Properties

Label 153.4.a.c.1.1
Level $153$
Weight $4$
Character 153.1
Self dual yes
Analytic conductor $9.027$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [153,4,Mod(1,153)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(153, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("153.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 153.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.02729223088\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 153.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -7.00000 q^{4} +20.0000 q^{5} -2.00000 q^{7} -15.0000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} -7.00000 q^{4} +20.0000 q^{5} -2.00000 q^{7} -15.0000 q^{8} +20.0000 q^{10} +48.0000 q^{11} -14.0000 q^{13} -2.00000 q^{14} +41.0000 q^{16} +17.0000 q^{17} +92.0000 q^{19} -140.000 q^{20} +48.0000 q^{22} +122.000 q^{23} +275.000 q^{25} -14.0000 q^{26} +14.0000 q^{28} +36.0000 q^{29} -182.000 q^{31} +161.000 q^{32} +17.0000 q^{34} -40.0000 q^{35} +76.0000 q^{37} +92.0000 q^{38} -300.000 q^{40} -294.000 q^{41} -428.000 q^{43} -336.000 q^{44} +122.000 q^{46} +12.0000 q^{47} -339.000 q^{49} +275.000 q^{50} +98.0000 q^{52} +234.000 q^{53} +960.000 q^{55} +30.0000 q^{56} +36.0000 q^{58} +540.000 q^{59} -820.000 q^{61} -182.000 q^{62} -167.000 q^{64} -280.000 q^{65} +700.000 q^{67} -119.000 q^{68} -40.0000 q^{70} -794.000 q^{71} -1038.00 q^{73} +76.0000 q^{74} -644.000 q^{76} -96.0000 q^{77} +858.000 q^{79} +820.000 q^{80} -294.000 q^{82} -1052.00 q^{83} +340.000 q^{85} -428.000 q^{86} -720.000 q^{88} -1102.00 q^{89} +28.0000 q^{91} -854.000 q^{92} +12.0000 q^{94} +1840.00 q^{95} +710.000 q^{97} -339.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.353553 0.176777 0.984251i \(-0.443433\pi\)
0.176777 + 0.984251i \(0.443433\pi\)
\(3\) 0 0
\(4\) −7.00000 −0.875000
\(5\) 20.0000 1.78885 0.894427 0.447214i \(-0.147584\pi\)
0.894427 + 0.447214i \(0.147584\pi\)
\(6\) 0 0
\(7\) −2.00000 −0.107990 −0.0539949 0.998541i \(-0.517195\pi\)
−0.0539949 + 0.998541i \(0.517195\pi\)
\(8\) −15.0000 −0.662913
\(9\) 0 0
\(10\) 20.0000 0.632456
\(11\) 48.0000 1.31569 0.657843 0.753155i \(-0.271469\pi\)
0.657843 + 0.753155i \(0.271469\pi\)
\(12\) 0 0
\(13\) −14.0000 −0.298685 −0.149342 0.988786i \(-0.547716\pi\)
−0.149342 + 0.988786i \(0.547716\pi\)
\(14\) −2.00000 −0.0381802
\(15\) 0 0
\(16\) 41.0000 0.640625
\(17\) 17.0000 0.242536
\(18\) 0 0
\(19\) 92.0000 1.11086 0.555428 0.831565i \(-0.312555\pi\)
0.555428 + 0.831565i \(0.312555\pi\)
\(20\) −140.000 −1.56525
\(21\) 0 0
\(22\) 48.0000 0.465165
\(23\) 122.000 1.10603 0.553016 0.833170i \(-0.313477\pi\)
0.553016 + 0.833170i \(0.313477\pi\)
\(24\) 0 0
\(25\) 275.000 2.20000
\(26\) −14.0000 −0.105601
\(27\) 0 0
\(28\) 14.0000 0.0944911
\(29\) 36.0000 0.230518 0.115259 0.993335i \(-0.463230\pi\)
0.115259 + 0.993335i \(0.463230\pi\)
\(30\) 0 0
\(31\) −182.000 −1.05446 −0.527228 0.849724i \(-0.676769\pi\)
−0.527228 + 0.849724i \(0.676769\pi\)
\(32\) 161.000 0.889408
\(33\) 0 0
\(34\) 17.0000 0.0857493
\(35\) −40.0000 −0.193178
\(36\) 0 0
\(37\) 76.0000 0.337684 0.168842 0.985643i \(-0.445997\pi\)
0.168842 + 0.985643i \(0.445997\pi\)
\(38\) 92.0000 0.392747
\(39\) 0 0
\(40\) −300.000 −1.18585
\(41\) −294.000 −1.11988 −0.559940 0.828533i \(-0.689176\pi\)
−0.559940 + 0.828533i \(0.689176\pi\)
\(42\) 0 0
\(43\) −428.000 −1.51789 −0.758946 0.651153i \(-0.774286\pi\)
−0.758946 + 0.651153i \(0.774286\pi\)
\(44\) −336.000 −1.15123
\(45\) 0 0
\(46\) 122.000 0.391042
\(47\) 12.0000 0.0372421 0.0186211 0.999827i \(-0.494072\pi\)
0.0186211 + 0.999827i \(0.494072\pi\)
\(48\) 0 0
\(49\) −339.000 −0.988338
\(50\) 275.000 0.777817
\(51\) 0 0
\(52\) 98.0000 0.261349
\(53\) 234.000 0.606460 0.303230 0.952917i \(-0.401935\pi\)
0.303230 + 0.952917i \(0.401935\pi\)
\(54\) 0 0
\(55\) 960.000 2.35357
\(56\) 30.0000 0.0715878
\(57\) 0 0
\(58\) 36.0000 0.0815005
\(59\) 540.000 1.19156 0.595780 0.803148i \(-0.296843\pi\)
0.595780 + 0.803148i \(0.296843\pi\)
\(60\) 0 0
\(61\) −820.000 −1.72115 −0.860576 0.509322i \(-0.829896\pi\)
−0.860576 + 0.509322i \(0.829896\pi\)
\(62\) −182.000 −0.372807
\(63\) 0 0
\(64\) −167.000 −0.326172
\(65\) −280.000 −0.534303
\(66\) 0 0
\(67\) 700.000 1.27640 0.638199 0.769872i \(-0.279680\pi\)
0.638199 + 0.769872i \(0.279680\pi\)
\(68\) −119.000 −0.212219
\(69\) 0 0
\(70\) −40.0000 −0.0682988
\(71\) −794.000 −1.32719 −0.663595 0.748092i \(-0.730970\pi\)
−0.663595 + 0.748092i \(0.730970\pi\)
\(72\) 0 0
\(73\) −1038.00 −1.66423 −0.832114 0.554604i \(-0.812870\pi\)
−0.832114 + 0.554604i \(0.812870\pi\)
\(74\) 76.0000 0.119389
\(75\) 0 0
\(76\) −644.000 −0.971998
\(77\) −96.0000 −0.142081
\(78\) 0 0
\(79\) 858.000 1.22193 0.610965 0.791657i \(-0.290781\pi\)
0.610965 + 0.791657i \(0.290781\pi\)
\(80\) 820.000 1.14598
\(81\) 0 0
\(82\) −294.000 −0.395937
\(83\) −1052.00 −1.39123 −0.695614 0.718415i \(-0.744868\pi\)
−0.695614 + 0.718415i \(0.744868\pi\)
\(84\) 0 0
\(85\) 340.000 0.433861
\(86\) −428.000 −0.536656
\(87\) 0 0
\(88\) −720.000 −0.872185
\(89\) −1102.00 −1.31249 −0.656246 0.754547i \(-0.727857\pi\)
−0.656246 + 0.754547i \(0.727857\pi\)
\(90\) 0 0
\(91\) 28.0000 0.0322549
\(92\) −854.000 −0.967779
\(93\) 0 0
\(94\) 12.0000 0.0131671
\(95\) 1840.00 1.98716
\(96\) 0 0
\(97\) 710.000 0.743192 0.371596 0.928395i \(-0.378811\pi\)
0.371596 + 0.928395i \(0.378811\pi\)
\(98\) −339.000 −0.349430
\(99\) 0 0
\(100\) −1925.00 −1.92500
\(101\) 1210.00 1.19207 0.596037 0.802957i \(-0.296741\pi\)
0.596037 + 0.802957i \(0.296741\pi\)
\(102\) 0 0
\(103\) 644.000 0.616070 0.308035 0.951375i \(-0.400329\pi\)
0.308035 + 0.951375i \(0.400329\pi\)
\(104\) 210.000 0.198002
\(105\) 0 0
\(106\) 234.000 0.214416
\(107\) 256.000 0.231294 0.115647 0.993290i \(-0.463106\pi\)
0.115647 + 0.993290i \(0.463106\pi\)
\(108\) 0 0
\(109\) −1248.00 −1.09667 −0.548334 0.836260i \(-0.684738\pi\)
−0.548334 + 0.836260i \(0.684738\pi\)
\(110\) 960.000 0.832113
\(111\) 0 0
\(112\) −82.0000 −0.0691810
\(113\) 350.000 0.291374 0.145687 0.989331i \(-0.453461\pi\)
0.145687 + 0.989331i \(0.453461\pi\)
\(114\) 0 0
\(115\) 2440.00 1.97853
\(116\) −252.000 −0.201704
\(117\) 0 0
\(118\) 540.000 0.421280
\(119\) −34.0000 −0.0261914
\(120\) 0 0
\(121\) 973.000 0.731029
\(122\) −820.000 −0.608519
\(123\) 0 0
\(124\) 1274.00 0.922650
\(125\) 3000.00 2.14663
\(126\) 0 0
\(127\) −328.000 −0.229176 −0.114588 0.993413i \(-0.536555\pi\)
−0.114588 + 0.993413i \(0.536555\pi\)
\(128\) −1455.00 −1.00473
\(129\) 0 0
\(130\) −280.000 −0.188905
\(131\) 1952.00 1.30189 0.650943 0.759127i \(-0.274374\pi\)
0.650943 + 0.759127i \(0.274374\pi\)
\(132\) 0 0
\(133\) −184.000 −0.119961
\(134\) 700.000 0.451275
\(135\) 0 0
\(136\) −255.000 −0.160780
\(137\) −2634.00 −1.64261 −0.821306 0.570488i \(-0.806754\pi\)
−0.821306 + 0.570488i \(0.806754\pi\)
\(138\) 0 0
\(139\) 1864.00 1.13743 0.568714 0.822536i \(-0.307441\pi\)
0.568714 + 0.822536i \(0.307441\pi\)
\(140\) 280.000 0.169031
\(141\) 0 0
\(142\) −794.000 −0.469232
\(143\) −672.000 −0.392975
\(144\) 0 0
\(145\) 720.000 0.412364
\(146\) −1038.00 −0.588394
\(147\) 0 0
\(148\) −532.000 −0.295474
\(149\) 286.000 0.157249 0.0786243 0.996904i \(-0.474947\pi\)
0.0786243 + 0.996904i \(0.474947\pi\)
\(150\) 0 0
\(151\) −1624.00 −0.875227 −0.437613 0.899163i \(-0.644176\pi\)
−0.437613 + 0.899163i \(0.644176\pi\)
\(152\) −1380.00 −0.736400
\(153\) 0 0
\(154\) −96.0000 −0.0502331
\(155\) −3640.00 −1.88627
\(156\) 0 0
\(157\) 2542.00 1.29219 0.646095 0.763257i \(-0.276401\pi\)
0.646095 + 0.763257i \(0.276401\pi\)
\(158\) 858.000 0.432018
\(159\) 0 0
\(160\) 3220.00 1.59102
\(161\) −244.000 −0.119440
\(162\) 0 0
\(163\) 684.000 0.328681 0.164341 0.986404i \(-0.447450\pi\)
0.164341 + 0.986404i \(0.447450\pi\)
\(164\) 2058.00 0.979895
\(165\) 0 0
\(166\) −1052.00 −0.491874
\(167\) −542.000 −0.251145 −0.125573 0.992084i \(-0.540077\pi\)
−0.125573 + 0.992084i \(0.540077\pi\)
\(168\) 0 0
\(169\) −2001.00 −0.910787
\(170\) 340.000 0.153393
\(171\) 0 0
\(172\) 2996.00 1.32816
\(173\) 836.000 0.367398 0.183699 0.982983i \(-0.441193\pi\)
0.183699 + 0.982983i \(0.441193\pi\)
\(174\) 0 0
\(175\) −550.000 −0.237578
\(176\) 1968.00 0.842861
\(177\) 0 0
\(178\) −1102.00 −0.464036
\(179\) 3444.00 1.43808 0.719041 0.694968i \(-0.244581\pi\)
0.719041 + 0.694968i \(0.244581\pi\)
\(180\) 0 0
\(181\) −3284.00 −1.34861 −0.674303 0.738454i \(-0.735556\pi\)
−0.674303 + 0.738454i \(0.735556\pi\)
\(182\) 28.0000 0.0114038
\(183\) 0 0
\(184\) −1830.00 −0.733203
\(185\) 1520.00 0.604068
\(186\) 0 0
\(187\) 816.000 0.319101
\(188\) −84.0000 −0.0325869
\(189\) 0 0
\(190\) 1840.00 0.702566
\(191\) 340.000 0.128804 0.0644019 0.997924i \(-0.479486\pi\)
0.0644019 + 0.997924i \(0.479486\pi\)
\(192\) 0 0
\(193\) −1498.00 −0.558696 −0.279348 0.960190i \(-0.590118\pi\)
−0.279348 + 0.960190i \(0.590118\pi\)
\(194\) 710.000 0.262758
\(195\) 0 0
\(196\) 2373.00 0.864796
\(197\) 1176.00 0.425312 0.212656 0.977127i \(-0.431789\pi\)
0.212656 + 0.977127i \(0.431789\pi\)
\(198\) 0 0
\(199\) −2450.00 −0.872743 −0.436372 0.899767i \(-0.643737\pi\)
−0.436372 + 0.899767i \(0.643737\pi\)
\(200\) −4125.00 −1.45841
\(201\) 0 0
\(202\) 1210.00 0.421462
\(203\) −72.0000 −0.0248936
\(204\) 0 0
\(205\) −5880.00 −2.00330
\(206\) 644.000 0.217814
\(207\) 0 0
\(208\) −574.000 −0.191345
\(209\) 4416.00 1.46154
\(210\) 0 0
\(211\) 1064.00 0.347151 0.173575 0.984821i \(-0.444468\pi\)
0.173575 + 0.984821i \(0.444468\pi\)
\(212\) −1638.00 −0.530652
\(213\) 0 0
\(214\) 256.000 0.0817748
\(215\) −8560.00 −2.71529
\(216\) 0 0
\(217\) 364.000 0.113871
\(218\) −1248.00 −0.387730
\(219\) 0 0
\(220\) −6720.00 −2.05937
\(221\) −238.000 −0.0724417
\(222\) 0 0
\(223\) −2244.00 −0.673854 −0.336927 0.941531i \(-0.609387\pi\)
−0.336927 + 0.941531i \(0.609387\pi\)
\(224\) −322.000 −0.0960470
\(225\) 0 0
\(226\) 350.000 0.103016
\(227\) −516.000 −0.150873 −0.0754364 0.997151i \(-0.524035\pi\)
−0.0754364 + 0.997151i \(0.524035\pi\)
\(228\) 0 0
\(229\) −2922.00 −0.843193 −0.421596 0.906784i \(-0.638530\pi\)
−0.421596 + 0.906784i \(0.638530\pi\)
\(230\) 2440.00 0.699517
\(231\) 0 0
\(232\) −540.000 −0.152814
\(233\) −3114.00 −0.875558 −0.437779 0.899083i \(-0.644235\pi\)
−0.437779 + 0.899083i \(0.644235\pi\)
\(234\) 0 0
\(235\) 240.000 0.0666207
\(236\) −3780.00 −1.04261
\(237\) 0 0
\(238\) −34.0000 −0.00926005
\(239\) −4124.00 −1.11615 −0.558074 0.829791i \(-0.688459\pi\)
−0.558074 + 0.829791i \(0.688459\pi\)
\(240\) 0 0
\(241\) −2034.00 −0.543658 −0.271829 0.962346i \(-0.587628\pi\)
−0.271829 + 0.962346i \(0.587628\pi\)
\(242\) 973.000 0.258458
\(243\) 0 0
\(244\) 5740.00 1.50601
\(245\) −6780.00 −1.76799
\(246\) 0 0
\(247\) −1288.00 −0.331795
\(248\) 2730.00 0.699013
\(249\) 0 0
\(250\) 3000.00 0.758947
\(251\) −996.000 −0.250466 −0.125233 0.992127i \(-0.539968\pi\)
−0.125233 + 0.992127i \(0.539968\pi\)
\(252\) 0 0
\(253\) 5856.00 1.45519
\(254\) −328.000 −0.0810258
\(255\) 0 0
\(256\) −119.000 −0.0290527
\(257\) 3246.00 0.787860 0.393930 0.919141i \(-0.371115\pi\)
0.393930 + 0.919141i \(0.371115\pi\)
\(258\) 0 0
\(259\) −152.000 −0.0364665
\(260\) 1960.00 0.467516
\(261\) 0 0
\(262\) 1952.00 0.460286
\(263\) −932.000 −0.218516 −0.109258 0.994013i \(-0.534847\pi\)
−0.109258 + 0.994013i \(0.534847\pi\)
\(264\) 0 0
\(265\) 4680.00 1.08487
\(266\) −184.000 −0.0424126
\(267\) 0 0
\(268\) −4900.00 −1.11685
\(269\) 3884.00 0.880341 0.440170 0.897914i \(-0.354918\pi\)
0.440170 + 0.897914i \(0.354918\pi\)
\(270\) 0 0
\(271\) −1936.00 −0.433962 −0.216981 0.976176i \(-0.569621\pi\)
−0.216981 + 0.976176i \(0.569621\pi\)
\(272\) 697.000 0.155374
\(273\) 0 0
\(274\) −2634.00 −0.580751
\(275\) 13200.0 2.89451
\(276\) 0 0
\(277\) 872.000 0.189146 0.0945729 0.995518i \(-0.469851\pi\)
0.0945729 + 0.995518i \(0.469851\pi\)
\(278\) 1864.00 0.402141
\(279\) 0 0
\(280\) 600.000 0.128060
\(281\) −3198.00 −0.678921 −0.339460 0.940620i \(-0.610244\pi\)
−0.339460 + 0.940620i \(0.610244\pi\)
\(282\) 0 0
\(283\) −1936.00 −0.406655 −0.203327 0.979111i \(-0.565176\pi\)
−0.203327 + 0.979111i \(0.565176\pi\)
\(284\) 5558.00 1.16129
\(285\) 0 0
\(286\) −672.000 −0.138938
\(287\) 588.000 0.120936
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) 720.000 0.145793
\(291\) 0 0
\(292\) 7266.00 1.45620
\(293\) 5718.00 1.14010 0.570050 0.821610i \(-0.306924\pi\)
0.570050 + 0.821610i \(0.306924\pi\)
\(294\) 0 0
\(295\) 10800.0 2.13153
\(296\) −1140.00 −0.223855
\(297\) 0 0
\(298\) 286.000 0.0555958
\(299\) −1708.00 −0.330355
\(300\) 0 0
\(301\) 856.000 0.163917
\(302\) −1624.00 −0.309439
\(303\) 0 0
\(304\) 3772.00 0.711642
\(305\) −16400.0 −3.07889
\(306\) 0 0
\(307\) 684.000 0.127159 0.0635797 0.997977i \(-0.479748\pi\)
0.0635797 + 0.997977i \(0.479748\pi\)
\(308\) 672.000 0.124321
\(309\) 0 0
\(310\) −3640.00 −0.666897
\(311\) 290.000 0.0528759 0.0264379 0.999650i \(-0.491584\pi\)
0.0264379 + 0.999650i \(0.491584\pi\)
\(312\) 0 0
\(313\) −11050.0 −1.99547 −0.997736 0.0672478i \(-0.978578\pi\)
−0.997736 + 0.0672478i \(0.978578\pi\)
\(314\) 2542.00 0.456858
\(315\) 0 0
\(316\) −6006.00 −1.06919
\(317\) −992.000 −0.175761 −0.0878806 0.996131i \(-0.528009\pi\)
−0.0878806 + 0.996131i \(0.528009\pi\)
\(318\) 0 0
\(319\) 1728.00 0.303290
\(320\) −3340.00 −0.583474
\(321\) 0 0
\(322\) −244.000 −0.0422285
\(323\) 1564.00 0.269422
\(324\) 0 0
\(325\) −3850.00 −0.657106
\(326\) 684.000 0.116206
\(327\) 0 0
\(328\) 4410.00 0.742383
\(329\) −24.0000 −0.00402177
\(330\) 0 0
\(331\) 2860.00 0.474924 0.237462 0.971397i \(-0.423684\pi\)
0.237462 + 0.971397i \(0.423684\pi\)
\(332\) 7364.00 1.21733
\(333\) 0 0
\(334\) −542.000 −0.0887932
\(335\) 14000.0 2.28329
\(336\) 0 0
\(337\) 6298.00 1.01802 0.509012 0.860760i \(-0.330011\pi\)
0.509012 + 0.860760i \(0.330011\pi\)
\(338\) −2001.00 −0.322012
\(339\) 0 0
\(340\) −2380.00 −0.379628
\(341\) −8736.00 −1.38733
\(342\) 0 0
\(343\) 1364.00 0.214720
\(344\) 6420.00 1.00623
\(345\) 0 0
\(346\) 836.000 0.129895
\(347\) 3508.00 0.542707 0.271353 0.962480i \(-0.412529\pi\)
0.271353 + 0.962480i \(0.412529\pi\)
\(348\) 0 0
\(349\) −2406.00 −0.369026 −0.184513 0.982830i \(-0.559071\pi\)
−0.184513 + 0.982830i \(0.559071\pi\)
\(350\) −550.000 −0.0839964
\(351\) 0 0
\(352\) 7728.00 1.17018
\(353\) 1842.00 0.277733 0.138867 0.990311i \(-0.455654\pi\)
0.138867 + 0.990311i \(0.455654\pi\)
\(354\) 0 0
\(355\) −15880.0 −2.37415
\(356\) 7714.00 1.14843
\(357\) 0 0
\(358\) 3444.00 0.508439
\(359\) −3264.00 −0.479853 −0.239927 0.970791i \(-0.577123\pi\)
−0.239927 + 0.970791i \(0.577123\pi\)
\(360\) 0 0
\(361\) 1605.00 0.233999
\(362\) −3284.00 −0.476804
\(363\) 0 0
\(364\) −196.000 −0.0282231
\(365\) −20760.0 −2.97706
\(366\) 0 0
\(367\) 7354.00 1.04598 0.522991 0.852338i \(-0.324816\pi\)
0.522991 + 0.852338i \(0.324816\pi\)
\(368\) 5002.00 0.708552
\(369\) 0 0
\(370\) 1520.00 0.213570
\(371\) −468.000 −0.0654915
\(372\) 0 0
\(373\) 11322.0 1.57166 0.785832 0.618440i \(-0.212235\pi\)
0.785832 + 0.618440i \(0.212235\pi\)
\(374\) 816.000 0.112819
\(375\) 0 0
\(376\) −180.000 −0.0246883
\(377\) −504.000 −0.0688523
\(378\) 0 0
\(379\) 12796.0 1.73426 0.867132 0.498078i \(-0.165961\pi\)
0.867132 + 0.498078i \(0.165961\pi\)
\(380\) −12880.0 −1.73876
\(381\) 0 0
\(382\) 340.000 0.0455390
\(383\) 420.000 0.0560339 0.0280170 0.999607i \(-0.491081\pi\)
0.0280170 + 0.999607i \(0.491081\pi\)
\(384\) 0 0
\(385\) −1920.00 −0.254162
\(386\) −1498.00 −0.197529
\(387\) 0 0
\(388\) −4970.00 −0.650293
\(389\) −6426.00 −0.837561 −0.418780 0.908088i \(-0.637542\pi\)
−0.418780 + 0.908088i \(0.637542\pi\)
\(390\) 0 0
\(391\) 2074.00 0.268252
\(392\) 5085.00 0.655182
\(393\) 0 0
\(394\) 1176.00 0.150371
\(395\) 17160.0 2.18586
\(396\) 0 0
\(397\) −13212.0 −1.67026 −0.835128 0.550056i \(-0.814606\pi\)
−0.835128 + 0.550056i \(0.814606\pi\)
\(398\) −2450.00 −0.308561
\(399\) 0 0
\(400\) 11275.0 1.40938
\(401\) 6242.00 0.777333 0.388667 0.921378i \(-0.372936\pi\)
0.388667 + 0.921378i \(0.372936\pi\)
\(402\) 0 0
\(403\) 2548.00 0.314950
\(404\) −8470.00 −1.04306
\(405\) 0 0
\(406\) −72.0000 −0.00880123
\(407\) 3648.00 0.444287
\(408\) 0 0
\(409\) −5194.00 −0.627938 −0.313969 0.949433i \(-0.601659\pi\)
−0.313969 + 0.949433i \(0.601659\pi\)
\(410\) −5880.00 −0.708274
\(411\) 0 0
\(412\) −4508.00 −0.539061
\(413\) −1080.00 −0.128676
\(414\) 0 0
\(415\) −21040.0 −2.48871
\(416\) −2254.00 −0.265653
\(417\) 0 0
\(418\) 4416.00 0.516731
\(419\) −15956.0 −1.86039 −0.930193 0.367071i \(-0.880361\pi\)
−0.930193 + 0.367071i \(0.880361\pi\)
\(420\) 0 0
\(421\) −15254.0 −1.76588 −0.882939 0.469488i \(-0.844438\pi\)
−0.882939 + 0.469488i \(0.844438\pi\)
\(422\) 1064.00 0.122736
\(423\) 0 0
\(424\) −3510.00 −0.402030
\(425\) 4675.00 0.533578
\(426\) 0 0
\(427\) 1640.00 0.185867
\(428\) −1792.00 −0.202382
\(429\) 0 0
\(430\) −8560.00 −0.960000
\(431\) 5538.00 0.618924 0.309462 0.950912i \(-0.399851\pi\)
0.309462 + 0.950912i \(0.399851\pi\)
\(432\) 0 0
\(433\) 11342.0 1.25880 0.629402 0.777080i \(-0.283300\pi\)
0.629402 + 0.777080i \(0.283300\pi\)
\(434\) 364.000 0.0402594
\(435\) 0 0
\(436\) 8736.00 0.959584
\(437\) 11224.0 1.22864
\(438\) 0 0
\(439\) 982.000 0.106762 0.0533808 0.998574i \(-0.483000\pi\)
0.0533808 + 0.998574i \(0.483000\pi\)
\(440\) −14400.0 −1.56021
\(441\) 0 0
\(442\) −238.000 −0.0256120
\(443\) 2492.00 0.267265 0.133633 0.991031i \(-0.457336\pi\)
0.133633 + 0.991031i \(0.457336\pi\)
\(444\) 0 0
\(445\) −22040.0 −2.34786
\(446\) −2244.00 −0.238243
\(447\) 0 0
\(448\) 334.000 0.0352233
\(449\) 5498.00 0.577877 0.288938 0.957348i \(-0.406698\pi\)
0.288938 + 0.957348i \(0.406698\pi\)
\(450\) 0 0
\(451\) −14112.0 −1.47341
\(452\) −2450.00 −0.254952
\(453\) 0 0
\(454\) −516.000 −0.0533416
\(455\) 560.000 0.0576994
\(456\) 0 0
\(457\) 4998.00 0.511590 0.255795 0.966731i \(-0.417663\pi\)
0.255795 + 0.966731i \(0.417663\pi\)
\(458\) −2922.00 −0.298114
\(459\) 0 0
\(460\) −17080.0 −1.73122
\(461\) 7586.00 0.766411 0.383205 0.923663i \(-0.374820\pi\)
0.383205 + 0.923663i \(0.374820\pi\)
\(462\) 0 0
\(463\) 5900.00 0.592217 0.296108 0.955154i \(-0.404311\pi\)
0.296108 + 0.955154i \(0.404311\pi\)
\(464\) 1476.00 0.147676
\(465\) 0 0
\(466\) −3114.00 −0.309556
\(467\) 19404.0 1.92272 0.961360 0.275295i \(-0.0887755\pi\)
0.961360 + 0.275295i \(0.0887755\pi\)
\(468\) 0 0
\(469\) −1400.00 −0.137838
\(470\) 240.000 0.0235540
\(471\) 0 0
\(472\) −8100.00 −0.789900
\(473\) −20544.0 −1.99707
\(474\) 0 0
\(475\) 25300.0 2.44388
\(476\) 238.000 0.0229175
\(477\) 0 0
\(478\) −4124.00 −0.394618
\(479\) −2586.00 −0.246675 −0.123338 0.992365i \(-0.539360\pi\)
−0.123338 + 0.992365i \(0.539360\pi\)
\(480\) 0 0
\(481\) −1064.00 −0.100861
\(482\) −2034.00 −0.192212
\(483\) 0 0
\(484\) −6811.00 −0.639651
\(485\) 14200.0 1.32946
\(486\) 0 0
\(487\) 10106.0 0.940342 0.470171 0.882575i \(-0.344192\pi\)
0.470171 + 0.882575i \(0.344192\pi\)
\(488\) 12300.0 1.14097
\(489\) 0 0
\(490\) −6780.00 −0.625080
\(491\) 76.0000 0.00698540 0.00349270 0.999994i \(-0.498888\pi\)
0.00349270 + 0.999994i \(0.498888\pi\)
\(492\) 0 0
\(493\) 612.000 0.0559089
\(494\) −1288.00 −0.117307
\(495\) 0 0
\(496\) −7462.00 −0.675511
\(497\) 1588.00 0.143323
\(498\) 0 0
\(499\) 8096.00 0.726306 0.363153 0.931730i \(-0.381700\pi\)
0.363153 + 0.931730i \(0.381700\pi\)
\(500\) −21000.0 −1.87830
\(501\) 0 0
\(502\) −996.000 −0.0885531
\(503\) −15942.0 −1.41316 −0.706579 0.707634i \(-0.749763\pi\)
−0.706579 + 0.707634i \(0.749763\pi\)
\(504\) 0 0
\(505\) 24200.0 2.13245
\(506\) 5856.00 0.514488
\(507\) 0 0
\(508\) 2296.00 0.200529
\(509\) 13742.0 1.19667 0.598333 0.801247i \(-0.295830\pi\)
0.598333 + 0.801247i \(0.295830\pi\)
\(510\) 0 0
\(511\) 2076.00 0.179720
\(512\) 11521.0 0.994455
\(513\) 0 0
\(514\) 3246.00 0.278550
\(515\) 12880.0 1.10206
\(516\) 0 0
\(517\) 576.000 0.0489989
\(518\) −152.000 −0.0128929
\(519\) 0 0
\(520\) 4200.00 0.354197
\(521\) −11942.0 −1.00420 −0.502100 0.864809i \(-0.667439\pi\)
−0.502100 + 0.864809i \(0.667439\pi\)
\(522\) 0 0
\(523\) −6012.00 −0.502651 −0.251325 0.967903i \(-0.580866\pi\)
−0.251325 + 0.967903i \(0.580866\pi\)
\(524\) −13664.0 −1.13915
\(525\) 0 0
\(526\) −932.000 −0.0772569
\(527\) −3094.00 −0.255743
\(528\) 0 0
\(529\) 2717.00 0.223309
\(530\) 4680.00 0.383559
\(531\) 0 0
\(532\) 1288.00 0.104966
\(533\) 4116.00 0.334491
\(534\) 0 0
\(535\) 5120.00 0.413751
\(536\) −10500.0 −0.846140
\(537\) 0 0
\(538\) 3884.00 0.311247
\(539\) −16272.0 −1.30034
\(540\) 0 0
\(541\) 6420.00 0.510198 0.255099 0.966915i \(-0.417892\pi\)
0.255099 + 0.966915i \(0.417892\pi\)
\(542\) −1936.00 −0.153429
\(543\) 0 0
\(544\) 2737.00 0.215713
\(545\) −24960.0 −1.96178
\(546\) 0 0
\(547\) 1576.00 0.123190 0.0615950 0.998101i \(-0.480381\pi\)
0.0615950 + 0.998101i \(0.480381\pi\)
\(548\) 18438.0 1.43729
\(549\) 0 0
\(550\) 13200.0 1.02336
\(551\) 3312.00 0.256072
\(552\) 0 0
\(553\) −1716.00 −0.131956
\(554\) 872.000 0.0668732
\(555\) 0 0
\(556\) −13048.0 −0.995249
\(557\) −15318.0 −1.16525 −0.582625 0.812741i \(-0.697974\pi\)
−0.582625 + 0.812741i \(0.697974\pi\)
\(558\) 0 0
\(559\) 5992.00 0.453371
\(560\) −1640.00 −0.123755
\(561\) 0 0
\(562\) −3198.00 −0.240035
\(563\) −13220.0 −0.989621 −0.494810 0.869001i \(-0.664763\pi\)
−0.494810 + 0.869001i \(0.664763\pi\)
\(564\) 0 0
\(565\) 7000.00 0.521225
\(566\) −1936.00 −0.143774
\(567\) 0 0
\(568\) 11910.0 0.879811
\(569\) −2794.00 −0.205853 −0.102927 0.994689i \(-0.532821\pi\)
−0.102927 + 0.994689i \(0.532821\pi\)
\(570\) 0 0
\(571\) −14756.0 −1.08147 −0.540735 0.841193i \(-0.681854\pi\)
−0.540735 + 0.841193i \(0.681854\pi\)
\(572\) 4704.00 0.343853
\(573\) 0 0
\(574\) 588.000 0.0427572
\(575\) 33550.0 2.43327
\(576\) 0 0
\(577\) −2846.00 −0.205339 −0.102669 0.994716i \(-0.532738\pi\)
−0.102669 + 0.994716i \(0.532738\pi\)
\(578\) 289.000 0.0207973
\(579\) 0 0
\(580\) −5040.00 −0.360818
\(581\) 2104.00 0.150239
\(582\) 0 0
\(583\) 11232.0 0.797911
\(584\) 15570.0 1.10324
\(585\) 0 0
\(586\) 5718.00 0.403086
\(587\) 16820.0 1.18268 0.591342 0.806421i \(-0.298598\pi\)
0.591342 + 0.806421i \(0.298598\pi\)
\(588\) 0 0
\(589\) −16744.0 −1.17135
\(590\) 10800.0 0.753608
\(591\) 0 0
\(592\) 3116.00 0.216329
\(593\) −13314.0 −0.921991 −0.460995 0.887403i \(-0.652508\pi\)
−0.460995 + 0.887403i \(0.652508\pi\)
\(594\) 0 0
\(595\) −680.000 −0.0468526
\(596\) −2002.00 −0.137592
\(597\) 0 0
\(598\) −1708.00 −0.116798
\(599\) −2880.00 −0.196450 −0.0982250 0.995164i \(-0.531317\pi\)
−0.0982250 + 0.995164i \(0.531317\pi\)
\(600\) 0 0
\(601\) −24854.0 −1.68688 −0.843441 0.537222i \(-0.819474\pi\)
−0.843441 + 0.537222i \(0.819474\pi\)
\(602\) 856.000 0.0579534
\(603\) 0 0
\(604\) 11368.0 0.765823
\(605\) 19460.0 1.30770
\(606\) 0 0
\(607\) 6122.00 0.409365 0.204682 0.978828i \(-0.434384\pi\)
0.204682 + 0.978828i \(0.434384\pi\)
\(608\) 14812.0 0.988003
\(609\) 0 0
\(610\) −16400.0 −1.08855
\(611\) −168.000 −0.0111237
\(612\) 0 0
\(613\) 17398.0 1.14633 0.573164 0.819441i \(-0.305716\pi\)
0.573164 + 0.819441i \(0.305716\pi\)
\(614\) 684.000 0.0449576
\(615\) 0 0
\(616\) 1440.00 0.0941871
\(617\) −2922.00 −0.190657 −0.0953284 0.995446i \(-0.530390\pi\)
−0.0953284 + 0.995446i \(0.530390\pi\)
\(618\) 0 0
\(619\) 9660.00 0.627251 0.313625 0.949547i \(-0.398456\pi\)
0.313625 + 0.949547i \(0.398456\pi\)
\(620\) 25480.0 1.65049
\(621\) 0 0
\(622\) 290.000 0.0186944
\(623\) 2204.00 0.141736
\(624\) 0 0
\(625\) 25625.0 1.64000
\(626\) −11050.0 −0.705506
\(627\) 0 0
\(628\) −17794.0 −1.13067
\(629\) 1292.00 0.0819005
\(630\) 0 0
\(631\) 2788.00 0.175893 0.0879465 0.996125i \(-0.471970\pi\)
0.0879465 + 0.996125i \(0.471970\pi\)
\(632\) −12870.0 −0.810033
\(633\) 0 0
\(634\) −992.000 −0.0621409
\(635\) −6560.00 −0.409962
\(636\) 0 0
\(637\) 4746.00 0.295202
\(638\) 1728.00 0.107229
\(639\) 0 0
\(640\) −29100.0 −1.79731
\(641\) 16290.0 1.00377 0.501885 0.864934i \(-0.332640\pi\)
0.501885 + 0.864934i \(0.332640\pi\)
\(642\) 0 0
\(643\) −16588.0 −1.01737 −0.508683 0.860954i \(-0.669868\pi\)
−0.508683 + 0.860954i \(0.669868\pi\)
\(644\) 1708.00 0.104510
\(645\) 0 0
\(646\) 1564.00 0.0952550
\(647\) −22364.0 −1.35892 −0.679459 0.733714i \(-0.737785\pi\)
−0.679459 + 0.733714i \(0.737785\pi\)
\(648\) 0 0
\(649\) 25920.0 1.56772
\(650\) −3850.00 −0.232322
\(651\) 0 0
\(652\) −4788.00 −0.287596
\(653\) 19356.0 1.15997 0.579984 0.814628i \(-0.303059\pi\)
0.579984 + 0.814628i \(0.303059\pi\)
\(654\) 0 0
\(655\) 39040.0 2.32888
\(656\) −12054.0 −0.717423
\(657\) 0 0
\(658\) −24.0000 −0.00142191
\(659\) 4220.00 0.249450 0.124725 0.992191i \(-0.460195\pi\)
0.124725 + 0.992191i \(0.460195\pi\)
\(660\) 0 0
\(661\) −12070.0 −0.710240 −0.355120 0.934821i \(-0.615560\pi\)
−0.355120 + 0.934821i \(0.615560\pi\)
\(662\) 2860.00 0.167911
\(663\) 0 0
\(664\) 15780.0 0.922263
\(665\) −3680.00 −0.214593
\(666\) 0 0
\(667\) 4392.00 0.254961
\(668\) 3794.00 0.219752
\(669\) 0 0
\(670\) 14000.0 0.807264
\(671\) −39360.0 −2.26449
\(672\) 0 0
\(673\) −5914.00 −0.338734 −0.169367 0.985553i \(-0.554172\pi\)
−0.169367 + 0.985553i \(0.554172\pi\)
\(674\) 6298.00 0.359926
\(675\) 0 0
\(676\) 14007.0 0.796939
\(677\) 27624.0 1.56821 0.784104 0.620630i \(-0.213123\pi\)
0.784104 + 0.620630i \(0.213123\pi\)
\(678\) 0 0
\(679\) −1420.00 −0.0802571
\(680\) −5100.00 −0.287612
\(681\) 0 0
\(682\) −8736.00 −0.490497
\(683\) −29132.0 −1.63207 −0.816036 0.578001i \(-0.803833\pi\)
−0.816036 + 0.578001i \(0.803833\pi\)
\(684\) 0 0
\(685\) −52680.0 −2.93839
\(686\) 1364.00 0.0759151
\(687\) 0 0
\(688\) −17548.0 −0.972400
\(689\) −3276.00 −0.181140
\(690\) 0 0
\(691\) −20336.0 −1.11956 −0.559781 0.828640i \(-0.689115\pi\)
−0.559781 + 0.828640i \(0.689115\pi\)
\(692\) −5852.00 −0.321473
\(693\) 0 0
\(694\) 3508.00 0.191876
\(695\) 37280.0 2.03469
\(696\) 0 0
\(697\) −4998.00 −0.271611
\(698\) −2406.00 −0.130471
\(699\) 0 0
\(700\) 3850.00 0.207880
\(701\) −17142.0 −0.923601 −0.461801 0.886984i \(-0.652796\pi\)
−0.461801 + 0.886984i \(0.652796\pi\)
\(702\) 0 0
\(703\) 6992.00 0.375118
\(704\) −8016.00 −0.429140
\(705\) 0 0
\(706\) 1842.00 0.0981935
\(707\) −2420.00 −0.128732
\(708\) 0 0
\(709\) 22784.0 1.20687 0.603435 0.797412i \(-0.293798\pi\)
0.603435 + 0.797412i \(0.293798\pi\)
\(710\) −15880.0 −0.839388
\(711\) 0 0
\(712\) 16530.0 0.870067
\(713\) −22204.0 −1.16626
\(714\) 0 0
\(715\) −13440.0 −0.702976
\(716\) −24108.0 −1.25832
\(717\) 0 0
\(718\) −3264.00 −0.169654
\(719\) −58.0000 −0.00300839 −0.00150420 0.999999i \(-0.500479\pi\)
−0.00150420 + 0.999999i \(0.500479\pi\)
\(720\) 0 0
\(721\) −1288.00 −0.0665293
\(722\) 1605.00 0.0827312
\(723\) 0 0
\(724\) 22988.0 1.18003
\(725\) 9900.00 0.507140
\(726\) 0 0
\(727\) 712.000 0.0363227 0.0181614 0.999835i \(-0.494219\pi\)
0.0181614 + 0.999835i \(0.494219\pi\)
\(728\) −420.000 −0.0213822
\(729\) 0 0
\(730\) −20760.0 −1.05255
\(731\) −7276.00 −0.368143
\(732\) 0 0
\(733\) 23050.0 1.16149 0.580744 0.814086i \(-0.302762\pi\)
0.580744 + 0.814086i \(0.302762\pi\)
\(734\) 7354.00 0.369811
\(735\) 0 0
\(736\) 19642.0 0.983714
\(737\) 33600.0 1.67934
\(738\) 0 0
\(739\) −38708.0 −1.92679 −0.963394 0.268088i \(-0.913608\pi\)
−0.963394 + 0.268088i \(0.913608\pi\)
\(740\) −10640.0 −0.528560
\(741\) 0 0
\(742\) −468.000 −0.0231547
\(743\) 11034.0 0.544816 0.272408 0.962182i \(-0.412180\pi\)
0.272408 + 0.962182i \(0.412180\pi\)
\(744\) 0 0
\(745\) 5720.00 0.281295
\(746\) 11322.0 0.555667
\(747\) 0 0
\(748\) −5712.00 −0.279213
\(749\) −512.000 −0.0249774
\(750\) 0 0
\(751\) 7502.00 0.364516 0.182258 0.983251i \(-0.441659\pi\)
0.182258 + 0.983251i \(0.441659\pi\)
\(752\) 492.000 0.0238582
\(753\) 0 0
\(754\) −504.000 −0.0243430
\(755\) −32480.0 −1.56565
\(756\) 0 0
\(757\) −20954.0 −1.00606 −0.503029 0.864269i \(-0.667781\pi\)
−0.503029 + 0.864269i \(0.667781\pi\)
\(758\) 12796.0 0.613155
\(759\) 0 0
\(760\) −27600.0 −1.31731
\(761\) −8186.00 −0.389937 −0.194969 0.980809i \(-0.562461\pi\)
−0.194969 + 0.980809i \(0.562461\pi\)
\(762\) 0 0
\(763\) 2496.00 0.118429
\(764\) −2380.00 −0.112703
\(765\) 0 0
\(766\) 420.000 0.0198110
\(767\) −7560.00 −0.355901
\(768\) 0 0
\(769\) −5798.00 −0.271887 −0.135944 0.990717i \(-0.543407\pi\)
−0.135944 + 0.990717i \(0.543407\pi\)
\(770\) −1920.00 −0.0898597
\(771\) 0 0
\(772\) 10486.0 0.488859
\(773\) 39950.0 1.85886 0.929432 0.368994i \(-0.120298\pi\)
0.929432 + 0.368994i \(0.120298\pi\)
\(774\) 0 0
\(775\) −50050.0 −2.31981
\(776\) −10650.0 −0.492671
\(777\) 0 0
\(778\) −6426.00 −0.296122
\(779\) −27048.0 −1.24402
\(780\) 0 0
\(781\) −38112.0 −1.74616
\(782\) 2074.00 0.0948415
\(783\) 0 0
\(784\) −13899.0 −0.633154
\(785\) 50840.0 2.31154
\(786\) 0 0
\(787\) 20656.0 0.935587 0.467793 0.883838i \(-0.345049\pi\)
0.467793 + 0.883838i \(0.345049\pi\)
\(788\) −8232.00 −0.372148
\(789\) 0 0
\(790\) 17160.0 0.772817
\(791\) −700.000 −0.0314654
\(792\) 0 0
\(793\) 11480.0 0.514082
\(794\) −13212.0 −0.590524
\(795\) 0 0
\(796\) 17150.0 0.763650
\(797\) 3722.00 0.165420 0.0827102 0.996574i \(-0.473642\pi\)
0.0827102 + 0.996574i \(0.473642\pi\)
\(798\) 0 0
\(799\) 204.000 0.00903254
\(800\) 44275.0 1.95670
\(801\) 0 0
\(802\) 6242.00 0.274829
\(803\) −49824.0 −2.18960
\(804\) 0 0
\(805\) −4880.00 −0.213661
\(806\) 2548.00 0.111352
\(807\) 0 0
\(808\) −18150.0 −0.790241
\(809\) −6518.00 −0.283264 −0.141632 0.989919i \(-0.545235\pi\)
−0.141632 + 0.989919i \(0.545235\pi\)
\(810\) 0 0
\(811\) −33068.0 −1.43178 −0.715891 0.698212i \(-0.753979\pi\)
−0.715891 + 0.698212i \(0.753979\pi\)
\(812\) 504.000 0.0217819
\(813\) 0 0
\(814\) 3648.00 0.157079
\(815\) 13680.0 0.587963
\(816\) 0 0
\(817\) −39376.0 −1.68616
\(818\) −5194.00 −0.222010
\(819\) 0 0
\(820\) 41160.0 1.75289
\(821\) 5328.00 0.226490 0.113245 0.993567i \(-0.463875\pi\)
0.113245 + 0.993567i \(0.463875\pi\)
\(822\) 0 0
\(823\) 25874.0 1.09588 0.547941 0.836517i \(-0.315412\pi\)
0.547941 + 0.836517i \(0.315412\pi\)
\(824\) −9660.00 −0.408401
\(825\) 0 0
\(826\) −1080.00 −0.0454940
\(827\) −29184.0 −1.22712 −0.613559 0.789649i \(-0.710263\pi\)
−0.613559 + 0.789649i \(0.710263\pi\)
\(828\) 0 0
\(829\) −9394.00 −0.393567 −0.196784 0.980447i \(-0.563050\pi\)
−0.196784 + 0.980447i \(0.563050\pi\)
\(830\) −21040.0 −0.879890
\(831\) 0 0
\(832\) 2338.00 0.0974226
\(833\) −5763.00 −0.239707
\(834\) 0 0
\(835\) −10840.0 −0.449262
\(836\) −30912.0 −1.27884
\(837\) 0 0
\(838\) −15956.0 −0.657746
\(839\) 32062.0 1.31931 0.659656 0.751567i \(-0.270702\pi\)
0.659656 + 0.751567i \(0.270702\pi\)
\(840\) 0 0
\(841\) −23093.0 −0.946861
\(842\) −15254.0 −0.624332
\(843\) 0 0
\(844\) −7448.00 −0.303757
\(845\) −40020.0 −1.62927
\(846\) 0 0
\(847\) −1946.00 −0.0789437
\(848\) 9594.00 0.388513
\(849\) 0 0
\(850\) 4675.00 0.188648
\(851\) 9272.00 0.373490
\(852\) 0 0
\(853\) 9152.00 0.367361 0.183680 0.982986i \(-0.441199\pi\)
0.183680 + 0.982986i \(0.441199\pi\)
\(854\) 1640.00 0.0657139
\(855\) 0 0
\(856\) −3840.00 −0.153328
\(857\) 19706.0 0.785466 0.392733 0.919653i \(-0.371530\pi\)
0.392733 + 0.919653i \(0.371530\pi\)
\(858\) 0 0
\(859\) 28684.0 1.13933 0.569666 0.821877i \(-0.307073\pi\)
0.569666 + 0.821877i \(0.307073\pi\)
\(860\) 59920.0 2.37588
\(861\) 0 0
\(862\) 5538.00 0.218823
\(863\) 6320.00 0.249288 0.124644 0.992202i \(-0.460221\pi\)
0.124644 + 0.992202i \(0.460221\pi\)
\(864\) 0 0
\(865\) 16720.0 0.657222
\(866\) 11342.0 0.445054
\(867\) 0 0
\(868\) −2548.00 −0.0996368
\(869\) 41184.0 1.60768
\(870\) 0 0
\(871\) −9800.00 −0.381240
\(872\) 18720.0 0.726994
\(873\) 0 0
\(874\) 11224.0 0.434391
\(875\) −6000.00 −0.231814
\(876\) 0 0
\(877\) 49272.0 1.89715 0.948573 0.316558i \(-0.102527\pi\)
0.948573 + 0.316558i \(0.102527\pi\)
\(878\) 982.000 0.0377459
\(879\) 0 0
\(880\) 39360.0 1.50776
\(881\) 16462.0 0.629533 0.314767 0.949169i \(-0.398074\pi\)
0.314767 + 0.949169i \(0.398074\pi\)
\(882\) 0 0
\(883\) 21300.0 0.811780 0.405890 0.913922i \(-0.366962\pi\)
0.405890 + 0.913922i \(0.366962\pi\)
\(884\) 1666.00 0.0633865
\(885\) 0 0
\(886\) 2492.00 0.0944925
\(887\) 16590.0 0.628002 0.314001 0.949423i \(-0.398330\pi\)
0.314001 + 0.949423i \(0.398330\pi\)
\(888\) 0 0
\(889\) 656.000 0.0247486
\(890\) −22040.0 −0.830093
\(891\) 0 0
\(892\) 15708.0 0.589622
\(893\) 1104.00 0.0413706
\(894\) 0 0
\(895\) 68880.0 2.57252
\(896\) 2910.00 0.108500
\(897\) 0 0
\(898\) 5498.00 0.204310
\(899\) −6552.00 −0.243072
\(900\) 0 0
\(901\) 3978.00 0.147088
\(902\) −14112.0 −0.520929
\(903\) 0 0
\(904\) −5250.00 −0.193155
\(905\) −65680.0 −2.41246
\(906\) 0 0
\(907\) −36184.0 −1.32466 −0.662332 0.749211i \(-0.730433\pi\)
−0.662332 + 0.749211i \(0.730433\pi\)
\(908\) 3612.00 0.132014
\(909\) 0 0
\(910\) 560.000 0.0203998
\(911\) −15626.0 −0.568290 −0.284145 0.958781i \(-0.591710\pi\)
−0.284145 + 0.958781i \(0.591710\pi\)
\(912\) 0 0
\(913\) −50496.0 −1.83042
\(914\) 4998.00 0.180874
\(915\) 0 0
\(916\) 20454.0 0.737794
\(917\) −3904.00 −0.140590
\(918\) 0 0
\(919\) 36672.0 1.31632 0.658160 0.752878i \(-0.271335\pi\)
0.658160 + 0.752878i \(0.271335\pi\)
\(920\) −36600.0 −1.31159
\(921\) 0 0
\(922\) 7586.00 0.270967
\(923\) 11116.0 0.396411
\(924\) 0 0
\(925\) 20900.0 0.742906
\(926\) 5900.00 0.209380
\(927\) 0 0
\(928\) 5796.00 0.205025
\(929\) 15810.0 0.558352 0.279176 0.960240i \(-0.409939\pi\)
0.279176 + 0.960240i \(0.409939\pi\)
\(930\) 0 0
\(931\) −31188.0 −1.09790
\(932\) 21798.0 0.766113
\(933\) 0 0
\(934\) 19404.0 0.679784
\(935\) 16320.0 0.570825
\(936\) 0 0
\(937\) 48646.0 1.69605 0.848023 0.529959i \(-0.177793\pi\)
0.848023 + 0.529959i \(0.177793\pi\)
\(938\) −1400.00 −0.0487331
\(939\) 0 0
\(940\) −1680.00 −0.0582931
\(941\) −43872.0 −1.51986 −0.759929 0.650006i \(-0.774766\pi\)
−0.759929 + 0.650006i \(0.774766\pi\)
\(942\) 0 0
\(943\) −35868.0 −1.23862
\(944\) 22140.0 0.763343
\(945\) 0 0
\(946\) −20544.0 −0.706071
\(947\) −38552.0 −1.32288 −0.661442 0.749996i \(-0.730055\pi\)
−0.661442 + 0.749996i \(0.730055\pi\)
\(948\) 0 0
\(949\) 14532.0 0.497080
\(950\) 25300.0 0.864043
\(951\) 0 0
\(952\) 510.000 0.0173626
\(953\) 52954.0 1.79995 0.899973 0.435946i \(-0.143586\pi\)
0.899973 + 0.435946i \(0.143586\pi\)
\(954\) 0 0
\(955\) 6800.00 0.230411
\(956\) 28868.0 0.976630
\(957\) 0 0
\(958\) −2586.00 −0.0872128
\(959\) 5268.00 0.177385
\(960\) 0 0
\(961\) 3333.00 0.111879
\(962\) −1064.00 −0.0356598
\(963\) 0 0
\(964\) 14238.0 0.475700
\(965\) −29960.0 −0.999426
\(966\) 0 0
\(967\) −46428.0 −1.54398 −0.771988 0.635638i \(-0.780737\pi\)
−0.771988 + 0.635638i \(0.780737\pi\)
\(968\) −14595.0 −0.484609
\(969\) 0 0
\(970\) 14200.0 0.470036
\(971\) 40980.0 1.35439 0.677194 0.735804i \(-0.263196\pi\)
0.677194 + 0.735804i \(0.263196\pi\)
\(972\) 0 0
\(973\) −3728.00 −0.122831
\(974\) 10106.0 0.332461
\(975\) 0 0
\(976\) −33620.0 −1.10261
\(977\) 10206.0 0.334206 0.167103 0.985939i \(-0.446559\pi\)
0.167103 + 0.985939i \(0.446559\pi\)
\(978\) 0 0
\(979\) −52896.0 −1.72683
\(980\) 47460.0 1.54699
\(981\) 0 0
\(982\) 76.0000 0.00246971
\(983\) 44934.0 1.45796 0.728979 0.684536i \(-0.239995\pi\)
0.728979 + 0.684536i \(0.239995\pi\)
\(984\) 0 0
\(985\) 23520.0 0.760822
\(986\) 612.000 0.0197668
\(987\) 0 0
\(988\) 9016.00 0.290321
\(989\) −52216.0 −1.67884
\(990\) 0 0
\(991\) 20526.0 0.657951 0.328976 0.944338i \(-0.393297\pi\)
0.328976 + 0.944338i \(0.393297\pi\)
\(992\) −29302.0 −0.937842
\(993\) 0 0
\(994\) 1588.00 0.0506723
\(995\) −49000.0 −1.56121
\(996\) 0 0
\(997\) 29260.0 0.929462 0.464731 0.885452i \(-0.346151\pi\)
0.464731 + 0.885452i \(0.346151\pi\)
\(998\) 8096.00 0.256788
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.4.a.c.1.1 1
3.2 odd 2 51.4.a.b.1.1 1
4.3 odd 2 2448.4.a.r.1.1 1
12.11 even 2 816.4.a.a.1.1 1
15.14 odd 2 1275.4.a.e.1.1 1
21.20 even 2 2499.4.a.d.1.1 1
51.50 odd 2 867.4.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.b.1.1 1 3.2 odd 2
153.4.a.c.1.1 1 1.1 even 1 trivial
816.4.a.a.1.1 1 12.11 even 2
867.4.a.c.1.1 1 51.50 odd 2
1275.4.a.e.1.1 1 15.14 odd 2
2448.4.a.r.1.1 1 4.3 odd 2
2499.4.a.d.1.1 1 21.20 even 2