Properties

Label 1521.4.a.p
Level $1521$
Weight $4$
Character orbit 1521.a
Self dual yes
Analytic conductor $89.742$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,4,Mod(1,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1521.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.7419051187\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 117)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{7}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - q^{4} - 4 \beta q^{5} + 22 q^{7} - 9 \beta q^{8} - 28 q^{10} - 2 \beta q^{11} + 22 \beta q^{14} - 55 q^{16} - 44 \beta q^{17} + 126 q^{19} + 4 \beta q^{20} - 14 q^{22} - 12 \beta q^{23} + \cdots + 141 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 44 q^{7} - 56 q^{10} - 110 q^{16} + 252 q^{19} - 28 q^{22} - 26 q^{25} - 44 q^{28} + 364 q^{31} - 616 q^{34} + 172 q^{37} + 504 q^{40} + 192 q^{43} - 168 q^{46} + 282 q^{49} + 112 q^{55}+ \cdots - 140 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.64575
2.64575
−2.64575 0 −1.00000 10.5830 0 22.0000 23.8118 0 −28.0000
1.2 2.64575 0 −1.00000 −10.5830 0 22.0000 −23.8118 0 −28.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(13\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1521.4.a.p 2
3.b odd 2 1 inner 1521.4.a.p 2
13.b even 2 1 117.4.a.e 2
39.d odd 2 1 117.4.a.e 2
52.b odd 2 1 1872.4.a.ba 2
156.h even 2 1 1872.4.a.ba 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.4.a.e 2 13.b even 2 1
117.4.a.e 2 39.d odd 2 1
1521.4.a.p 2 1.a even 1 1 trivial
1521.4.a.p 2 3.b odd 2 1 inner
1872.4.a.ba 2 52.b odd 2 1
1872.4.a.ba 2 156.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1521))\):

\( T_{2}^{2} - 7 \) Copy content Toggle raw display
\( T_{5}^{2} - 112 \) Copy content Toggle raw display
\( T_{7} - 22 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 7 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 112 \) Copy content Toggle raw display
$7$ \( (T - 22)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 28 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 13552 \) Copy content Toggle raw display
$19$ \( (T - 126)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 1008 \) Copy content Toggle raw display
$29$ \( T^{2} - 2800 \) Copy content Toggle raw display
$31$ \( (T - 182)^{2} \) Copy content Toggle raw display
$37$ \( (T - 86)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 197568 \) Copy content Toggle raw display
$43$ \( (T - 96)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 133308 \) Copy content Toggle raw display
$53$ \( T^{2} - 36288 \) Copy content Toggle raw display
$59$ \( T^{2} - 344988 \) Copy content Toggle raw display
$61$ \( (T - 574)^{2} \) Copy content Toggle raw display
$67$ \( (T - 530)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 655452 \) Copy content Toggle raw display
$73$ \( (T - 154)^{2} \) Copy content Toggle raw display
$79$ \( (T + 460)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 104188 \) Copy content Toggle raw display
$89$ \( T^{2} - 2071552 \) Copy content Toggle raw display
$97$ \( (T + 70)^{2} \) Copy content Toggle raw display
show more
show less