Properties

Label 1521.4.a.j
Level $1521$
Weight $4$
Character orbit 1521.a
Self dual yes
Analytic conductor $89.742$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,4,Mod(1,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1521.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.7419051187\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{2} + q^{4} - 9 q^{5} - 2 q^{7} - 21 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{2} + q^{4} - 9 q^{5} - 2 q^{7} - 21 q^{8} - 27 q^{10} + 30 q^{11} - 6 q^{14} - 71 q^{16} + 111 q^{17} + 46 q^{19} - 9 q^{20} + 90 q^{22} + 6 q^{23} - 44 q^{25} - 2 q^{28} + 105 q^{29} + 100 q^{31} - 45 q^{32} + 333 q^{34} + 18 q^{35} - 17 q^{37} + 138 q^{38} + 189 q^{40} - 231 q^{41} - 514 q^{43} + 30 q^{44} + 18 q^{46} - 162 q^{47} - 339 q^{49} - 132 q^{50} - 639 q^{53} - 270 q^{55} + 42 q^{56} + 315 q^{58} + 600 q^{59} + 233 q^{61} + 300 q^{62} + 433 q^{64} - 926 q^{67} + 111 q^{68} + 54 q^{70} - 930 q^{71} + 253 q^{73} - 51 q^{74} + 46 q^{76} - 60 q^{77} - 1324 q^{79} + 639 q^{80} - 693 q^{82} + 810 q^{83} - 999 q^{85} - 1542 q^{86} - 630 q^{88} + 498 q^{89} + 6 q^{92} - 486 q^{94} - 414 q^{95} - 1358 q^{97} - 1017 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
3.00000 0 1.00000 −9.00000 0 −2.00000 −21.0000 0 −27.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1521.4.a.j 1
3.b odd 2 1 507.4.a.a 1
13.b even 2 1 1521.4.a.c 1
13.e even 6 2 117.4.g.b 2
39.d odd 2 1 507.4.a.e 1
39.f even 4 2 507.4.b.c 2
39.h odd 6 2 39.4.e.a 2
156.r even 6 2 624.4.q.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.4.e.a 2 39.h odd 6 2
117.4.g.b 2 13.e even 6 2
507.4.a.a 1 3.b odd 2 1
507.4.a.e 1 39.d odd 2 1
507.4.b.c 2 39.f even 4 2
624.4.q.b 2 156.r even 6 2
1521.4.a.c 1 13.b even 2 1
1521.4.a.j 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1521))\):

\( T_{2} - 3 \) Copy content Toggle raw display
\( T_{5} + 9 \) Copy content Toggle raw display
\( T_{7} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 3 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 9 \) Copy content Toggle raw display
$7$ \( T + 2 \) Copy content Toggle raw display
$11$ \( T - 30 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 111 \) Copy content Toggle raw display
$19$ \( T - 46 \) Copy content Toggle raw display
$23$ \( T - 6 \) Copy content Toggle raw display
$29$ \( T - 105 \) Copy content Toggle raw display
$31$ \( T - 100 \) Copy content Toggle raw display
$37$ \( T + 17 \) Copy content Toggle raw display
$41$ \( T + 231 \) Copy content Toggle raw display
$43$ \( T + 514 \) Copy content Toggle raw display
$47$ \( T + 162 \) Copy content Toggle raw display
$53$ \( T + 639 \) Copy content Toggle raw display
$59$ \( T - 600 \) Copy content Toggle raw display
$61$ \( T - 233 \) Copy content Toggle raw display
$67$ \( T + 926 \) Copy content Toggle raw display
$71$ \( T + 930 \) Copy content Toggle raw display
$73$ \( T - 253 \) Copy content Toggle raw display
$79$ \( T + 1324 \) Copy content Toggle raw display
$83$ \( T - 810 \) Copy content Toggle raw display
$89$ \( T - 498 \) Copy content Toggle raw display
$97$ \( T + 1358 \) Copy content Toggle raw display
show more
show less