Properties

Label 153.2.d.c
Level $153$
Weight $2$
Character orbit 153.d
Analytic conductor $1.222$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,2,Mod(118,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.118"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 153.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22171115093\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + 2 q^{4} + 3 i q^{5} - 2 i q^{7} + 6 i q^{10} - 5 i q^{11} - q^{13} - 4 i q^{14} - 4 q^{16} + (i - 4) q^{17} + 5 q^{19} + 6 i q^{20} - 10 i q^{22} - i q^{23} - 4 q^{25} - 2 q^{26} - 4 i q^{28} + \cdots + 6 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 4 q^{4} - 2 q^{13} - 8 q^{16} - 8 q^{17} + 10 q^{19} - 8 q^{25} - 4 q^{26} - 16 q^{32} - 16 q^{34} + 12 q^{35} + 20 q^{38} - 2 q^{43} + 4 q^{47} + 6 q^{49} - 16 q^{50} - 4 q^{52} + 12 q^{53}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
118.1
1.00000i
1.00000i
2.00000 0 2.00000 3.00000i 0 2.00000i 0 0 6.00000i
118.2 2.00000 0 2.00000 3.00000i 0 2.00000i 0 0 6.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 153.2.d.c 2
3.b odd 2 1 51.2.d.a 2
4.b odd 2 1 2448.2.c.f 2
12.b even 2 1 816.2.c.b 2
15.d odd 2 1 1275.2.g.b 2
15.e even 4 1 1275.2.d.a 2
15.e even 4 1 1275.2.d.c 2
17.b even 2 1 inner 153.2.d.c 2
17.c even 4 1 2601.2.a.a 1
17.c even 4 1 2601.2.a.c 1
24.f even 2 1 3264.2.c.h 2
24.h odd 2 1 3264.2.c.g 2
51.c odd 2 1 51.2.d.a 2
51.f odd 4 1 867.2.a.d 1
51.f odd 4 1 867.2.a.e 1
51.g odd 8 4 867.2.e.a 4
51.i even 16 8 867.2.h.e 8
68.d odd 2 1 2448.2.c.f 2
204.h even 2 1 816.2.c.b 2
255.h odd 2 1 1275.2.g.b 2
255.o even 4 1 1275.2.d.a 2
255.o even 4 1 1275.2.d.c 2
408.b odd 2 1 3264.2.c.g 2
408.h even 2 1 3264.2.c.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.2.d.a 2 3.b odd 2 1
51.2.d.a 2 51.c odd 2 1
153.2.d.c 2 1.a even 1 1 trivial
153.2.d.c 2 17.b even 2 1 inner
816.2.c.b 2 12.b even 2 1
816.2.c.b 2 204.h even 2 1
867.2.a.d 1 51.f odd 4 1
867.2.a.e 1 51.f odd 4 1
867.2.e.a 4 51.g odd 8 4
867.2.h.e 8 51.i even 16 8
1275.2.d.a 2 15.e even 4 1
1275.2.d.a 2 255.o even 4 1
1275.2.d.c 2 15.e even 4 1
1275.2.d.c 2 255.o even 4 1
1275.2.g.b 2 15.d odd 2 1
1275.2.g.b 2 255.h odd 2 1
2448.2.c.f 2 4.b odd 2 1
2448.2.c.f 2 68.d odd 2 1
2601.2.a.a 1 17.c even 4 1
2601.2.a.c 1 17.c even 4 1
3264.2.c.g 2 24.h odd 2 1
3264.2.c.g 2 408.b odd 2 1
3264.2.c.h 2 24.f even 2 1
3264.2.c.h 2 408.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 2 \) acting on \(S_{2}^{\mathrm{new}}(153, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 9 \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{2} + 25 \) Copy content Toggle raw display
$13$ \( (T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 8T + 17 \) Copy content Toggle raw display
$19$ \( (T - 5)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 1 \) Copy content Toggle raw display
$29$ \( T^{2} + 36 \) Copy content Toggle raw display
$31$ \( T^{2} + 100 \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( T^{2} + 25 \) Copy content Toggle raw display
$43$ \( (T + 1)^{2} \) Copy content Toggle raw display
$47$ \( (T - 2)^{2} \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 100 \) Copy content Toggle raw display
$67$ \( (T + 12)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 36 \) Copy content Toggle raw display
$79$ \( T^{2} + 16 \) Copy content Toggle raw display
$83$ \( (T - 6)^{2} \) Copy content Toggle raw display
$89$ \( (T - 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 64 \) Copy content Toggle raw display
show more
show less