Properties

Label 1521.4.a.q
Level $1521$
Weight $4$
Character orbit 1521.a
Self dual yes
Analytic conductor $89.742$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1521.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(89.7419051187\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Defining polynomial: \(x^{2} - 3\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta q^{2} + 4 q^{4} + 8 \beta q^{5} + 13 \beta q^{7} -8 \beta q^{8} +O(q^{10})\) \( q + 2 \beta q^{2} + 4 q^{4} + 8 \beta q^{5} + 13 \beta q^{7} -8 \beta q^{8} + 48 q^{10} -13 \beta q^{11} + 78 q^{14} -80 q^{16} + 27 q^{17} + 51 \beta q^{19} + 32 \beta q^{20} -78 q^{22} + 57 q^{23} + 67 q^{25} + 52 \beta q^{28} + 69 q^{29} + 42 \beta q^{31} -96 \beta q^{32} + 54 \beta q^{34} + 312 q^{35} + 23 \beta q^{37} + 306 q^{38} -192 q^{40} + 227 \beta q^{41} + 85 q^{43} -52 \beta q^{44} + 114 \beta q^{46} + 198 \beta q^{47} + 164 q^{49} + 134 \beta q^{50} -426 q^{53} -312 q^{55} -312 q^{56} + 138 \beta q^{58} + 11 \beta q^{59} -17 q^{61} + 252 q^{62} + 64 q^{64} + 95 \beta q^{67} + 108 q^{68} + 624 \beta q^{70} + 337 \beta q^{71} + 580 \beta q^{73} + 138 q^{74} + 204 \beta q^{76} -507 q^{77} -1244 q^{79} -640 \beta q^{80} + 1362 q^{82} -246 \beta q^{83} + 216 \beta q^{85} + 170 \beta q^{86} + 312 q^{88} + 177 \beta q^{89} + 228 q^{92} + 1188 q^{94} + 1224 q^{95} -713 \beta q^{97} + 328 \beta q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{4} + O(q^{10}) \) \( 2 q + 8 q^{4} + 96 q^{10} + 156 q^{14} - 160 q^{16} + 54 q^{17} - 156 q^{22} + 114 q^{23} + 134 q^{25} + 138 q^{29} + 624 q^{35} + 612 q^{38} - 384 q^{40} + 170 q^{43} + 328 q^{49} - 852 q^{53} - 624 q^{55} - 624 q^{56} - 34 q^{61} + 504 q^{62} + 128 q^{64} + 216 q^{68} + 276 q^{74} - 1014 q^{77} - 2488 q^{79} + 2724 q^{82} + 624 q^{88} + 456 q^{92} + 2376 q^{94} + 2448 q^{95} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−3.46410 0 4.00000 −13.8564 0 −22.5167 13.8564 0 48.0000
1.2 3.46410 0 4.00000 13.8564 0 22.5167 −13.8564 0 48.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(13\) \(-1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1521.4.a.q 2
3.b odd 2 1 169.4.a.h 2
13.b even 2 1 inner 1521.4.a.q 2
13.f odd 12 2 117.4.q.c 2
39.d odd 2 1 169.4.a.h 2
39.f even 4 2 169.4.b.b 2
39.h odd 6 2 169.4.c.i 4
39.i odd 6 2 169.4.c.i 4
39.k even 12 2 13.4.e.a 2
39.k even 12 2 169.4.e.b 2
156.v odd 12 2 208.4.w.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.4.e.a 2 39.k even 12 2
117.4.q.c 2 13.f odd 12 2
169.4.a.h 2 3.b odd 2 1
169.4.a.h 2 39.d odd 2 1
169.4.b.b 2 39.f even 4 2
169.4.c.i 4 39.h odd 6 2
169.4.c.i 4 39.i odd 6 2
169.4.e.b 2 39.k even 12 2
208.4.w.a 2 156.v odd 12 2
1521.4.a.q 2 1.a even 1 1 trivial
1521.4.a.q 2 13.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1521))\):

\( T_{2}^{2} - 12 \)
\( T_{5}^{2} - 192 \)
\( T_{7}^{2} - 507 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -12 + T^{2} \)
$3$ \( T^{2} \)
$5$ \( -192 + T^{2} \)
$7$ \( -507 + T^{2} \)
$11$ \( -507 + T^{2} \)
$13$ \( T^{2} \)
$17$ \( ( -27 + T )^{2} \)
$19$ \( -7803 + T^{2} \)
$23$ \( ( -57 + T )^{2} \)
$29$ \( ( -69 + T )^{2} \)
$31$ \( -5292 + T^{2} \)
$37$ \( -1587 + T^{2} \)
$41$ \( -154587 + T^{2} \)
$43$ \( ( -85 + T )^{2} \)
$47$ \( -117612 + T^{2} \)
$53$ \( ( 426 + T )^{2} \)
$59$ \( -363 + T^{2} \)
$61$ \( ( 17 + T )^{2} \)
$67$ \( -27075 + T^{2} \)
$71$ \( -340707 + T^{2} \)
$73$ \( -1009200 + T^{2} \)
$79$ \( ( 1244 + T )^{2} \)
$83$ \( -181548 + T^{2} \)
$89$ \( -93987 + T^{2} \)
$97$ \( -1525107 + T^{2} \)
show more
show less