Properties

Label 153.2.l
Level $153$
Weight $2$
Character orbit 153.l
Rep. character $\chi_{153}(19,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $28$
Newform subspaces $5$
Sturm bound $36$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 153.l (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 5 \)
Sturm bound: \(36\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(153, [\chi])\).

Total New Old
Modular forms 88 36 52
Cusp forms 56 28 28
Eisenstein series 32 8 24

Trace form

\( 28 q + 4 q^{2} + 8 q^{5} - 4 q^{7} - 4 q^{8} - 4 q^{10} - 4 q^{11} + 12 q^{14} - 36 q^{16} + 8 q^{17} - 24 q^{19} - 20 q^{20} - 36 q^{22} - 12 q^{23} + 4 q^{25} - 12 q^{26} + 52 q^{28} + 4 q^{29} + 4 q^{31}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(153, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
153.2.l.a 153.l 17.d $4$ $1.222$ \(\Q(\zeta_{8})\) None 153.2.l.a \(0\) \(0\) \(-4\) \(-8\) $\mathrm{SU}(2)[C_{8}]$ \(q-\zeta_{8}^{3}q^{2}+\zeta_{8}^{2}q^{4}+(-1+\zeta_{8}-2\zeta_{8}^{2}+\cdots)q^{5}+\cdots\)
153.2.l.b 153.l 17.d $4$ $1.222$ \(\Q(\zeta_{8})\) None 153.2.l.a \(0\) \(0\) \(4\) \(-8\) $\mathrm{SU}(2)[C_{8}]$ \(q+\zeta_{8}^{3}q^{2}+\zeta_{8}^{2}q^{4}+(1-\zeta_{8}+2\zeta_{8}^{2}+\cdots)q^{5}+\cdots\)
153.2.l.c 153.l 17.d $4$ $1.222$ \(\Q(\zeta_{8})\) None 17.2.d.a \(4\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{8}]$ \(q+(1-\zeta_{8}^{2}+\zeta_{8}^{3})q^{2}+(2\zeta_{8}-\zeta_{8}^{2}+\cdots)q^{4}+\cdots\)
153.2.l.d 153.l 17.d $8$ $1.222$ 8.0.\(\cdots\).13 None 153.2.l.d \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{8}]$ \(q+(-\beta _{5}+\beta _{7})q^{2}+(-\beta _{2}+4\beta _{4}+\beta _{6}+\cdots)q^{4}+\cdots\)
153.2.l.e 153.l 17.d $8$ $1.222$ \(\Q(\zeta_{16})\) None 51.2.h.a \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+(\zeta_{16}+\zeta_{16}^{3})q^{2}+(\zeta_{16}^{2}+\zeta_{16}^{6}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(153, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(153, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 2}\)