.00 −0.542170
\(584\) −7602.00 −0.538652
\(585\) 0 0
\(586\) 19206.0 1.35391
\(587\) −2220.00 −0.156097 −0.0780487 0.996950i \(-0.524869\pi\)
−0.0780487 + 0.996950i \(0.524869\pi\)
\(588\) 0 0
\(589\) −19952.0 −1.39577
\(590\) 4536.00 0.316516
\(591\) 0 0
\(592\) 4118.00 0.285893
\(593\) 25038.0 1.73387 0.866937 0.498418i \(-0.166085\pi\)
0.866937 + 0.498418i \(0.166085\pi\)
\(594\) 0 0
\(595\) −2856.00 −0.196781
\(596\) −1614.00 −0.110926
\(597\) 0 0
\(598\) −10440.0 −0.713919
\(599\) −5784.00 −0.394537 −0.197269 0.980349i \(-0.563207\pi\)
−0.197269 + 0.980349i \(0.563207\pi\)
\(600\) 0 0
\(601\) −4198.00 −0.284925 −0.142463 0.989800i \(-0.545502\pi\)
−0.142463 + 0.989800i \(0.545502\pi\)
\(602\) 12432.0 0.841679
\(603\) 0 0
\(604\) −3328.00 −0.224196
\(605\) 4530.00 0.304414
\(606\) 0 0
\(607\) −12124.0 −0.810705 −0.405353 0.914160i \(-0.632851\pi\)
−0.405353 + 0.914160i \(0.632851\pi\)
\(608\) −5220.00 −0.348189
\(609\) 0 0
\(610\) −1980.00 −0.131423
\(611\) 16704.0 1.10601
\(612\) 0 0
\(613\) 7454.00 0.491133 0.245566 0.969380i \(-0.421026\pi\)
0.245566 + 0.969380i \(0.421026\pi\)
\(614\) −26940.0 −1.77070
\(615\) 0 0
\(616\) 14112.0 0.923034
\(617\) −28842.0 −1.88190 −0.940952 0.338539i \(-0.890067\pi\)
−0.940952 + 0.338539i \(0.890067\pi\)
\(618\) 0 0
\(619\) −17224.0 −1.11840 −0.559201 0.829032i \(-0.688892\pi\)
−0.559201 + 0.829032i \(0.688892\pi\)
\(620\) 1032.00 0.0668486
\(621\) 0 0
\(622\) 11916.0 0.768148
\(623\) −21672.0 −1.39369
\(624\) 0 0
\(625\) 3421.00 0.218944
\(626\) 14190.0 0.905985
\(627\) 0 0
\(628\) −2458.00 −0.156186
\(629\) 986.000 0.0625030
\(630\) 0 0
\(631\) −12448.0 −0.785336 −0.392668 0.919680i \(-0.628448\pi\)
−0.392668 + 0.919680i \(0.628448\pi\)
\(632\) 10164.0 0.639719
\(633\) 0 0
\(634\) 8694.00 0.544610
\(635\) 2832.00 0.176983
\(636\) 0 0
\(637\) −25578.0 −1.59095
\(638\) −2160.00 −0.134036
\(639\) 0 0
\(640\) −9954.00 −0.614791
\(641\) 25182.0 1.55168 0.775842 0.630927i \(-0.217325\pi\)
0.775842 + 0.630927i \(0.217325\pi\)
\(642\) 0 0
\(643\) 17048.0 1.04558 0.522790 0.852462i \(-0.324891\pi\)
0.522790 + 0.852462i \(0.324891\pi\)
\(644\) −1680.00 −0.102797
\(645\) 0 0
\(646\) −5916.00 −0.360313
\(647\) −7128.00 −0.433123 −0.216562 0.976269i \(-0.569484\pi\)
−0.216562 + 0.976269i \(0.569484\pi\)
\(648\) 0 0
\(649\) −6048.00 −0.365801
\(650\) 15486.0 0.934478
\(651\) 0 0
\(652\) 272.000 0.0163379
\(653\) −18462.0 −1.10639 −0.553196 0.833051i \(-0.686592\pi\)
−0.553196 + 0.833051i \(0.686592\pi\)
\(654\) 0 0
\(655\) 16560.0 0.987867
\(656\) −24282.0 −1.44520
\(657\) 0 0
\(658\) 24192.0 1.43329
\(659\) −28092.0 −1.66056 −0.830280 0.557347i \(-0.811819\pi\)
−0.830280 + 0.557347i \(0.811819\pi\)
\(660\) 0 0
\(661\) 10910.0 0.641982 0.320991 0.947082i \(-0.395984\pi\)
0.320991 + 0.947082i \(0.395984\pi\)
\(662\) −13692.0 −0.803859
\(663\) 0 0
\(664\) 15876.0 0.927874
\(665\) 19488.0 1.13641
\(666\) 0 0
\(667\) −1800.00 −0.104492
\(668\) −3516.00 −0.203650
\(669\) 0 0
\(670\) 8712.00 0.502349
\(671\) 2640.00 0.151887
\(672\) 0 0
\(673\) −28414.0 −1.62746 −0.813729 0.581244i \(-0.802566\pi\)
−0.813729 + 0.581244i \(0.802566\pi\)
\(674\) 2166.00 0.123785
\(675\) 0 0
\(676\) 1167.00 0.0663974
\(677\) 6042.00 0.343003 0.171501 0.985184i \(-0.445138\pi\)
0.171501 + 0.985184i \(0.445138\pi\)
\(678\) 0 0
\(679\) 10696.0 0.604528
\(680\) −2142.00 −0.120797
\(681\) 0 0
\(682\) −12384.0 −0.695319
\(683\) −34752.0 −1.94692 −0.973461 0.228851i \(-0.926503\pi\)
−0.973461 + 0.228851i \(0.926503\pi\)
\(684\) 0 0
\(685\) 6588.00 0.367466
\(686\) −8232.00 −0.458162
\(687\) 0 0
\(688\) 10508.0 0.582287
\(689\) 18444.0 1.01983
\(690\) 0 0
\(691\) 18320.0 1.00858 0.504288 0.863536i \(-0.331755\pi\)
0.504288 + 0.863536i \(0.331755\pi\)
\(692\) 1842.00 0.101188
\(693\) 0 0
\(694\) −16632.0 −0.909715
\(695\) −15168.0 −0.827849
\(696\) 0 0
\(697\) −5814.00 −0.315955
\(698\) 33378.0 1.80999
\(699\) 0 0
\(700\) 2492.00 0.134555
\(701\) 22890.0 1.23330 0.616650 0.787237i \(-0.288489\pi\)
0.616650 + 0.787237i \(0.288489\pi\)
\(702\) 0 0
\(703\) −6728.00 −0.360955
\(704\) 10392.0 0.556340
\(705\) 0 0
\(706\) −23526.0 −1.25413
\(707\) −5880.00 −0.312787
\(708\) 0 0
\(709\) 22886.0 1.21227 0.606137 0.795361i \(-0.292718\pi\)
0.606137 + 0.795361i \(0.292718\pi\)
\(710\) −12744.0 −0.673625
\(711\) 0 0
\(712\) −16254.0 −0.855540
\(713\) −10320.0 −0.542058
\(714\) 0 0
\(715\) 8352.00 0.436849
\(716\) 3516.00 0.183518
\(717\) 0 0
\(718\) −15120.0 −0.785896
\(719\) 13452.0 0.697740 0.348870 0.937171i \(-0.386565\pi\)
0.348870 + 0.937171i \(0.386565\pi\)
\(720\) 0 0
\(721\) 6496.00 0.335539
\(722\) 19791.0 1.02015
\(723\) 0 0
\(724\) 3398.00 0.174428
\(725\) 2670.00 0.136774
\(726\) 0 0
\(727\) −27304.0 −1.39292 −0.696458 0.717598i \(-0.745242\pi\)
−0.696458 + 0.717598i \(0.745242\pi\)
\(728\) −34104.0 −1.73623
\(729\) 0 0
\(730\) −6516.00 −0.330367
\(731\) 2516.00 0.127302
\(732\) 0 0
\(733\) 24470.0 1.23304 0.616521 0.787338i \(-0.288541\pi\)
0.616521 + 0.787338i \(0.288541\pi\)
\(734\) −25212.0 −1.26784
\(735\) 0 0
\(736\) −2700.00 −0.135222
\(737\) −11616.0 −0.580571
\(738\) 0 0
\(739\) 35252.0 1.75476 0.877379 0.479798i \(-0.159290\pi\)
0.877379 + 0.479798i \(0.159290\pi\)
\(740\) 348.000 0.0172875
\(741\) 0 0
\(742\) 26712.0 1.32160
\(743\) −1548.00 −0.0764342 −0.0382171 0.999269i \(-0.512168\pi\)
−0.0382171 + 0.999269i \(0.512168\pi\)
\(744\) 0 0
\(745\) 9684.00 0.476234
\(746\) −24294.0 −1.19231
\(747\) 0 0
\(748\) −408.000 −0.0199438
\(749\) 12096.0 0.590091
\(750\) 0 0
\(751\) 2948.00 0.143241 0.0716205 0.997432i \(-0.477183\pi\)
0.0716205 + 0.997432i \(0.477183\pi\)
\(752\) 20448.0 0.991572
\(753\) 0 0
\(754\) 5220.00 0.252124
\(755\) 19968.0 0.962530
\(756\) 0 0
\(757\) −754.000 −0.0362016 −0.0181008 0.999836i \(-0.505762\pi\)
−0.0181008 + 0.999836i \(0.505762\pi\)
\(758\) 960.000 0.0460010
\(759\) 0 0
\(760\) 14616.0 0.697603
\(761\) 41574.0 1.98036 0.990182 0.139787i \(-0.0446419\pi\)
0.990182 + 0.139787i \(0.0446419\pi\)
\(762\) 0 0
\(763\) 33208.0 1.57564
\(764\) 2640.00 0.125016
\(765\) 0 0
\(766\) 32616.0 1.53846
\(767\) 14616.0 0.688075
\(768\) 0 0
\(769\) −15118.0 −0.708932 −0.354466 0.935069i \(-0.615337\pi\)
−0.354466 + 0.935069i \(0.615337\pi\)
\(770\) 12096.0 0.566116
\(771\) 0 0
\(772\) 2882.00 0.134359
\(773\) −23550.0 −1.09578 −0.547888 0.836552i \(-0.684568\pi\)
−0.547888 + 0.836552i \(0.684568\pi\)
\(774\) 0 0
\(775\) 15308.0 0.709522
\(776\) 8022.00 0.371099
\(777\) 0 0
\(778\) −4122.00 −0.189950
\(779\) 39672.0 1.82464
\(780\) 0 0
\(781\) 16992.0 0.778517
\(782\) −3060.00 −0.139930
\(783\) 0 0
\(784\) −31311.0 −1.42634
\(785\) 14748.0 0.670546
\(786\) 0 0
\(787\) 5240.00 0.237339 0.118670 0.992934i \(-0.462137\pi\)
0.118670 + 0.992934i \(0.462137\pi\)
\(788\) 42.0000 0.00189872
\(789\) 0 0
\(790\) 8712.00 0.392353
\(791\) −10248.0 −0.460654
\(792\) 0 0
\(793\) −6380.00 −0.285700
\(794\) −22566.0 −1.00861
\(795\) 0 0
\(796\) −3220.00 −0.143379
\(797\) −5526.00 −0.245597 −0.122799 0.992432i \(-0.539187\pi\)
−0.122799 + 0.992432i \(0.539187\pi\)
\(798\) 0 0
\(799\) 4896.00 0.216781
\(800\) 4005.00 0.176998
\(801\) 0 0
\(802\) −8118.00 −0.357427
\(803\) 8688.00 0.381809
\(804\) 0 0
\(805\) 10080.0 0.441333
\(806\) 29928.0 1.30790
\(807\) 0 0
\(808\) −4410.00 −0.192009
\(809\) 438.000 0.0190349 0.00951747 0.999955i \(-0.496970\pi\)
0.00951747 + 0.999955i \(0.496970\pi\)
\(810\) 0 0
\(811\) −30448.0 −1.31834 −0.659170 0.751994i \(-0.729092\pi\)
−0.659170 + 0.751994i \(0.729092\pi\)
\(812\) 840.000 0.0363032
\(813\) 0 0
\(814\) −4176.00 −0.179814
\(815\) −1632.00 −0.0701429
\(816\) 0 0
\(817\) −17168.0 −0.735168
\(818\) 798.000 0.0341093
\(819\) 0 0
\(820\) −2052.00 −0.0873890
\(821\) 21930.0 0.932232 0.466116 0.884724i \(-0.345653\pi\)
0.466116 + 0.884724i \(0.345653\pi\)
\(822\) 0 0
\(823\) −27436.0 −1.16204 −0.581020 0.813889i \(-0.697346\pi\)
−0.581020 + 0.813889i \(0.697346\pi\)
\(824\) 4872.00 0.205976
\(825\) 0 0
\(826\) 21168.0 0.891681
\(827\) 17832.0 0.749794 0.374897 0.927067i \(-0.377678\pi\)
0.374897 + 0.927067i \(0.377678\pi\)
\(828\) 0 0
\(829\) −4090.00 −0.171353 −0.0856765 0.996323i \(-0.527305\pi\)
−0.0856765 + 0.996323i \(0.527305\pi\)
\(830\) 13608.0 0.569085
\(831\) 0 0
\(832\) −25114.0 −1.04648
\(833\) −7497.00 −0.311832
\(834\) 0 0
\(835\) 21096.0 0.874320
\(836\) 2784.00 0.115175
\(837\) 0 0
\(838\) −8064.00 −0.332418
\(839\) 2508.00 0.103201 0.0516006 0.998668i \(-0.483568\pi\)
0.0516006 + 0.998668i \(0.483568\pi\)
\(840\) 0 0
\(841\) −23489.0 −0.963098
\(842\) −41430.0 −1.69569
\(843\) 0 0
\(844\) −2080.00 −0.0848300
\(845\) −7002.00 −0.285061
\(846\) 0 0
\(847\) 21140.0 0.857590
\(848\) 22578.0 0.914306
\(849\) 0 0
\(850\) 4539.00 0.183160
\(851\) −3480.00 −0.140180
\(852\) 0 0
\(853\) −42442.0 −1.70362 −0.851809 0.523852i \(-0.824494\pi\)
−0.851809 + 0.523852i \(0.824494\pi\)
\(854\) −9240.00 −0.370242
\(855\) 0 0
\(856\) 9072.00 0.362237
\(857\) −32730.0 −1.30459 −0.652296 0.757964i \(-0.726194\pi\)
−0.652296 + 0.757964i \(0.726194\pi\)
\(858\) 0 0
\(859\) −6148.00 −0.244199 −0.122100 0.992518i \(-0.538963\pi\)
−0.122100 + 0.992518i \(0.538963\pi\)
\(860\) 888.000 0.0352099
\(861\) 0 0
\(862\) −9108.00 −0.359884
\(863\) 22512.0 0.887969 0.443985 0.896034i \(-0.353564\pi\)
0.443985 + 0.896034i \(0.353564\pi\)
\(864\) 0 0
\(865\) −11052.0 −0.434427
\(866\) −34266.0 −1.34458
\(867\) 0 0
\(868\) 4816.00 0.188325
\(869\) −11616.0 −0.453447
\(870\) 0 0
\(871\) 28072.0 1.09206
\(872\) 24906.0 0.967229
\(873\) 0 0
\(874\) 20880.0 0.808097
\(875\) −35952.0 −1.38903
\(876\) 0 0
\(877\) 9182.00 0.353539 0.176770 0.984252i \(-0.443435\pi\)
0.176770 + 0.984252i \(0.443435\pi\)
\(878\) −156.000 −0.00599629
\(879\) 0 0
\(880\) 10224.0 0.391649
\(881\) −28530.0 −1.09103 −0.545517 0.838100i \(-0.683666\pi\)
−0.545517 + 0.838100i \(0.683666\pi\)
\(882\) 0 0
\(883\) −12436.0 −0.473958 −0.236979 0.971515i \(-0.576157\pi\)
−0.236979 + 0.971515i \(0.576157\pi\)
\(884\) 986.000 0.0375144
\(885\) 0 0
\(886\) −9324.00 −0.353551
\(887\) −7404.00 −0.280273 −0.140136 0.990132i \(-0.544754\pi\)
−0.140136 + 0.990132i \(0.544754\pi\)
\(888\) 0 0
\(889\) 13216.0 0.498594
\(890\) −13932.0 −0.524721
\(891\) 0 0
\(892\) 4664.00 0.175070
\(893\) −33408.0 −1.25191
\(894\) 0 0
\(895\) −21096.0 −0.787890
\(896\) −46452.0 −1.73198
\(897\) 0 0
\(898\) −18342.0 −0.681604
\(899\) 5160.00 0.191430
\(900\) 0 0
\(901\) 5406.00 0.199889
\(902\) 24624.0 0.908968
\(903\) 0 0
\(904\) −7686.00 −0.282779
\(905\) −20388.0 −0.748862
\(906\) 0 0
\(907\) 15368.0 0.562609 0.281304 0.959619i \(-0.409233\pi\)
0.281304 + 0.959619i \(0.409233\pi\)
\(908\) 1440.00 0.0526300
\(909\) 0 0
\(910\) −29232.0 −1.06487
\(911\) −27276.0 −0.991980 −0.495990 0.868328i \(-0.665195\pi\)
−0.495990 + 0.868328i \(0.665195\pi\)
\(912\) 0 0
\(913\) −18144.0 −0.657699
\(914\) 12318.0 0.445780
\(915\) 0 0
\(916\) −1186.00 −0.0427801
\(917\) 77280.0 2.78300
\(918\) 0 0
\(919\) −46456.0 −1.66751 −0.833755 0.552134i \(-0.813814\pi\)
−0.833755 + 0.552134i \(0.813814\pi\)
\(920\) 7560.00 0.270919
\(921\) 0 0
\(922\) −10098.0 −0.360694
\(923\) −41064.0 −1.46440
\(924\) 0 0
\(925\) 5162.00 0.183487
\(926\) 2688.00 0.0953922
\(927\) 0 0
\(928\) 1350.00 0.0477542
\(929\) −13026.0 −0.460031 −0.230016 0.973187i \(-0.573878\pi\)
−0.230016 + 0.973187i \(0.573878\pi\)
\(930\) 0 0
\(931\) 51156.0 1.80083
\(932\) 5334.00 0.187469
\(933\) 0 0
\(934\) 30708.0 1.07580
\(935\) 2448.00 0.0856237
\(936\) 0 0
\(937\) 26330.0 0.917997 0.458999 0.888437i \(-0.348208\pi\)
0.458999 + 0.888437i \(0.348208\pi\)
\(938\) 40656.0 1.41521
\(939\) 0 0
\(940\) 1728.00 0.0599587
\(941\) −28254.0 −0.978803 −0.489402 0.872058i \(-0.662785\pi\)
−0.489402 + 0.872058i \(0.662785\pi\)
\(942\) 0 0
\(943\) 20520.0 0.708614
\(944\) 17892.0 0.616880
\(945\) 0 0
\(946\) −10656.0 −0.366233
\(947\) −49272.0 −1.69073 −0.845367 0.534186i \(-0.820618\pi\)
−0.845367 + 0.534186i \(0.820618\pi\)
\(948\) 0 0
\(949\) −20996.0 −0.718187
\(950\) −30972.0 −1.05775
\(951\) 0 0
\(952\) −9996.00 −0.340307
\(953\) −32922.0 −1.11904 −0.559522 0.828816i \(-0.689015\pi\)
−0.559522 + 0.828816i \(0.689015\pi\)
\(954\) 0 0
\(955\) −15840.0 −0.536723
\(956\) −5328.00 −0.180251
\(957\) 0 0
\(958\) −15516.0 −0.523277
\(959\) 30744.0 1.03522
\(960\) 0 0
\(961\) −207.000 −0.00694841
\(962\) 10092.0 0.338232
\(963\) 0 0
\(964\) 5618.00 0.187701
\(965\) −17292.0 −0.576839
\(966\) 0 0
\(967\) −1168.00 −0.0388421 −0.0194211 0.999811i \(-0.506182\pi\)
−0.0194211 + 0.999811i \(0.506182\pi\)
\(968\) 15855.0 0.526445
\(969\) 0 0
\(970\) 6876.00 0.227603
\(971\) 19812.0 0.654786 0.327393 0.944888i \(-0.393830\pi\)
0.327393 + 0.944888i \(0.393830\pi\)
\(972\) 0 0
\(973\) −70784.0 −2.33220
\(974\) −45156.0 −1.48551
\(975\) 0 0
\(976\) −7810.00 −0.256139
\(977\) 28494.0 0.933064 0.466532 0.884504i \(-0.345503\pi\)
0.466532 + 0.884504i \(0.345503\pi\)
\(978\) 0 0
\(979\) 18576.0 0.606426
\(980\) −2646.00 −0.0862483
\(981\) 0 0
\(982\) −26100.0 −0.848151
\(983\) 42708.0 1.38573 0.692866 0.721067i \(-0.256348\pi\)
0.692866 + 0.721067i \(0.256348\pi\)
\(984\) 0 0
\(985\) −252.000 −0.00815166
\(986\) 1530.00 0.0494170
\(987\) 0 0
\(988\) −6728.00 −0.216646
\(989\) −8880.00 −0.285508
\(990\) 0 0
\(991\) −29500.0 −0.945609 −0.472804 0.881167i \(-0.656758\pi\)
−0.472804 + 0.881167i \(0.656758\pi\)
\(992\) 7740.00 0.247727
\(993\) 0 0
\(994\) −59472.0 −1.89772
\(995\) 19320.0 0.615563
\(996\) 0 0
\(997\) −9322.00 −0.296119 −0.148060 0.988978i \(-0.547303\pi\)
−0.148060 + 0.988978i \(0.547303\pi\)
\(998\) −3504.00 −0.111139
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.4.a.d.1.1 1
3.2 odd 2 17.4.a.a.1.1 1
4.3 odd 2 2448.4.a.f.1.1 1
12.11 even 2 272.4.a.d.1.1 1
15.2 even 4 425.4.b.c.324.1 2
15.8 even 4 425.4.b.c.324.2 2
15.14 odd 2 425.4.a.d.1.1 1
21.20 even 2 833.4.a.a.1.1 1
24.5 odd 2 1088.4.a.l.1.1 1
24.11 even 2 1088.4.a.a.1.1 1
33.32 even 2 2057.4.a.d.1.1 1
51.38 odd 4 289.4.b.a.288.2 2
51.47 odd 4 289.4.b.a.288.1 2
51.50 odd 2 289.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.4.a.a.1.1 1 3.2 odd 2
153.4.a.d.1.1 1 1.1 even 1 trivial
272.4.a.d.1.1 1 12.11 even 2
289.4.a.a.1.1 1 51.50 odd 2
289.4.b.a.288.1 2 51.47 odd 4
289.4.b.a.288.2 2 51.38 odd 4
425.4.a.d.1.1 1 15.14 odd 2
425.4.b.c.324.1 2 15.2 even 4
425.4.b.c.324.2 2 15.8 even 4
833.4.a.a.1.1 1 21.20 even 2
1088.4.a.a.1.1 1 24.11 even 2
1088.4.a.l.1.1 1 24.5 odd 2
2057.4.a.d.1.1 1 33.32 even 2
2448.4.a.f.1.1 1 4.3 odd 2