Defining parameters
| Level: | \( N \) | \(=\) | \( 153 = 3^{2} \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 153.l (of order \(8\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
| Character field: | \(\Q(\zeta_{8})\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(36\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(153, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 88 | 36 | 52 |
| Cusp forms | 56 | 28 | 28 |
| Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(153, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 153.2.l.a | $4$ | $1.222$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(-4\) | \(-8\) | \(q-\zeta_{8}^{3}q^{2}+\zeta_{8}^{2}q^{4}+(-1+\zeta_{8}-2\zeta_{8}^{2}+\cdots)q^{5}+\cdots\) |
| 153.2.l.b | $4$ | $1.222$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(4\) | \(-8\) | \(q+\zeta_{8}^{3}q^{2}+\zeta_{8}^{2}q^{4}+(1-\zeta_{8}+2\zeta_{8}^{2}+\cdots)q^{5}+\cdots\) |
| 153.2.l.c | $4$ | $1.222$ | \(\Q(\zeta_{8})\) | None | \(4\) | \(0\) | \(0\) | \(-4\) | \(q+(1-\zeta_{8}^{2}+\zeta_{8}^{3})q^{2}+(2\zeta_{8}-\zeta_{8}^{2}+\cdots)q^{4}+\cdots\) |
| 153.2.l.d | $8$ | $1.222$ | 8.0.\(\cdots\).13 | None | \(0\) | \(0\) | \(0\) | \(16\) | \(q+(-\beta _{5}+\beta _{7})q^{2}+(-\beta _{2}+4\beta _{4}+\beta _{6}+\cdots)q^{4}+\cdots\) |
| 153.2.l.e | $8$ | $1.222$ | \(\Q(\zeta_{16})\) | None | \(0\) | \(0\) | \(8\) | \(0\) | \(q+(\zeta_{16}+\zeta_{16}^{3})q^{2}+(\zeta_{16}^{2}+\zeta_{16}^{6}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(153, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(153, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 2}\)