# Properties

 Label 1521.4.a.u Level $1521$ Weight $4$ Character orbit 1521.a Self dual yes Analytic conductor $89.742$ Analytic rank $1$ Dimension $3$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1521 = 3^{2} \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 1521.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$89.7419051187$$ Analytic rank: $$1$$ Dimension: $$3$$ Coefficient field: 3.3.3144.1 Defining polynomial: $$x^{3} - x^{2} - 16x - 8$$ x^3 - x^2 - 16*x - 8 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 39) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( - \beta_1 + 1) q^{2} + (\beta_{2} + 3) q^{4} + ( - 2 \beta_{2} + 2) q^{5} + ( - 6 \beta_1 - 8) q^{7} + (2 \beta_{2} + \beta_1 - 3) q^{8}+O(q^{10})$$ q + (-b1 + 1) * q^2 + (b2 + 3) * q^4 + (-2*b2 + 2) * q^5 + (-6*b1 - 8) * q^7 + (2*b2 + b1 - 3) * q^8 $$q + ( - \beta_1 + 1) q^{2} + (\beta_{2} + 3) q^{4} + ( - 2 \beta_{2} + 2) q^{5} + ( - 6 \beta_1 - 8) q^{7} + (2 \beta_{2} + \beta_1 - 3) q^{8} + ( - 4 \beta_{2} + 6 \beta_1 - 2) q^{10} + (6 \beta_{2} + 2 \beta_1 - 8) q^{11} + (6 \beta_{2} + 14 \beta_1 + 52) q^{14} + ( - 5 \beta_{2} - 6 \beta_1 - 33) q^{16} + (8 \beta_1 + 46) q^{17} + ( - 16 \beta_{2} + 6 \beta_1 - 28) q^{19} + (2 \beta_{2} + 12 \beta_1 - 86) q^{20} + (10 \beta_{2} - 18 \beta_1 - 16) q^{22} + (8 \beta_{2} - 32 \beta_1 + 24) q^{23} + ( - 20 \beta_{2} - 24 \beta_1 + 63) q^{25} + ( - 2 \beta_{2} - 42 \beta_1 - 12) q^{28} + ( - 8 \beta_{2} - 20 \beta_1 + 10) q^{29} + (4 \beta_{2} + 54 \beta_1 - 120) q^{31} + ( - 20 \beta_{2} + 51 \beta_1 + 41) q^{32} + ( - 8 \beta_{2} - 54 \beta_1 - 34) q^{34} + (4 \beta_{2} + 36 \beta_1 - 40) q^{35} + (28 \beta_{2} + 48 \beta_1 - 150) q^{37} + ( - 38 \beta_{2} + 86 \beta_1 - 120) q^{38} + (24 \beta_{2} + 18 \beta_1 - 186) q^{40} + (34 \beta_{2} - 4 \beta_1 + 150) q^{41} + (4 \beta_{2} - 60 \beta_1 - 68) q^{43} + ( - 10 \beta_{2} - 22 \beta_1 + 248) q^{44} + (48 \beta_{2} - 24 \beta_1 + 360) q^{46} + ( - 42 \beta_{2} + 54 \beta_1 - 12) q^{47} + (36 \beta_{2} + 168 \beta_1 + 81) q^{49} + ( - 16 \beta_{2} + 41 \beta_1 + 263) q^{50} + (12 \beta_{2} + 108 \beta_1 + 186) q^{53} + (68 \beta_{2} + 60 \beta_1 - 560) q^{55} + ( - 10 \beta_{2} - 50 \beta_1 - 12) q^{56} + (4 \beta_{2} + 42 \beta_1 + 194) q^{58} + (2 \beta_{2} + 82 \beta_1 - 624) q^{59} + ( - 28 \beta_{2} + 24 \beta_1 + 78) q^{61} + ( - 46 \beta_{2} + 50 \beta_1 - 652) q^{62} + ( - 51 \beta_{2} + 36 \beta_1 - 245) q^{64} + (76 \beta_{2} - 42 \beta_1 - 36) q^{67} + (38 \beta_{2} + 56 \beta_1 + 122) q^{68} + ( - 28 \beta_{2} - 12 \beta_1 - 392) q^{70} + (14 \beta_{2} - 134 \beta_1 - 276) q^{71} + ( - 12 \beta_{2} + 240 \beta_1 - 2) q^{73} + (8 \beta_{2} - 10 \beta_1 - 574) q^{74} + ( - 34 \beta_{2} + 138 \beta_1 - 832) q^{76} + ( - 24 \beta_{2} - 136 \beta_1 + 16) q^{77} + ( - 24 \beta_{2} + 48 \beta_1 - 16) q^{79} + (14 \beta_{2} - 24 \beta_1 + 370) q^{80} + (72 \beta_{2} - 282 \beta_1 + 258) q^{82} + ( - 10 \beta_{2} + 30 \beta_1 - 272) q^{83} + ( - 76 \beta_{2} - 48 \beta_1 + 124) q^{85} + (68 \beta_{2} + 112 \beta_1 + 540) q^{86} + ( - 78 \beta_{2} - 42 \beta_1 + 576) q^{88} + (30 \beta_{2} + 116 \beta_1 + 430) q^{89} + (56 \beta_{2} - 272 \beta_1 + 504) q^{92} + ( - 138 \beta_{2} + 126 \beta_1 - 636) q^{94} + ( - 60 \beta_{2} - 228 \beta_1 + 1440) q^{95} + (4 \beta_{2} + 48 \beta_1 - 1098) q^{97} + ( - 96 \beta_{2} - 393 \beta_1 - 1527) q^{98}+O(q^{100})$$ q + (-b1 + 1) * q^2 + (b2 + 3) * q^4 + (-2*b2 + 2) * q^5 + (-6*b1 - 8) * q^7 + (2*b2 + b1 - 3) * q^8 + (-4*b2 + 6*b1 - 2) * q^10 + (6*b2 + 2*b1 - 8) * q^11 + (6*b2 + 14*b1 + 52) * q^14 + (-5*b2 - 6*b1 - 33) * q^16 + (8*b1 + 46) * q^17 + (-16*b2 + 6*b1 - 28) * q^19 + (2*b2 + 12*b1 - 86) * q^20 + (10*b2 - 18*b1 - 16) * q^22 + (8*b2 - 32*b1 + 24) * q^23 + (-20*b2 - 24*b1 + 63) * q^25 + (-2*b2 - 42*b1 - 12) * q^28 + (-8*b2 - 20*b1 + 10) * q^29 + (4*b2 + 54*b1 - 120) * q^31 + (-20*b2 + 51*b1 + 41) * q^32 + (-8*b2 - 54*b1 - 34) * q^34 + (4*b2 + 36*b1 - 40) * q^35 + (28*b2 + 48*b1 - 150) * q^37 + (-38*b2 + 86*b1 - 120) * q^38 + (24*b2 + 18*b1 - 186) * q^40 + (34*b2 - 4*b1 + 150) * q^41 + (4*b2 - 60*b1 - 68) * q^43 + (-10*b2 - 22*b1 + 248) * q^44 + (48*b2 - 24*b1 + 360) * q^46 + (-42*b2 + 54*b1 - 12) * q^47 + (36*b2 + 168*b1 + 81) * q^49 + (-16*b2 + 41*b1 + 263) * q^50 + (12*b2 + 108*b1 + 186) * q^53 + (68*b2 + 60*b1 - 560) * q^55 + (-10*b2 - 50*b1 - 12) * q^56 + (4*b2 + 42*b1 + 194) * q^58 + (2*b2 + 82*b1 - 624) * q^59 + (-28*b2 + 24*b1 + 78) * q^61 + (-46*b2 + 50*b1 - 652) * q^62 + (-51*b2 + 36*b1 - 245) * q^64 + (76*b2 - 42*b1 - 36) * q^67 + (38*b2 + 56*b1 + 122) * q^68 + (-28*b2 - 12*b1 - 392) * q^70 + (14*b2 - 134*b1 - 276) * q^71 + (-12*b2 + 240*b1 - 2) * q^73 + (8*b2 - 10*b1 - 574) * q^74 + (-34*b2 + 138*b1 - 832) * q^76 + (-24*b2 - 136*b1 + 16) * q^77 + (-24*b2 + 48*b1 - 16) * q^79 + (14*b2 - 24*b1 + 370) * q^80 + (72*b2 - 282*b1 + 258) * q^82 + (-10*b2 + 30*b1 - 272) * q^83 + (-76*b2 - 48*b1 + 124) * q^85 + (68*b2 + 112*b1 + 540) * q^86 + (-78*b2 - 42*b1 + 576) * q^88 + (30*b2 + 116*b1 + 430) * q^89 + (56*b2 - 272*b1 + 504) * q^92 + (-138*b2 + 126*b1 - 636) * q^94 + (-60*b2 - 228*b1 + 1440) * q^95 + (4*b2 + 48*b1 - 1098) * q^97 + (-96*b2 - 393*b1 - 1527) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q + 2 q^{2} + 10 q^{4} + 4 q^{5} - 30 q^{7} - 6 q^{8}+O(q^{10})$$ 3 * q + 2 * q^2 + 10 * q^4 + 4 * q^5 - 30 * q^7 - 6 * q^8 $$3 q + 2 q^{2} + 10 q^{4} + 4 q^{5} - 30 q^{7} - 6 q^{8} - 4 q^{10} - 16 q^{11} + 176 q^{14} - 110 q^{16} + 146 q^{17} - 94 q^{19} - 244 q^{20} - 56 q^{22} + 48 q^{23} + 145 q^{25} - 80 q^{28} + 2 q^{29} - 302 q^{31} + 154 q^{32} - 164 q^{34} - 80 q^{35} - 374 q^{37} - 312 q^{38} - 516 q^{40} + 480 q^{41} - 260 q^{43} + 712 q^{44} + 1104 q^{46} - 24 q^{47} + 447 q^{49} + 814 q^{50} + 678 q^{53} - 1552 q^{55} - 96 q^{56} + 628 q^{58} - 1788 q^{59} + 230 q^{61} - 1952 q^{62} - 750 q^{64} - 74 q^{67} + 460 q^{68} - 1216 q^{70} - 948 q^{71} + 222 q^{73} - 1724 q^{74} - 2392 q^{76} - 112 q^{77} - 24 q^{79} + 1100 q^{80} + 564 q^{82} - 796 q^{83} + 248 q^{85} + 1800 q^{86} + 1608 q^{88} + 1436 q^{89} + 1296 q^{92} - 1920 q^{94} + 4032 q^{95} - 3242 q^{97} - 5070 q^{98}+O(q^{100})$$ 3 * q + 2 * q^2 + 10 * q^4 + 4 * q^5 - 30 * q^7 - 6 * q^8 - 4 * q^10 - 16 * q^11 + 176 * q^14 - 110 * q^16 + 146 * q^17 - 94 * q^19 - 244 * q^20 - 56 * q^22 + 48 * q^23 + 145 * q^25 - 80 * q^28 + 2 * q^29 - 302 * q^31 + 154 * q^32 - 164 * q^34 - 80 * q^35 - 374 * q^37 - 312 * q^38 - 516 * q^40 + 480 * q^41 - 260 * q^43 + 712 * q^44 + 1104 * q^46 - 24 * q^47 + 447 * q^49 + 814 * q^50 + 678 * q^53 - 1552 * q^55 - 96 * q^56 + 628 * q^58 - 1788 * q^59 + 230 * q^61 - 1952 * q^62 - 750 * q^64 - 74 * q^67 + 460 * q^68 - 1216 * q^70 - 948 * q^71 + 222 * q^73 - 1724 * q^74 - 2392 * q^76 - 112 * q^77 - 24 * q^79 + 1100 * q^80 + 564 * q^82 - 796 * q^83 + 248 * q^85 + 1800 * q^86 + 1608 * q^88 + 1436 * q^89 + 1296 * q^92 - 1920 * q^94 + 4032 * q^95 - 3242 * q^97 - 5070 * q^98

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 16x - 8$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$\nu^{2} - 2\nu - 10$$ v^2 - 2*v - 10
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{2} + 2\beta _1 + 10$$ b2 + 2*b1 + 10

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 4.73549 −0.526440 −3.20905
−3.73549 0 5.95388 −3.90776 0 −36.4129 7.64325 0 14.5974
1.2 1.52644 0 −5.66998 19.3400 0 −4.84136 −20.8664 0 29.5213
1.3 4.20905 0 9.71610 −11.4322 0 11.2543 7.22315 0 −48.1187
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$13$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1521.4.a.u 3
3.b odd 2 1 507.4.a.h 3
13.b even 2 1 117.4.a.f 3
39.d odd 2 1 39.4.a.c 3
39.f even 4 2 507.4.b.g 6
52.b odd 2 1 1872.4.a.bk 3
156.h even 2 1 624.4.a.t 3
195.e odd 2 1 975.4.a.l 3
273.g even 2 1 1911.4.a.k 3
312.b odd 2 1 2496.4.a.bl 3
312.h even 2 1 2496.4.a.bp 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.4.a.c 3 39.d odd 2 1
117.4.a.f 3 13.b even 2 1
507.4.a.h 3 3.b odd 2 1
507.4.b.g 6 39.f even 4 2
624.4.a.t 3 156.h even 2 1
975.4.a.l 3 195.e odd 2 1
1521.4.a.u 3 1.a even 1 1 trivial
1872.4.a.bk 3 52.b odd 2 1
1911.4.a.k 3 273.g even 2 1
2496.4.a.bl 3 312.b odd 2 1
2496.4.a.bp 3 312.h even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(1521))$$:

 $$T_{2}^{3} - 2T_{2}^{2} - 15T_{2} + 24$$ T2^3 - 2*T2^2 - 15*T2 + 24 $$T_{5}^{3} - 4T_{5}^{2} - 252T_{5} - 864$$ T5^3 - 4*T5^2 - 252*T5 - 864 $$T_{7}^{3} + 30T_{7}^{2} - 288T_{7} - 1984$$ T7^3 + 30*T7^2 - 288*T7 - 1984

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3} - 2 T^{2} - 15 T + 24$$
$3$ $$T^{3}$$
$5$ $$T^{3} - 4 T^{2} - 252 T - 864$$
$7$ $$T^{3} + 30 T^{2} - 288 T - 1984$$
$11$ $$T^{3} + 16 T^{2} - 2256 T + 30336$$
$13$ $$T^{3}$$
$17$ $$T^{3} - 146 T^{2} + 6060 T - 71256$$
$19$ $$T^{3} + 94 T^{2} - 14432 T - 779616$$
$23$ $$T^{3} - 48 T^{2} - 20928 T - 534528$$
$29$ $$T^{3} - 2 T^{2} - 10116 T + 199176$$
$31$ $$T^{3} + 302 T^{2} - 17536 T - 7197248$$
$37$ $$T^{3} + 374 T^{2} - 36964 T - 7758104$$
$41$ $$T^{3} - 480 T^{2} + \cdots + 12919824$$
$43$ $$T^{3} + 260 T^{2} - 38096 T - 3663168$$
$47$ $$T^{3} + 24 T^{2} - 168480 T + 18102528$$
$53$ $$T^{3} - 678 T^{2} - 42228 T + 1471608$$
$59$ $$T^{3} + 1788 T^{2} + \cdots + 137423808$$
$61$ $$T^{3} - 230 T^{2} - 44452 T + 6279512$$
$67$ $$T^{3} + 74 T^{2} - 409216 T - 4260896$$
$71$ $$T^{3} + 948 T^{2} + \cdots - 70464384$$
$73$ $$T^{3} - 222 T^{2} + \cdots - 22780552$$
$79$ $$T^{3} + 24 T^{2} - 78336 T + 7757824$$
$83$ $$T^{3} + 796 T^{2} + \cdots + 13963968$$
$89$ $$T^{3} - 1436 T^{2} + \cdots - 30129888$$
$97$ $$T^{3} + 3242 T^{2} + \cdots + 1218481048$$