Newspace parameters
Level: | \( N \) | \(=\) | \( 153 = 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 153.t (of order \(48\), degree \(16\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.16894804471\) |
Analytic rank: | \(0\) |
Dimension: | \(544\) |
Relative dimension: | \(34\) over \(\Q(\zeta_{48})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{48}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −2.34971 | − | 3.06221i | −2.49301 | − | 1.66880i | −2.82067 | + | 10.5269i | 4.51184 | − | 3.95678i | 0.747673 | + | 11.5553i | 7.72900 | + | 6.77815i | 24.5993 | − | 10.1893i | 3.43024 | + | 8.32066i | −22.7180 | − | 4.51889i |
7.2 | −2.30425 | − | 3.00295i | 1.06273 | + | 2.80546i | −2.67290 | + | 9.97539i | 1.79172 | − | 1.57130i | 5.97588 | − | 9.65580i | −7.21963 | − | 6.33144i | 22.1266 | − | 9.16514i | −6.74122 | + | 5.96288i | −8.84710 | − | 1.75980i |
7.3 | −1.99492 | − | 2.59982i | 2.99475 | + | 0.177381i | −1.74412 | + | 6.50916i | −5.15807 | + | 4.52351i | −5.51312 | − | 8.13969i | 1.60281 | + | 1.40563i | 8.29180 | − | 3.43458i | 8.93707 | + | 1.06242i | 22.0503 | + | 4.38607i |
7.4 | −1.98557 | − | 2.58765i | −2.23949 | + | 1.99617i | −1.71816 | + | 6.41225i | −3.06932 | + | 2.69172i | 9.61206 | + | 1.83148i | 1.95779 | + | 1.71694i | 7.95066 | − | 3.29327i | 1.03063 | − | 8.94079i | 13.0596 | + | 2.59771i |
7.5 | −1.98320 | − | 2.58456i | 2.10823 | − | 2.13433i | −1.71157 | + | 6.38767i | 3.10070 | − | 2.71924i | −9.69733 | − | 1.21605i | −0.332878 | − | 0.291926i | 7.86457 | − | 3.25761i | −0.110711 | − | 8.99932i | −13.1773 | − | 2.62114i |
7.6 | −1.62741 | − | 2.12088i | −0.107726 | − | 2.99807i | −0.814394 | + | 3.03936i | −4.22014 | + | 3.70097i | −6.18322 | + | 5.10755i | 5.62018 | + | 4.92877i | −2.10780 | + | 0.873079i | −8.97679 | + | 0.645938i | 14.7172 | + | 2.92743i |
7.7 | −1.60099 | − | 2.08646i | −2.95447 | − | 0.520684i | −0.754842 | + | 2.81711i | 0.0116724 | − | 0.0102364i | 3.64370 | + | 6.99798i | −8.44362 | − | 7.40486i | −2.63265 | + | 1.09048i | 8.45778 | + | 3.07669i | −0.0400452 | − | 0.00796548i |
7.8 | −1.45745 | − | 1.89939i | 1.40195 | + | 2.65227i | −0.448230 | + | 1.67282i | 3.48496 | − | 3.05623i | 2.99440 | − | 6.52840i | 7.58002 | + | 6.64750i | −5.01693 | + | 2.07808i | −5.06905 | + | 7.43671i | −10.8841 | − | 2.16498i |
7.9 | −1.42645 | − | 1.85898i | −1.02126 | − | 2.82082i | −0.385791 | + | 1.43979i | 1.34400 | − | 1.17865i | −3.78709 | + | 5.92226i | −4.37305 | − | 3.83506i | −5.43247 | + | 2.25020i | −6.91405 | + | 5.76159i | −4.10824 | − | 0.817180i |
7.10 | −1.11526 | − | 1.45343i | 2.99911 | + | 0.0730780i | 0.166611 | − | 0.621802i | 5.00581 | − | 4.38998i | −3.23857 | − | 4.44050i | −5.80360 | − | 5.08962i | −7.85979 | + | 3.25563i | 8.98932 | + | 0.438338i | −11.9633 | − | 2.37965i |
7.11 | −1.02422 | − | 1.33479i | 1.18397 | + | 2.75649i | 0.302643 | − | 1.12948i | −4.59546 | + | 4.03011i | 2.46668 | − | 4.40359i | −4.37877 | − | 3.84008i | −8.03515 | + | 3.32827i | −6.19644 | + | 6.52718i | 10.0861 | + | 2.00625i |
7.12 | −0.729327 | − | 0.950477i | −2.99802 | + | 0.108885i | 0.663787 | − | 2.47729i | 4.84694 | − | 4.25065i | 2.29003 | + | 2.77014i | 3.17511 | + | 2.78450i | −7.26614 | + | 3.00973i | 8.97629 | − | 0.652881i | −7.57515 | − | 1.50679i |
7.13 | −0.728437 | − | 0.949317i | −1.51905 | + | 2.58698i | 0.664693 | − | 2.48067i | −1.46882 | + | 1.28812i | 3.56240 | − | 0.442392i | 2.80528 | + | 2.46016i | −7.26114 | + | 3.00766i | −4.38496 | − | 7.85952i | 2.29278 | + | 0.456063i |
7.14 | −0.513504 | − | 0.669211i | −2.79121 | − | 1.09961i | 0.851119 | − | 3.17642i | −6.13530 | + | 5.38051i | 0.697425 | + | 2.43256i | 4.80568 | + | 4.21447i | −5.68000 | + | 2.35273i | 6.58171 | + | 6.13849i | 6.75120 | + | 1.34290i |
7.15 | −0.434047 | − | 0.565661i | 1.99588 | − | 2.23974i | 0.903701 | − | 3.37266i | −4.79864 | + | 4.20829i | −2.13324 | − | 0.156838i | −7.75304 | − | 6.79923i | −4.93493 | + | 2.04412i | −1.03291 | − | 8.94053i | 4.46330 | + | 0.887806i |
7.16 | −0.284452 | − | 0.370706i | 2.74120 | − | 1.21894i | 0.978767 | − | 3.65281i | −0.671178 | + | 0.588607i | −1.23161 | − | 0.669448i | 9.62460 | + | 8.44054i | −3.35931 | + | 1.39147i | 6.02836 | − | 6.68273i | 0.409118 | + | 0.0813786i |
7.17 | −0.245388 | − | 0.319796i | 0.0747680 | − | 2.99907i | 0.993222 | − | 3.70675i | 6.39903 | − | 5.61180i | −0.977438 | + | 0.712026i | 3.23973 | + | 2.84117i | −2.91878 | + | 1.20900i | −8.98882 | − | 0.448469i | −3.36488 | − | 0.669316i |
7.18 | −0.0485999 | − | 0.0633367i | −0.879538 | + | 2.86817i | 1.03363 | − | 3.85755i | 3.26851 | − | 2.86641i | 0.224406 | − | 0.0836860i | −8.31214 | − | 7.28955i | −0.589587 | + | 0.244215i | −7.45283 | − | 5.04533i | −0.340399 | − | 0.0677095i |
7.19 | 0.286178 | + | 0.372954i | −1.53721 | − | 2.57624i | 0.978079 | − | 3.65024i | −1.59407 | + | 1.39796i | 0.520903 | − | 1.31057i | −2.48802 | − | 2.18193i | 3.37853 | − | 1.39943i | −4.27399 | + | 7.92042i | −0.977562 | − | 0.194449i |
7.20 | 0.434420 | + | 0.566147i | 2.71144 | + | 1.28378i | 0.903474 | − | 3.37181i | 1.70774 | − | 1.49765i | 0.451096 | + | 2.09277i | −0.856685 | − | 0.751292i | 4.93860 | − | 2.04563i | 5.70382 | + | 6.96178i | 1.58977 | + | 0.316224i |
See next 80 embeddings (of 544 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
17.e | odd | 16 | 1 | inner |
153.t | odd | 48 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 153.3.t.a | ✓ | 544 |
9.c | even | 3 | 1 | inner | 153.3.t.a | ✓ | 544 |
17.e | odd | 16 | 1 | inner | 153.3.t.a | ✓ | 544 |
153.t | odd | 48 | 1 | inner | 153.3.t.a | ✓ | 544 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
153.3.t.a | ✓ | 544 | 1.a | even | 1 | 1 | trivial |
153.3.t.a | ✓ | 544 | 9.c | even | 3 | 1 | inner |
153.3.t.a | ✓ | 544 | 17.e | odd | 16 | 1 | inner |
153.3.t.a | ✓ | 544 | 153.t | odd | 48 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(153, [\chi])\).