Defining parameters
Level: | \( N \) | \(=\) | \( 153 = 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 153.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(153))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 58 | 20 | 38 |
Cusp forms | 50 | 20 | 30 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(17\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(4\) |
\(+\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(-\) | \(5\) |
\(-\) | \(-\) | \(+\) | \(7\) |
Plus space | \(+\) | \(11\) | |
Minus space | \(-\) | \(9\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(153))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(153))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(153)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 2}\)