Newspace parameters
Level: | \( N \) | \(=\) | \( 153 = 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 153.q (of order \(24\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.16894804471\) |
Analytic rank: | \(0\) |
Dimension: | \(272\) |
Relative dimension: | \(34\) over \(\Q(\zeta_{24})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{24}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −0.976788 | − | 3.64542i | 2.89472 | + | 0.787774i | −8.87089 | + | 5.12161i | 6.48194 | + | 4.97377i | 0.0442393 | − | 11.3220i | 0.354599 | + | 0.462123i | 16.6609 | + | 16.6609i | 7.75882 | + | 4.56077i | 11.8000 | − | 28.4877i |
2.2 | −0.958970 | − | 3.57893i | −2.63450 | + | 1.43507i | −8.42499 | + | 4.86417i | −3.62363 | − | 2.78051i | 7.66241 | + | 8.05249i | 6.54948 | + | 8.53545i | 15.0080 | + | 15.0080i | 4.88116 | − | 7.56137i | −6.47627 | + | 15.6351i |
2.3 | −0.952810 | − | 3.55594i | −1.96843 | − | 2.26391i | −8.27274 | + | 4.77627i | 0.135821 | + | 0.104219i | −6.17477 | + | 9.15669i | −6.27549 | − | 8.17838i | 14.4539 | + | 14.4539i | −1.25055 | + | 8.91270i | 0.241185 | − | 0.582272i |
2.4 | −0.879999 | − | 3.28420i | 2.86641 | − | 0.885249i | −6.54748 | + | 3.78019i | −7.23778 | − | 5.55374i | −5.42978 | − | 8.63487i | 0.237850 | + | 0.309972i | 8.55988 | + | 8.55988i | 7.43267 | − | 5.07498i | −11.8704 | + | 28.6576i |
2.5 | −0.826656 | − | 3.08512i | 0.255503 | + | 2.98910i | −5.37052 | + | 3.10067i | −0.912220 | − | 0.699971i | 9.01052 | − | 3.25922i | −4.84982 | − | 6.32041i | 4.97164 | + | 4.97164i | −8.86944 | + | 1.52745i | −1.40540 | + | 3.39294i |
2.6 | −0.711546 | − | 2.65552i | 1.11729 | − | 2.78418i | −3.08141 | + | 1.77905i | 1.90049 | + | 1.45830i | −8.18846 | − | 0.985928i | −0.864006 | − | 1.12599i | −0.859030 | − | 0.859030i | −6.50331 | − | 6.22149i | 2.52026 | − | 6.08445i |
2.7 | −0.687998 | − | 2.56764i | −2.75883 | − | 1.17849i | −2.65535 | + | 1.53307i | 6.46936 | + | 4.96411i | −1.12787 | + | 7.89450i | 6.24766 | + | 8.14211i | −1.75533 | − | 1.75533i | 6.22233 | + | 6.50251i | 8.29517 | − | 20.0263i |
2.8 | −0.664763 | − | 2.48093i | 1.32721 | + | 2.69045i | −2.24900 | + | 1.29846i | 0.0683317 | + | 0.0524328i | 5.79253 | − | 5.08123i | 6.43430 | + | 8.38534i | −2.54823 | − | 2.54823i | −5.47702 | + | 7.14158i | 0.0846576 | − | 0.204381i |
2.9 | −0.647250 | − | 2.41557i | −2.31487 | + | 1.90824i | −1.95194 | + | 1.12695i | 3.78501 | + | 2.90434i | 6.10779 | + | 4.35662i | −3.37531 | − | 4.39879i | −3.08765 | − | 3.08765i | 1.71724 | − | 8.83465i | 4.56579 | − | 11.0228i |
2.10 | −0.559970 | − | 2.08984i | −1.00314 | − | 2.82732i | −0.589750 | + | 0.340492i | −5.27616 | − | 4.04854i | −5.34690 | + | 3.67960i | 3.14801 | + | 4.10257i | −5.07765 | − | 5.07765i | −6.98743 | + | 5.67237i | −5.50630 | + | 13.2934i |
2.11 | −0.455624 | − | 1.70041i | 2.67577 | − | 1.35656i | 0.780296 | − | 0.450504i | 2.73244 | + | 2.09667i | −3.52586 | − | 3.93183i | −1.58154 | − | 2.06110i | −6.10071 | − | 6.10071i | 5.31948 | − | 7.25969i | 2.32024 | − | 5.60156i |
2.12 | −0.343290 | − | 1.28118i | −2.90483 | − | 0.749645i | 1.94054 | − | 1.12037i | −2.44044 | − | 1.87262i | 0.0367716 | + | 3.97895i | −0.900245 | − | 1.17322i | −5.85310 | − | 5.85310i | 7.87606 | + | 4.35518i | −1.56137 | + | 3.76949i |
2.13 | −0.322956 | − | 1.20529i | 2.45139 | + | 1.72936i | 2.11568 | − | 1.22149i | −4.43241 | − | 3.40111i | 1.29268 | − | 3.51314i | −7.76060 | − | 10.1138i | −5.68485 | − | 5.68485i | 3.01864 | + | 8.47867i | −2.66784 | + | 6.44074i |
2.14 | −0.244444 | − | 0.912279i | −1.06612 | + | 2.80417i | 2.69160 | − | 1.55400i | −6.37893 | − | 4.89473i | 2.81880 | + | 0.287134i | 2.10063 | + | 2.73760i | −4.74697 | − | 4.74697i | −6.72678 | − | 5.97917i | −2.90606 | + | 7.01586i |
2.15 | −0.204085 | − | 0.761655i | 2.97697 | + | 0.370973i | 2.92563 | − | 1.68912i | −0.546192 | − | 0.419108i | −0.325002 | − | 2.34314i | 6.84367 | + | 8.91884i | −4.11388 | − | 4.11388i | 8.72476 | + | 2.20875i | −0.207746 | + | 0.501543i |
2.16 | −0.141239 | − | 0.527112i | 1.73795 | + | 2.44531i | 3.20620 | − | 1.85110i | 7.66759 | + | 5.88355i | 1.04348 | − | 1.26147i | −3.59594 | − | 4.68632i | −2.97207 | − | 2.97207i | −2.95905 | + | 8.49965i | 2.01832 | − | 4.87267i |
2.17 | −0.0836437 | − | 0.312162i | −1.97783 | + | 2.25570i | 3.37365 | − | 1.94778i | 2.39152 | + | 1.83508i | 0.869578 | + | 0.428729i | 0.429766 | + | 0.560082i | −1.80428 | − | 1.80428i | −1.17638 | − | 8.92279i | 0.372807 | − | 0.900036i |
2.18 | −0.00739618 | − | 0.0276029i | −0.351156 | − | 2.97938i | 3.46339 | − | 1.99959i | −1.61331 | − | 1.23794i | −0.0796423 | + | 0.0317290i | −6.12912 | − | 7.98762i | −0.161637 | − | 0.161637i | −8.75338 | + | 2.09245i | −0.0222383 | + | 0.0536881i |
2.19 | 0.0361624 | + | 0.134960i | −0.00871697 | − | 2.99999i | 3.44720 | − | 1.99024i | 4.35972 | + | 3.34533i | 0.404563 | − | 0.109663i | 6.08938 | + | 7.93584i | 0.788451 | + | 0.788451i | −8.99985 | + | 0.0523016i | −0.293828 | + | 0.709363i |
2.20 | 0.0775060 | + | 0.289257i | −2.82295 | − | 1.01536i | 3.38644 | − | 1.95516i | 2.93290 | + | 2.25049i | 0.0749028 | − | 0.895253i | −2.95513 | − | 3.85120i | 1.67501 | + | 1.67501i | 6.93810 | + | 5.73260i | −0.423652 | + | 1.02279i |
See next 80 embeddings (of 272 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
17.d | even | 8 | 1 | inner |
153.q | odd | 24 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 153.3.q.a | ✓ | 272 |
9.d | odd | 6 | 1 | inner | 153.3.q.a | ✓ | 272 |
17.d | even | 8 | 1 | inner | 153.3.q.a | ✓ | 272 |
153.q | odd | 24 | 1 | inner | 153.3.q.a | ✓ | 272 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
153.3.q.a | ✓ | 272 | 1.a | even | 1 | 1 | trivial |
153.3.q.a | ✓ | 272 | 9.d | odd | 6 | 1 | inner |
153.3.q.a | ✓ | 272 | 17.d | even | 8 | 1 | inner |
153.3.q.a | ✓ | 272 | 153.q | odd | 24 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(153, [\chi])\).