Properties

Label 153.2.a
Level $153$
Weight $2$
Character orbit 153.a
Rep. character $\chi_{153}(1,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $5$
Sturm bound $36$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 153.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(36\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(153))\).

Total New Old
Modular forms 22 6 16
Cusp forms 15 6 9
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(17\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(2\)
Minus space\(-\)\(4\)

Trace form

\( 6 q + 2 q^{2} + 6 q^{4} - 4 q^{5} - 4 q^{7} + 6 q^{8} - 4 q^{10} + 4 q^{11} - 8 q^{13} + 4 q^{14} - 2 q^{16} - 2 q^{17} - 4 q^{19} - 12 q^{20} + 4 q^{22} - 4 q^{23} - 2 q^{25} - 8 q^{26} - 4 q^{28} - 12 q^{29}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(153))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 17
153.2.a.a 153.a 1.a $1$ $1.222$ \(\Q\) None 153.2.a.a \(-2\) \(0\) \(-1\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+2q^{4}-q^{5}-2q^{7}+2q^{10}+\cdots\)
153.2.a.b 153.a 1.a $1$ $1.222$ \(\Q\) None 51.2.a.a \(0\) \(0\) \(-3\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{4}-3q^{5}-4q^{7}+3q^{11}-q^{13}+\cdots\)
153.2.a.c 153.a 1.a $1$ $1.222$ \(\Q\) None 17.2.a.a \(1\) \(0\) \(2\) \(4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}+2q^{5}+4q^{7}-3q^{8}+2q^{10}+\cdots\)
153.2.a.d 153.a 1.a $1$ $1.222$ \(\Q\) None 153.2.a.a \(2\) \(0\) \(1\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{4}+q^{5}-2q^{7}+2q^{10}+\cdots\)
153.2.a.e 153.a 1.a $2$ $1.222$ \(\Q(\sqrt{17}) \) None 51.2.a.b \(1\) \(0\) \(-3\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(2+\beta )q^{4}+(-1-\beta )q^{5}+(4+\cdots)q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(153))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(153)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 2}\)