Properties

Label 1521.4.a.d.1.1
Level $1521$
Weight $4$
Character 1521.1
Self dual yes
Analytic conductor $89.742$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,4,Mod(1,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1521.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.7419051187\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1521.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{2} +1.00000 q^{4} +9.00000 q^{5} +15.0000 q^{7} +21.0000 q^{8} +O(q^{10})\) \(q-3.00000 q^{2} +1.00000 q^{4} +9.00000 q^{5} +15.0000 q^{7} +21.0000 q^{8} -27.0000 q^{10} +48.0000 q^{11} -45.0000 q^{14} -71.0000 q^{16} -45.0000 q^{17} +6.00000 q^{19} +9.00000 q^{20} -144.000 q^{22} +162.000 q^{23} -44.0000 q^{25} +15.0000 q^{28} +144.000 q^{29} +264.000 q^{31} +45.0000 q^{32} +135.000 q^{34} +135.000 q^{35} +303.000 q^{37} -18.0000 q^{38} +189.000 q^{40} +192.000 q^{41} +97.0000 q^{43} +48.0000 q^{44} -486.000 q^{46} -111.000 q^{47} -118.000 q^{49} +132.000 q^{50} +414.000 q^{53} +432.000 q^{55} +315.000 q^{56} -432.000 q^{58} -522.000 q^{59} +376.000 q^{61} -792.000 q^{62} +433.000 q^{64} -36.0000 q^{67} -45.0000 q^{68} -405.000 q^{70} -357.000 q^{71} -1098.00 q^{73} -909.000 q^{74} +6.00000 q^{76} +720.000 q^{77} -830.000 q^{79} -639.000 q^{80} -576.000 q^{82} +438.000 q^{83} -405.000 q^{85} -291.000 q^{86} +1008.00 q^{88} +438.000 q^{89} +162.000 q^{92} +333.000 q^{94} +54.0000 q^{95} -852.000 q^{97} +354.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.00000 −1.06066 −0.530330 0.847791i \(-0.677932\pi\)
−0.530330 + 0.847791i \(0.677932\pi\)
\(3\) 0 0
\(4\) 1.00000 0.125000
\(5\) 9.00000 0.804984 0.402492 0.915423i \(-0.368144\pi\)
0.402492 + 0.915423i \(0.368144\pi\)
\(6\) 0 0
\(7\) 15.0000 0.809924 0.404962 0.914334i \(-0.367285\pi\)
0.404962 + 0.914334i \(0.367285\pi\)
\(8\) 21.0000 0.928078
\(9\) 0 0
\(10\) −27.0000 −0.853815
\(11\) 48.0000 1.31569 0.657843 0.753155i \(-0.271469\pi\)
0.657843 + 0.753155i \(0.271469\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) −45.0000 −0.859054
\(15\) 0 0
\(16\) −71.0000 −1.10938
\(17\) −45.0000 −0.642006 −0.321003 0.947078i \(-0.604020\pi\)
−0.321003 + 0.947078i \(0.604020\pi\)
\(18\) 0 0
\(19\) 6.00000 0.0724471 0.0362235 0.999344i \(-0.488467\pi\)
0.0362235 + 0.999344i \(0.488467\pi\)
\(20\) 9.00000 0.100623
\(21\) 0 0
\(22\) −144.000 −1.39550
\(23\) 162.000 1.46867 0.734333 0.678789i \(-0.237495\pi\)
0.734333 + 0.678789i \(0.237495\pi\)
\(24\) 0 0
\(25\) −44.0000 −0.352000
\(26\) 0 0
\(27\) 0 0
\(28\) 15.0000 0.101240
\(29\) 144.000 0.922073 0.461037 0.887381i \(-0.347478\pi\)
0.461037 + 0.887381i \(0.347478\pi\)
\(30\) 0 0
\(31\) 264.000 1.52954 0.764771 0.644302i \(-0.222852\pi\)
0.764771 + 0.644302i \(0.222852\pi\)
\(32\) 45.0000 0.248592
\(33\) 0 0
\(34\) 135.000 0.680950
\(35\) 135.000 0.651976
\(36\) 0 0
\(37\) 303.000 1.34629 0.673147 0.739509i \(-0.264942\pi\)
0.673147 + 0.739509i \(0.264942\pi\)
\(38\) −18.0000 −0.0768417
\(39\) 0 0
\(40\) 189.000 0.747088
\(41\) 192.000 0.731350 0.365675 0.930743i \(-0.380838\pi\)
0.365675 + 0.930743i \(0.380838\pi\)
\(42\) 0 0
\(43\) 97.0000 0.344008 0.172004 0.985096i \(-0.444976\pi\)
0.172004 + 0.985096i \(0.444976\pi\)
\(44\) 48.0000 0.164461
\(45\) 0 0
\(46\) −486.000 −1.55776
\(47\) −111.000 −0.344490 −0.172245 0.985054i \(-0.555102\pi\)
−0.172245 + 0.985054i \(0.555102\pi\)
\(48\) 0 0
\(49\) −118.000 −0.344023
\(50\) 132.000 0.373352
\(51\) 0 0
\(52\) 0 0
\(53\) 414.000 1.07297 0.536484 0.843911i \(-0.319752\pi\)
0.536484 + 0.843911i \(0.319752\pi\)
\(54\) 0 0
\(55\) 432.000 1.05911
\(56\) 315.000 0.751672
\(57\) 0 0
\(58\) −432.000 −0.978007
\(59\) −522.000 −1.15184 −0.575920 0.817506i \(-0.695356\pi\)
−0.575920 + 0.817506i \(0.695356\pi\)
\(60\) 0 0
\(61\) 376.000 0.789211 0.394605 0.918851i \(-0.370881\pi\)
0.394605 + 0.918851i \(0.370881\pi\)
\(62\) −792.000 −1.62232
\(63\) 0 0
\(64\) 433.000 0.845703
\(65\) 0 0
\(66\) 0 0
\(67\) −36.0000 −0.0656433 −0.0328216 0.999461i \(-0.510449\pi\)
−0.0328216 + 0.999461i \(0.510449\pi\)
\(68\) −45.0000 −0.0802508
\(69\) 0 0
\(70\) −405.000 −0.691525
\(71\) −357.000 −0.596734 −0.298367 0.954451i \(-0.596442\pi\)
−0.298367 + 0.954451i \(0.596442\pi\)
\(72\) 0 0
\(73\) −1098.00 −1.76043 −0.880214 0.474578i \(-0.842601\pi\)
−0.880214 + 0.474578i \(0.842601\pi\)
\(74\) −909.000 −1.42796
\(75\) 0 0
\(76\) 6.00000 0.00905588
\(77\) 720.000 1.06561
\(78\) 0 0
\(79\) −830.000 −1.18205 −0.591027 0.806652i \(-0.701277\pi\)
−0.591027 + 0.806652i \(0.701277\pi\)
\(80\) −639.000 −0.893030
\(81\) 0 0
\(82\) −576.000 −0.775714
\(83\) 438.000 0.579238 0.289619 0.957142i \(-0.406471\pi\)
0.289619 + 0.957142i \(0.406471\pi\)
\(84\) 0 0
\(85\) −405.000 −0.516805
\(86\) −291.000 −0.364876
\(87\) 0 0
\(88\) 1008.00 1.22106
\(89\) 438.000 0.521662 0.260831 0.965384i \(-0.416003\pi\)
0.260831 + 0.965384i \(0.416003\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 162.000 0.183583
\(93\) 0 0
\(94\) 333.000 0.365386
\(95\) 54.0000 0.0583188
\(96\) 0 0
\(97\) −852.000 −0.891830 −0.445915 0.895075i \(-0.647122\pi\)
−0.445915 + 0.895075i \(0.647122\pi\)
\(98\) 354.000 0.364892
\(99\) 0 0
\(100\) −44.0000 −0.0440000
\(101\) 396.000 0.390133 0.195067 0.980790i \(-0.437508\pi\)
0.195067 + 0.980790i \(0.437508\pi\)
\(102\) 0 0
\(103\) −182.000 −0.174107 −0.0870534 0.996204i \(-0.527745\pi\)
−0.0870534 + 0.996204i \(0.527745\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −1242.00 −1.13805
\(107\) 612.000 0.552937 0.276469 0.961023i \(-0.410836\pi\)
0.276469 + 0.961023i \(0.410836\pi\)
\(108\) 0 0
\(109\) 1083.00 0.951675 0.475838 0.879533i \(-0.342145\pi\)
0.475838 + 0.879533i \(0.342145\pi\)
\(110\) −1296.00 −1.12335
\(111\) 0 0
\(112\) −1065.00 −0.898509
\(113\) −90.0000 −0.0749247 −0.0374623 0.999298i \(-0.511927\pi\)
−0.0374623 + 0.999298i \(0.511927\pi\)
\(114\) 0 0
\(115\) 1458.00 1.18225
\(116\) 144.000 0.115259
\(117\) 0 0
\(118\) 1566.00 1.22171
\(119\) −675.000 −0.519976
\(120\) 0 0
\(121\) 973.000 0.731029
\(122\) −1128.00 −0.837085
\(123\) 0 0
\(124\) 264.000 0.191193
\(125\) −1521.00 −1.08834
\(126\) 0 0
\(127\) −2086.00 −1.45750 −0.728750 0.684780i \(-0.759898\pi\)
−0.728750 + 0.684780i \(0.759898\pi\)
\(128\) −1659.00 −1.14560
\(129\) 0 0
\(130\) 0 0
\(131\) 1467.00 0.978415 0.489208 0.872167i \(-0.337286\pi\)
0.489208 + 0.872167i \(0.337286\pi\)
\(132\) 0 0
\(133\) 90.0000 0.0586766
\(134\) 108.000 0.0696252
\(135\) 0 0
\(136\) −945.000 −0.595831
\(137\) 414.000 0.258178 0.129089 0.991633i \(-0.458795\pi\)
0.129089 + 0.991633i \(0.458795\pi\)
\(138\) 0 0
\(139\) −2419.00 −1.47609 −0.738046 0.674750i \(-0.764251\pi\)
−0.738046 + 0.674750i \(0.764251\pi\)
\(140\) 135.000 0.0814970
\(141\) 0 0
\(142\) 1071.00 0.632932
\(143\) 0 0
\(144\) 0 0
\(145\) 1296.00 0.742255
\(146\) 3294.00 1.86721
\(147\) 0 0
\(148\) 303.000 0.168287
\(149\) 930.000 0.511333 0.255666 0.966765i \(-0.417705\pi\)
0.255666 + 0.966765i \(0.417705\pi\)
\(150\) 0 0
\(151\) −1683.00 −0.907024 −0.453512 0.891250i \(-0.649829\pi\)
−0.453512 + 0.891250i \(0.649829\pi\)
\(152\) 126.000 0.0672365
\(153\) 0 0
\(154\) −2160.00 −1.13025
\(155\) 2376.00 1.23126
\(156\) 0 0
\(157\) 1874.00 0.952621 0.476310 0.879277i \(-0.341974\pi\)
0.476310 + 0.879277i \(0.341974\pi\)
\(158\) 2490.00 1.25376
\(159\) 0 0
\(160\) 405.000 0.200113
\(161\) 2430.00 1.18951
\(162\) 0 0
\(163\) −1194.00 −0.573750 −0.286875 0.957968i \(-0.592616\pi\)
−0.286875 + 0.957968i \(0.592616\pi\)
\(164\) 192.000 0.0914188
\(165\) 0 0
\(166\) −1314.00 −0.614375
\(167\) 2388.00 1.10652 0.553260 0.833008i \(-0.313383\pi\)
0.553260 + 0.833008i \(0.313383\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 1215.00 0.548154
\(171\) 0 0
\(172\) 97.0000 0.0430011
\(173\) −1566.00 −0.688213 −0.344106 0.938931i \(-0.611818\pi\)
−0.344106 + 0.938931i \(0.611818\pi\)
\(174\) 0 0
\(175\) −660.000 −0.285093
\(176\) −3408.00 −1.45959
\(177\) 0 0
\(178\) −1314.00 −0.553306
\(179\) −657.000 −0.274338 −0.137169 0.990548i \(-0.543800\pi\)
−0.137169 + 0.990548i \(0.543800\pi\)
\(180\) 0 0
\(181\) 1222.00 0.501826 0.250913 0.968010i \(-0.419269\pi\)
0.250913 + 0.968010i \(0.419269\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 3402.00 1.36304
\(185\) 2727.00 1.08375
\(186\) 0 0
\(187\) −2160.00 −0.844678
\(188\) −111.000 −0.0430612
\(189\) 0 0
\(190\) −162.000 −0.0618564
\(191\) −1260.00 −0.477332 −0.238666 0.971102i \(-0.576710\pi\)
−0.238666 + 0.971102i \(0.576710\pi\)
\(192\) 0 0
\(193\) 342.000 0.127553 0.0637764 0.997964i \(-0.479686\pi\)
0.0637764 + 0.997964i \(0.479686\pi\)
\(194\) 2556.00 0.945928
\(195\) 0 0
\(196\) −118.000 −0.0430029
\(197\) −81.0000 −0.0292945 −0.0146472 0.999893i \(-0.504663\pi\)
−0.0146472 + 0.999893i \(0.504663\pi\)
\(198\) 0 0
\(199\) −1996.00 −0.711019 −0.355509 0.934673i \(-0.615693\pi\)
−0.355509 + 0.934673i \(0.615693\pi\)
\(200\) −924.000 −0.326683
\(201\) 0 0
\(202\) −1188.00 −0.413799
\(203\) 2160.00 0.746809
\(204\) 0 0
\(205\) 1728.00 0.588726
\(206\) 546.000 0.184668
\(207\) 0 0
\(208\) 0 0
\(209\) 288.000 0.0953176
\(210\) 0 0
\(211\) 2833.00 0.924321 0.462161 0.886796i \(-0.347074\pi\)
0.462161 + 0.886796i \(0.347074\pi\)
\(212\) 414.000 0.134121
\(213\) 0 0
\(214\) −1836.00 −0.586478
\(215\) 873.000 0.276921
\(216\) 0 0
\(217\) 3960.00 1.23881
\(218\) −3249.00 −1.00940
\(219\) 0 0
\(220\) 432.000 0.132388
\(221\) 0 0
\(222\) 0 0
\(223\) −3507.00 −1.05312 −0.526561 0.850138i \(-0.676519\pi\)
−0.526561 + 0.850138i \(0.676519\pi\)
\(224\) 675.000 0.201341
\(225\) 0 0
\(226\) 270.000 0.0794696
\(227\) 228.000 0.0666647 0.0333324 0.999444i \(-0.489388\pi\)
0.0333324 + 0.999444i \(0.489388\pi\)
\(228\) 0 0
\(229\) 5493.00 1.58510 0.792549 0.609808i \(-0.208753\pi\)
0.792549 + 0.609808i \(0.208753\pi\)
\(230\) −4374.00 −1.25397
\(231\) 0 0
\(232\) 3024.00 0.855756
\(233\) 3627.00 1.01980 0.509898 0.860235i \(-0.329683\pi\)
0.509898 + 0.860235i \(0.329683\pi\)
\(234\) 0 0
\(235\) −999.000 −0.277309
\(236\) −522.000 −0.143980
\(237\) 0 0
\(238\) 2025.00 0.551518
\(239\) −6075.00 −1.64418 −0.822090 0.569357i \(-0.807192\pi\)
−0.822090 + 0.569357i \(0.807192\pi\)
\(240\) 0 0
\(241\) 210.000 0.0561298 0.0280649 0.999606i \(-0.491065\pi\)
0.0280649 + 0.999606i \(0.491065\pi\)
\(242\) −2919.00 −0.775374
\(243\) 0 0
\(244\) 376.000 0.0986514
\(245\) −1062.00 −0.276933
\(246\) 0 0
\(247\) 0 0
\(248\) 5544.00 1.41953
\(249\) 0 0
\(250\) 4563.00 1.15436
\(251\) 7092.00 1.78344 0.891719 0.452589i \(-0.149499\pi\)
0.891719 + 0.452589i \(0.149499\pi\)
\(252\) 0 0
\(253\) 7776.00 1.93230
\(254\) 6258.00 1.54591
\(255\) 0 0
\(256\) 1513.00 0.369385
\(257\) −5805.00 −1.40897 −0.704486 0.709718i \(-0.748823\pi\)
−0.704486 + 0.709718i \(0.748823\pi\)
\(258\) 0 0
\(259\) 4545.00 1.09040
\(260\) 0 0
\(261\) 0 0
\(262\) −4401.00 −1.03777
\(263\) −792.000 −0.185691 −0.0928457 0.995681i \(-0.529596\pi\)
−0.0928457 + 0.995681i \(0.529596\pi\)
\(264\) 0 0
\(265\) 3726.00 0.863722
\(266\) −270.000 −0.0622359
\(267\) 0 0
\(268\) −36.0000 −0.00820541
\(269\) −5472.00 −1.24027 −0.620137 0.784493i \(-0.712923\pi\)
−0.620137 + 0.784493i \(0.712923\pi\)
\(270\) 0 0
\(271\) 2331.00 0.522502 0.261251 0.965271i \(-0.415865\pi\)
0.261251 + 0.965271i \(0.415865\pi\)
\(272\) 3195.00 0.712225
\(273\) 0 0
\(274\) −1242.00 −0.273839
\(275\) −2112.00 −0.463121
\(276\) 0 0
\(277\) 1384.00 0.300204 0.150102 0.988671i \(-0.452040\pi\)
0.150102 + 0.988671i \(0.452040\pi\)
\(278\) 7257.00 1.56563
\(279\) 0 0
\(280\) 2835.00 0.605084
\(281\) 4062.00 0.862344 0.431172 0.902270i \(-0.358100\pi\)
0.431172 + 0.902270i \(0.358100\pi\)
\(282\) 0 0
\(283\) 3764.00 0.790624 0.395312 0.918547i \(-0.370636\pi\)
0.395312 + 0.918547i \(0.370636\pi\)
\(284\) −357.000 −0.0745917
\(285\) 0 0
\(286\) 0 0
\(287\) 2880.00 0.592338
\(288\) 0 0
\(289\) −2888.00 −0.587828
\(290\) −3888.00 −0.787280
\(291\) 0 0
\(292\) −1098.00 −0.220053
\(293\) −4227.00 −0.842812 −0.421406 0.906872i \(-0.638463\pi\)
−0.421406 + 0.906872i \(0.638463\pi\)
\(294\) 0 0
\(295\) −4698.00 −0.927214
\(296\) 6363.00 1.24947
\(297\) 0 0
\(298\) −2790.00 −0.542350
\(299\) 0 0
\(300\) 0 0
\(301\) 1455.00 0.278621
\(302\) 5049.00 0.962044
\(303\) 0 0
\(304\) −426.000 −0.0803710
\(305\) 3384.00 0.635303
\(306\) 0 0
\(307\) 306.000 0.0568871 0.0284436 0.999595i \(-0.490945\pi\)
0.0284436 + 0.999595i \(0.490945\pi\)
\(308\) 720.000 0.133201
\(309\) 0 0
\(310\) −7128.00 −1.30595
\(311\) −2106.00 −0.383988 −0.191994 0.981396i \(-0.561495\pi\)
−0.191994 + 0.981396i \(0.561495\pi\)
\(312\) 0 0
\(313\) 10051.0 1.81507 0.907534 0.419979i \(-0.137963\pi\)
0.907534 + 0.419979i \(0.137963\pi\)
\(314\) −5622.00 −1.01041
\(315\) 0 0
\(316\) −830.000 −0.147757
\(317\) 2154.00 0.381643 0.190821 0.981625i \(-0.438885\pi\)
0.190821 + 0.981625i \(0.438885\pi\)
\(318\) 0 0
\(319\) 6912.00 1.21316
\(320\) 3897.00 0.680778
\(321\) 0 0
\(322\) −7290.00 −1.26166
\(323\) −270.000 −0.0465115
\(324\) 0 0
\(325\) 0 0
\(326\) 3582.00 0.608554
\(327\) 0 0
\(328\) 4032.00 0.678750
\(329\) −1665.00 −0.279010
\(330\) 0 0
\(331\) 10770.0 1.78844 0.894219 0.447630i \(-0.147732\pi\)
0.894219 + 0.447630i \(0.147732\pi\)
\(332\) 438.000 0.0724047
\(333\) 0 0
\(334\) −7164.00 −1.17364
\(335\) −324.000 −0.0528418
\(336\) 0 0
\(337\) 2171.00 0.350926 0.175463 0.984486i \(-0.443858\pi\)
0.175463 + 0.984486i \(0.443858\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −405.000 −0.0646006
\(341\) 12672.0 2.01240
\(342\) 0 0
\(343\) −6915.00 −1.08856
\(344\) 2037.00 0.319267
\(345\) 0 0
\(346\) 4698.00 0.729960
\(347\) 7047.00 1.09021 0.545105 0.838368i \(-0.316490\pi\)
0.545105 + 0.838368i \(0.316490\pi\)
\(348\) 0 0
\(349\) −6873.00 −1.05416 −0.527082 0.849814i \(-0.676714\pi\)
−0.527082 + 0.849814i \(0.676714\pi\)
\(350\) 1980.00 0.302387
\(351\) 0 0
\(352\) 2160.00 0.327069
\(353\) 9318.00 1.40495 0.702475 0.711709i \(-0.252078\pi\)
0.702475 + 0.711709i \(0.252078\pi\)
\(354\) 0 0
\(355\) −3213.00 −0.480362
\(356\) 438.000 0.0652077
\(357\) 0 0
\(358\) 1971.00 0.290979
\(359\) −4128.00 −0.606873 −0.303437 0.952852i \(-0.598134\pi\)
−0.303437 + 0.952852i \(0.598134\pi\)
\(360\) 0 0
\(361\) −6823.00 −0.994751
\(362\) −3666.00 −0.532267
\(363\) 0 0
\(364\) 0 0
\(365\) −9882.00 −1.41712
\(366\) 0 0
\(367\) −2536.00 −0.360703 −0.180352 0.983602i \(-0.557724\pi\)
−0.180352 + 0.983602i \(0.557724\pi\)
\(368\) −11502.0 −1.62930
\(369\) 0 0
\(370\) −8181.00 −1.14949
\(371\) 6210.00 0.869022
\(372\) 0 0
\(373\) −92.0000 −0.0127710 −0.00638550 0.999980i \(-0.502033\pi\)
−0.00638550 + 0.999980i \(0.502033\pi\)
\(374\) 6480.00 0.895917
\(375\) 0 0
\(376\) −2331.00 −0.319713
\(377\) 0 0
\(378\) 0 0
\(379\) 10182.0 1.37998 0.689992 0.723817i \(-0.257614\pi\)
0.689992 + 0.723817i \(0.257614\pi\)
\(380\) 54.0000 0.00728985
\(381\) 0 0
\(382\) 3780.00 0.506287
\(383\) 579.000 0.0772468 0.0386234 0.999254i \(-0.487703\pi\)
0.0386234 + 0.999254i \(0.487703\pi\)
\(384\) 0 0
\(385\) 6480.00 0.857796
\(386\) −1026.00 −0.135290
\(387\) 0 0
\(388\) −852.000 −0.111479
\(389\) 2106.00 0.274495 0.137247 0.990537i \(-0.456174\pi\)
0.137247 + 0.990537i \(0.456174\pi\)
\(390\) 0 0
\(391\) −7290.00 −0.942893
\(392\) −2478.00 −0.319280
\(393\) 0 0
\(394\) 243.000 0.0310715
\(395\) −7470.00 −0.951535
\(396\) 0 0
\(397\) −1974.00 −0.249552 −0.124776 0.992185i \(-0.539821\pi\)
−0.124776 + 0.992185i \(0.539821\pi\)
\(398\) 5988.00 0.754149
\(399\) 0 0
\(400\) 3124.00 0.390500
\(401\) −11886.0 −1.48020 −0.740098 0.672499i \(-0.765221\pi\)
−0.740098 + 0.672499i \(0.765221\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 396.000 0.0487667
\(405\) 0 0
\(406\) −6480.00 −0.792111
\(407\) 14544.0 1.77130
\(408\) 0 0
\(409\) 1254.00 0.151605 0.0758023 0.997123i \(-0.475848\pi\)
0.0758023 + 0.997123i \(0.475848\pi\)
\(410\) −5184.00 −0.624438
\(411\) 0 0
\(412\) −182.000 −0.0217633
\(413\) −7830.00 −0.932903
\(414\) 0 0
\(415\) 3942.00 0.466278
\(416\) 0 0
\(417\) 0 0
\(418\) −864.000 −0.101100
\(419\) −5823.00 −0.678931 −0.339466 0.940618i \(-0.610246\pi\)
−0.339466 + 0.940618i \(0.610246\pi\)
\(420\) 0 0
\(421\) −7341.00 −0.849830 −0.424915 0.905233i \(-0.639696\pi\)
−0.424915 + 0.905233i \(0.639696\pi\)
\(422\) −8499.00 −0.980391
\(423\) 0 0
\(424\) 8694.00 0.995797
\(425\) 1980.00 0.225986
\(426\) 0 0
\(427\) 5640.00 0.639201
\(428\) 612.000 0.0691171
\(429\) 0 0
\(430\) −2619.00 −0.293720
\(431\) 7485.00 0.836519 0.418260 0.908328i \(-0.362640\pi\)
0.418260 + 0.908328i \(0.362640\pi\)
\(432\) 0 0
\(433\) 15203.0 1.68732 0.843660 0.536878i \(-0.180396\pi\)
0.843660 + 0.536878i \(0.180396\pi\)
\(434\) −11880.0 −1.31396
\(435\) 0 0
\(436\) 1083.00 0.118959
\(437\) 972.000 0.106401
\(438\) 0 0
\(439\) 1762.00 0.191562 0.0957809 0.995402i \(-0.469465\pi\)
0.0957809 + 0.995402i \(0.469465\pi\)
\(440\) 9072.00 0.982933
\(441\) 0 0
\(442\) 0 0
\(443\) 7317.00 0.784743 0.392372 0.919807i \(-0.371655\pi\)
0.392372 + 0.919807i \(0.371655\pi\)
\(444\) 0 0
\(445\) 3942.00 0.419930
\(446\) 10521.0 1.11700
\(447\) 0 0
\(448\) 6495.00 0.684955
\(449\) 5016.00 0.527215 0.263608 0.964630i \(-0.415088\pi\)
0.263608 + 0.964630i \(0.415088\pi\)
\(450\) 0 0
\(451\) 9216.00 0.962227
\(452\) −90.0000 −0.00936558
\(453\) 0 0
\(454\) −684.000 −0.0707086
\(455\) 0 0
\(456\) 0 0
\(457\) 9870.00 1.01028 0.505141 0.863037i \(-0.331440\pi\)
0.505141 + 0.863037i \(0.331440\pi\)
\(458\) −16479.0 −1.68125
\(459\) 0 0
\(460\) 1458.00 0.147782
\(461\) 14541.0 1.46907 0.734536 0.678570i \(-0.237400\pi\)
0.734536 + 0.678570i \(0.237400\pi\)
\(462\) 0 0
\(463\) −2112.00 −0.211993 −0.105997 0.994366i \(-0.533803\pi\)
−0.105997 + 0.994366i \(0.533803\pi\)
\(464\) −10224.0 −1.02293
\(465\) 0 0
\(466\) −10881.0 −1.08166
\(467\) 3276.00 0.324615 0.162307 0.986740i \(-0.448106\pi\)
0.162307 + 0.986740i \(0.448106\pi\)
\(468\) 0 0
\(469\) −540.000 −0.0531661
\(470\) 2997.00 0.294130
\(471\) 0 0
\(472\) −10962.0 −1.06900
\(473\) 4656.00 0.452607
\(474\) 0 0
\(475\) −264.000 −0.0255014
\(476\) −675.000 −0.0649970
\(477\) 0 0
\(478\) 18225.0 1.74392
\(479\) 15453.0 1.47404 0.737020 0.675870i \(-0.236232\pi\)
0.737020 + 0.675870i \(0.236232\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −630.000 −0.0595347
\(483\) 0 0
\(484\) 973.000 0.0913787
\(485\) −7668.00 −0.717909
\(486\) 0 0
\(487\) −3660.00 −0.340555 −0.170278 0.985396i \(-0.554466\pi\)
−0.170278 + 0.985396i \(0.554466\pi\)
\(488\) 7896.00 0.732449
\(489\) 0 0
\(490\) 3186.00 0.293732
\(491\) 747.000 0.0686591 0.0343296 0.999411i \(-0.489070\pi\)
0.0343296 + 0.999411i \(0.489070\pi\)
\(492\) 0 0
\(493\) −6480.00 −0.591977
\(494\) 0 0
\(495\) 0 0
\(496\) −18744.0 −1.69684
\(497\) −5355.00 −0.483309
\(498\) 0 0
\(499\) −15804.0 −1.41780 −0.708902 0.705307i \(-0.750809\pi\)
−0.708902 + 0.705307i \(0.750809\pi\)
\(500\) −1521.00 −0.136042
\(501\) 0 0
\(502\) −21276.0 −1.89162
\(503\) 12078.0 1.07064 0.535319 0.844650i \(-0.320191\pi\)
0.535319 + 0.844650i \(0.320191\pi\)
\(504\) 0 0
\(505\) 3564.00 0.314051
\(506\) −23328.0 −2.04952
\(507\) 0 0
\(508\) −2086.00 −0.182188
\(509\) −16110.0 −1.40287 −0.701437 0.712731i \(-0.747458\pi\)
−0.701437 + 0.712731i \(0.747458\pi\)
\(510\) 0 0
\(511\) −16470.0 −1.42581
\(512\) 8733.00 0.753804
\(513\) 0 0
\(514\) 17415.0 1.49444
\(515\) −1638.00 −0.140153
\(516\) 0 0
\(517\) −5328.00 −0.453240
\(518\) −13635.0 −1.15654
\(519\) 0 0
\(520\) 0 0
\(521\) −3915.00 −0.329212 −0.164606 0.986359i \(-0.552635\pi\)
−0.164606 + 0.986359i \(0.552635\pi\)
\(522\) 0 0
\(523\) 16184.0 1.35311 0.676555 0.736392i \(-0.263472\pi\)
0.676555 + 0.736392i \(0.263472\pi\)
\(524\) 1467.00 0.122302
\(525\) 0 0
\(526\) 2376.00 0.196955
\(527\) −11880.0 −0.981975
\(528\) 0 0
\(529\) 14077.0 1.15698
\(530\) −11178.0 −0.916116
\(531\) 0 0
\(532\) 90.0000 0.00733458
\(533\) 0 0
\(534\) 0 0
\(535\) 5508.00 0.445106
\(536\) −756.000 −0.0609221
\(537\) 0 0
\(538\) 16416.0 1.31551
\(539\) −5664.00 −0.452627
\(540\) 0 0
\(541\) −7923.00 −0.629642 −0.314821 0.949151i \(-0.601945\pi\)
−0.314821 + 0.949151i \(0.601945\pi\)
\(542\) −6993.00 −0.554198
\(543\) 0 0
\(544\) −2025.00 −0.159598
\(545\) 9747.00 0.766084
\(546\) 0 0
\(547\) −14389.0 −1.12473 −0.562367 0.826888i \(-0.690109\pi\)
−0.562367 + 0.826888i \(0.690109\pi\)
\(548\) 414.000 0.0322723
\(549\) 0 0
\(550\) 6336.00 0.491214
\(551\) 864.000 0.0668015
\(552\) 0 0
\(553\) −12450.0 −0.957374
\(554\) −4152.00 −0.318414
\(555\) 0 0
\(556\) −2419.00 −0.184512
\(557\) 10383.0 0.789842 0.394921 0.918715i \(-0.370772\pi\)
0.394921 + 0.918715i \(0.370772\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −9585.00 −0.723286
\(561\) 0 0
\(562\) −12186.0 −0.914654
\(563\) −16425.0 −1.22954 −0.614770 0.788706i \(-0.710751\pi\)
−0.614770 + 0.788706i \(0.710751\pi\)
\(564\) 0 0
\(565\) −810.000 −0.0603132
\(566\) −11292.0 −0.838583
\(567\) 0 0
\(568\) −7497.00 −0.553815
\(569\) 12213.0 0.899817 0.449908 0.893075i \(-0.351457\pi\)
0.449908 + 0.893075i \(0.351457\pi\)
\(570\) 0 0
\(571\) 6383.00 0.467811 0.233906 0.972259i \(-0.424849\pi\)
0.233906 + 0.972259i \(0.424849\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −8640.00 −0.628269
\(575\) −7128.00 −0.516971
\(576\) 0 0
\(577\) 6426.00 0.463636 0.231818 0.972759i \(-0.425533\pi\)
0.231818 + 0.972759i \(0.425533\pi\)
\(578\) 8664.00 0.623486
\(579\) 0 0
\(580\) 1296.00 0.0927818
\(581\) 6570.00 0.469139
\(582\) 0 0
\(583\) 19872.0 1.41169
\(584\) −23058.0 −1.63381
\(585\) 0 0
\(586\) 12681.0 0.893937
\(587\) 21330.0 1.49980 0.749901 0.661551i \(-0.230101\pi\)
0.749901 + 0.661551i \(0.230101\pi\)
\(588\) 0 0
\(589\) 1584.00 0.110811
\(590\) 14094.0 0.983459
\(591\) 0 0
\(592\) −21513.0 −1.49355
\(593\) −12084.0 −0.836813 −0.418407 0.908260i \(-0.637411\pi\)
−0.418407 + 0.908260i \(0.637411\pi\)
\(594\) 0 0
\(595\) −6075.00 −0.418573
\(596\) 930.000 0.0639166
\(597\) 0 0
\(598\) 0 0
\(599\) −2394.00 −0.163299 −0.0816496 0.996661i \(-0.526019\pi\)
−0.0816496 + 0.996661i \(0.526019\pi\)
\(600\) 0 0
\(601\) −21971.0 −1.49121 −0.745604 0.666389i \(-0.767839\pi\)
−0.745604 + 0.666389i \(0.767839\pi\)
\(602\) −4365.00 −0.295522
\(603\) 0 0
\(604\) −1683.00 −0.113378
\(605\) 8757.00 0.588467
\(606\) 0 0
\(607\) −15406.0 −1.03017 −0.515083 0.857141i \(-0.672239\pi\)
−0.515083 + 0.857141i \(0.672239\pi\)
\(608\) 270.000 0.0180098
\(609\) 0 0
\(610\) −10152.0 −0.673840
\(611\) 0 0
\(612\) 0 0
\(613\) −9630.00 −0.634506 −0.317253 0.948341i \(-0.602760\pi\)
−0.317253 + 0.948341i \(0.602760\pi\)
\(614\) −918.000 −0.0603379
\(615\) 0 0
\(616\) 15120.0 0.988965
\(617\) −14748.0 −0.962289 −0.481144 0.876641i \(-0.659779\pi\)
−0.481144 + 0.876641i \(0.659779\pi\)
\(618\) 0 0
\(619\) −3672.00 −0.238433 −0.119217 0.992868i \(-0.538038\pi\)
−0.119217 + 0.992868i \(0.538038\pi\)
\(620\) 2376.00 0.153907
\(621\) 0 0
\(622\) 6318.00 0.407281
\(623\) 6570.00 0.422506
\(624\) 0 0
\(625\) −8189.00 −0.524096
\(626\) −30153.0 −1.92517
\(627\) 0 0
\(628\) 1874.00 0.119078
\(629\) −13635.0 −0.864329
\(630\) 0 0
\(631\) −19875.0 −1.25390 −0.626950 0.779059i \(-0.715697\pi\)
−0.626950 + 0.779059i \(0.715697\pi\)
\(632\) −17430.0 −1.09704
\(633\) 0 0
\(634\) −6462.00 −0.404793
\(635\) −18774.0 −1.17327
\(636\) 0 0
\(637\) 0 0
\(638\) −20736.0 −1.28675
\(639\) 0 0
\(640\) −14931.0 −0.922187
\(641\) 1710.00 0.105368 0.0526840 0.998611i \(-0.483222\pi\)
0.0526840 + 0.998611i \(0.483222\pi\)
\(642\) 0 0
\(643\) −16452.0 −1.00903 −0.504513 0.863404i \(-0.668328\pi\)
−0.504513 + 0.863404i \(0.668328\pi\)
\(644\) 2430.00 0.148689
\(645\) 0 0
\(646\) 810.000 0.0493329
\(647\) 25902.0 1.57390 0.786950 0.617017i \(-0.211659\pi\)
0.786950 + 0.617017i \(0.211659\pi\)
\(648\) 0 0
\(649\) −25056.0 −1.51546
\(650\) 0 0
\(651\) 0 0
\(652\) −1194.00 −0.0717188
\(653\) −18108.0 −1.08518 −0.542589 0.839999i \(-0.682556\pi\)
−0.542589 + 0.839999i \(0.682556\pi\)
\(654\) 0 0
\(655\) 13203.0 0.787609
\(656\) −13632.0 −0.811342
\(657\) 0 0
\(658\) 4995.00 0.295935
\(659\) 32904.0 1.94500 0.972502 0.232894i \(-0.0748195\pi\)
0.972502 + 0.232894i \(0.0748195\pi\)
\(660\) 0 0
\(661\) 15318.0 0.901363 0.450682 0.892685i \(-0.351181\pi\)
0.450682 + 0.892685i \(0.351181\pi\)
\(662\) −32310.0 −1.89692
\(663\) 0 0
\(664\) 9198.00 0.537578
\(665\) 810.000 0.0472338
\(666\) 0 0
\(667\) 23328.0 1.35422
\(668\) 2388.00 0.138315
\(669\) 0 0
\(670\) 972.000 0.0560472
\(671\) 18048.0 1.03835
\(672\) 0 0
\(673\) 7729.00 0.442691 0.221346 0.975195i \(-0.428955\pi\)
0.221346 + 0.975195i \(0.428955\pi\)
\(674\) −6513.00 −0.372213
\(675\) 0 0
\(676\) 0 0
\(677\) −19242.0 −1.09236 −0.546182 0.837667i \(-0.683919\pi\)
−0.546182 + 0.837667i \(0.683919\pi\)
\(678\) 0 0
\(679\) −12780.0 −0.722314
\(680\) −8505.00 −0.479635
\(681\) 0 0
\(682\) −38016.0 −2.13447
\(683\) −22518.0 −1.26153 −0.630767 0.775973i \(-0.717260\pi\)
−0.630767 + 0.775973i \(0.717260\pi\)
\(684\) 0 0
\(685\) 3726.00 0.207829
\(686\) 20745.0 1.15459
\(687\) 0 0
\(688\) −6887.00 −0.381634
\(689\) 0 0
\(690\) 0 0
\(691\) 9168.00 0.504728 0.252364 0.967632i \(-0.418792\pi\)
0.252364 + 0.967632i \(0.418792\pi\)
\(692\) −1566.00 −0.0860266
\(693\) 0 0
\(694\) −21141.0 −1.15634
\(695\) −21771.0 −1.18823
\(696\) 0 0
\(697\) −8640.00 −0.469531
\(698\) 20619.0 1.11811
\(699\) 0 0
\(700\) −660.000 −0.0356367
\(701\) 1170.00 0.0630389 0.0315195 0.999503i \(-0.489965\pi\)
0.0315195 + 0.999503i \(0.489965\pi\)
\(702\) 0 0
\(703\) 1818.00 0.0975351
\(704\) 20784.0 1.11268
\(705\) 0 0
\(706\) −27954.0 −1.49017
\(707\) 5940.00 0.315978
\(708\) 0 0
\(709\) −1662.00 −0.0880363 −0.0440181 0.999031i \(-0.514016\pi\)
−0.0440181 + 0.999031i \(0.514016\pi\)
\(710\) 9639.00 0.509500
\(711\) 0 0
\(712\) 9198.00 0.484143
\(713\) 42768.0 2.24639
\(714\) 0 0
\(715\) 0 0
\(716\) −657.000 −0.0342922
\(717\) 0 0
\(718\) 12384.0 0.643686
\(719\) 30960.0 1.60586 0.802930 0.596073i \(-0.203273\pi\)
0.802930 + 0.596073i \(0.203273\pi\)
\(720\) 0 0
\(721\) −2730.00 −0.141013
\(722\) 20469.0 1.05509
\(723\) 0 0
\(724\) 1222.00 0.0627283
\(725\) −6336.00 −0.324570
\(726\) 0 0
\(727\) 8372.00 0.427098 0.213549 0.976932i \(-0.431498\pi\)
0.213549 + 0.976932i \(0.431498\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 29646.0 1.50308
\(731\) −4365.00 −0.220855
\(732\) 0 0
\(733\) −2739.00 −0.138018 −0.0690091 0.997616i \(-0.521984\pi\)
−0.0690091 + 0.997616i \(0.521984\pi\)
\(734\) 7608.00 0.382584
\(735\) 0 0
\(736\) 7290.00 0.365099
\(737\) −1728.00 −0.0863659
\(738\) 0 0
\(739\) −6756.00 −0.336297 −0.168148 0.985762i \(-0.553779\pi\)
−0.168148 + 0.985762i \(0.553779\pi\)
\(740\) 2727.00 0.135468
\(741\) 0 0
\(742\) −18630.0 −0.921737
\(743\) −29643.0 −1.46366 −0.731828 0.681490i \(-0.761332\pi\)
−0.731828 + 0.681490i \(0.761332\pi\)
\(744\) 0 0
\(745\) 8370.00 0.411615
\(746\) 276.000 0.0135457
\(747\) 0 0
\(748\) −2160.00 −0.105585
\(749\) 9180.00 0.447837
\(750\) 0 0
\(751\) −18128.0 −0.880826 −0.440413 0.897795i \(-0.645168\pi\)
−0.440413 + 0.897795i \(0.645168\pi\)
\(752\) 7881.00 0.382168
\(753\) 0 0
\(754\) 0 0
\(755\) −15147.0 −0.730140
\(756\) 0 0
\(757\) −6410.00 −0.307761 −0.153881 0.988089i \(-0.549177\pi\)
−0.153881 + 0.988089i \(0.549177\pi\)
\(758\) −30546.0 −1.46369
\(759\) 0 0
\(760\) 1134.00 0.0541243
\(761\) −28290.0 −1.34758 −0.673792 0.738921i \(-0.735336\pi\)
−0.673792 + 0.738921i \(0.735336\pi\)
\(762\) 0 0
\(763\) 16245.0 0.770784
\(764\) −1260.00 −0.0596665
\(765\) 0 0
\(766\) −1737.00 −0.0819326
\(767\) 0 0
\(768\) 0 0
\(769\) −27960.0 −1.31114 −0.655568 0.755136i \(-0.727571\pi\)
−0.655568 + 0.755136i \(0.727571\pi\)
\(770\) −19440.0 −0.909830
\(771\) 0 0
\(772\) 342.000 0.0159441
\(773\) 5649.00 0.262847 0.131423 0.991326i \(-0.458045\pi\)
0.131423 + 0.991326i \(0.458045\pi\)
\(774\) 0 0
\(775\) −11616.0 −0.538399
\(776\) −17892.0 −0.827687
\(777\) 0 0
\(778\) −6318.00 −0.291146
\(779\) 1152.00 0.0529842
\(780\) 0 0
\(781\) −17136.0 −0.785114
\(782\) 21870.0 1.00009
\(783\) 0 0
\(784\) 8378.00 0.381651
\(785\) 16866.0 0.766845
\(786\) 0 0
\(787\) 756.000 0.0342420 0.0171210 0.999853i \(-0.494550\pi\)
0.0171210 + 0.999853i \(0.494550\pi\)
\(788\) −81.0000 −0.00366181
\(789\) 0 0
\(790\) 22410.0 1.00926
\(791\) −1350.00 −0.0606833
\(792\) 0 0
\(793\) 0 0
\(794\) 5922.00 0.264690
\(795\) 0 0
\(796\) −1996.00 −0.0888773
\(797\) 31194.0 1.38638 0.693192 0.720753i \(-0.256204\pi\)
0.693192 + 0.720753i \(0.256204\pi\)
\(798\) 0 0
\(799\) 4995.00 0.221164
\(800\) −1980.00 −0.0875045
\(801\) 0 0
\(802\) 35658.0 1.56998
\(803\) −52704.0 −2.31617
\(804\) 0 0
\(805\) 21870.0 0.957536
\(806\) 0 0
\(807\) 0 0
\(808\) 8316.00 0.362074
\(809\) −17055.0 −0.741189 −0.370594 0.928795i \(-0.620846\pi\)
−0.370594 + 0.928795i \(0.620846\pi\)
\(810\) 0 0
\(811\) 35520.0 1.53795 0.768974 0.639280i \(-0.220768\pi\)
0.768974 + 0.639280i \(0.220768\pi\)
\(812\) 2160.00 0.0933512
\(813\) 0 0
\(814\) −43632.0 −1.87875
\(815\) −10746.0 −0.461860
\(816\) 0 0
\(817\) 582.000 0.0249224
\(818\) −3762.00 −0.160801
\(819\) 0 0
\(820\) 1728.00 0.0735907
\(821\) −1095.00 −0.0465478 −0.0232739 0.999729i \(-0.507409\pi\)
−0.0232739 + 0.999729i \(0.507409\pi\)
\(822\) 0 0
\(823\) 2554.00 0.108174 0.0540868 0.998536i \(-0.482775\pi\)
0.0540868 + 0.998536i \(0.482775\pi\)
\(824\) −3822.00 −0.161585
\(825\) 0 0
\(826\) 23490.0 0.989494
\(827\) −21522.0 −0.904950 −0.452475 0.891777i \(-0.649459\pi\)
−0.452475 + 0.891777i \(0.649459\pi\)
\(828\) 0 0
\(829\) 13124.0 0.549838 0.274919 0.961467i \(-0.411349\pi\)
0.274919 + 0.961467i \(0.411349\pi\)
\(830\) −11826.0 −0.494562
\(831\) 0 0
\(832\) 0 0
\(833\) 5310.00 0.220865
\(834\) 0 0
\(835\) 21492.0 0.890732
\(836\) 288.000 0.0119147
\(837\) 0 0
\(838\) 17469.0 0.720115
\(839\) 23424.0 0.963869 0.481935 0.876207i \(-0.339934\pi\)
0.481935 + 0.876207i \(0.339934\pi\)
\(840\) 0 0
\(841\) −3653.00 −0.149781
\(842\) 22023.0 0.901381
\(843\) 0 0
\(844\) 2833.00 0.115540
\(845\) 0 0
\(846\) 0 0
\(847\) 14595.0 0.592078
\(848\) −29394.0 −1.19032
\(849\) 0 0
\(850\) −5940.00 −0.239694
\(851\) 49086.0 1.97726
\(852\) 0 0
\(853\) 31077.0 1.24743 0.623714 0.781653i \(-0.285623\pi\)
0.623714 + 0.781653i \(0.285623\pi\)
\(854\) −16920.0 −0.677975
\(855\) 0 0
\(856\) 12852.0 0.513169
\(857\) −19422.0 −0.774146 −0.387073 0.922049i \(-0.626514\pi\)
−0.387073 + 0.922049i \(0.626514\pi\)
\(858\) 0 0
\(859\) 1744.00 0.0692718 0.0346359 0.999400i \(-0.488973\pi\)
0.0346359 + 0.999400i \(0.488973\pi\)
\(860\) 873.000 0.0346152
\(861\) 0 0
\(862\) −22455.0 −0.887263
\(863\) −19179.0 −0.756501 −0.378251 0.925703i \(-0.623474\pi\)
−0.378251 + 0.925703i \(0.623474\pi\)
\(864\) 0 0
\(865\) −14094.0 −0.554000
\(866\) −45609.0 −1.78967
\(867\) 0 0
\(868\) 3960.00 0.154852
\(869\) −39840.0 −1.55521
\(870\) 0 0
\(871\) 0 0
\(872\) 22743.0 0.883228
\(873\) 0 0
\(874\) −2916.00 −0.112855
\(875\) −22815.0 −0.881472
\(876\) 0 0
\(877\) 29217.0 1.12496 0.562479 0.826812i \(-0.309848\pi\)
0.562479 + 0.826812i \(0.309848\pi\)
\(878\) −5286.00 −0.203182
\(879\) 0 0
\(880\) −30672.0 −1.17495
\(881\) −15633.0 −0.597831 −0.298916 0.954280i \(-0.596625\pi\)
−0.298916 + 0.954280i \(0.596625\pi\)
\(882\) 0 0
\(883\) −30589.0 −1.16580 −0.582900 0.812544i \(-0.698082\pi\)
−0.582900 + 0.812544i \(0.698082\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −21951.0 −0.832346
\(887\) 25884.0 0.979819 0.489910 0.871773i \(-0.337030\pi\)
0.489910 + 0.871773i \(0.337030\pi\)
\(888\) 0 0
\(889\) −31290.0 −1.18046
\(890\) −11826.0 −0.445403
\(891\) 0 0
\(892\) −3507.00 −0.131640
\(893\) −666.000 −0.0249573
\(894\) 0 0
\(895\) −5913.00 −0.220838
\(896\) −24885.0 −0.927845
\(897\) 0 0
\(898\) −15048.0 −0.559196
\(899\) 38016.0 1.41035
\(900\) 0 0
\(901\) −18630.0 −0.688852
\(902\) −27648.0 −1.02060
\(903\) 0 0
\(904\) −1890.00 −0.0695359
\(905\) 10998.0 0.403962
\(906\) 0 0
\(907\) 12305.0 0.450475 0.225237 0.974304i \(-0.427684\pi\)
0.225237 + 0.974304i \(0.427684\pi\)
\(908\) 228.000 0.00833309
\(909\) 0 0
\(910\) 0 0
\(911\) −29772.0 −1.08276 −0.541378 0.840779i \(-0.682097\pi\)
−0.541378 + 0.840779i \(0.682097\pi\)
\(912\) 0 0
\(913\) 21024.0 0.762095
\(914\) −29610.0 −1.07157
\(915\) 0 0
\(916\) 5493.00 0.198137
\(917\) 22005.0 0.792442
\(918\) 0 0
\(919\) 47644.0 1.71015 0.855076 0.518502i \(-0.173510\pi\)
0.855076 + 0.518502i \(0.173510\pi\)
\(920\) 30618.0 1.09722
\(921\) 0 0
\(922\) −43623.0 −1.55819
\(923\) 0 0
\(924\) 0 0
\(925\) −13332.0 −0.473896
\(926\) 6336.00 0.224853
\(927\) 0 0
\(928\) 6480.00 0.229220
\(929\) −21924.0 −0.774277 −0.387138 0.922022i \(-0.626536\pi\)
−0.387138 + 0.922022i \(0.626536\pi\)
\(930\) 0 0
\(931\) −708.000 −0.0249235
\(932\) 3627.00 0.127475
\(933\) 0 0
\(934\) −9828.00 −0.344306
\(935\) −19440.0 −0.679953
\(936\) 0 0
\(937\) 32398.0 1.12956 0.564779 0.825242i \(-0.308961\pi\)
0.564779 + 0.825242i \(0.308961\pi\)
\(938\) 1620.00 0.0563911
\(939\) 0 0
\(940\) −999.000 −0.0346636
\(941\) −2097.00 −0.0726464 −0.0363232 0.999340i \(-0.511565\pi\)
−0.0363232 + 0.999340i \(0.511565\pi\)
\(942\) 0 0
\(943\) 31104.0 1.07411
\(944\) 37062.0 1.27782
\(945\) 0 0
\(946\) −13968.0 −0.480062
\(947\) 20016.0 0.686835 0.343417 0.939183i \(-0.388415\pi\)
0.343417 + 0.939183i \(0.388415\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 792.000 0.0270483
\(951\) 0 0
\(952\) −14175.0 −0.482578
\(953\) 24993.0 0.849531 0.424765 0.905304i \(-0.360357\pi\)
0.424765 + 0.905304i \(0.360357\pi\)
\(954\) 0 0
\(955\) −11340.0 −0.384245
\(956\) −6075.00 −0.205523
\(957\) 0 0
\(958\) −46359.0 −1.56346
\(959\) 6210.00 0.209105
\(960\) 0 0
\(961\) 39905.0 1.33950
\(962\) 0 0
\(963\) 0 0
\(964\) 210.000 0.00701623
\(965\) 3078.00 0.102678
\(966\) 0 0
\(967\) −40959.0 −1.36210 −0.681051 0.732236i \(-0.738477\pi\)
−0.681051 + 0.732236i \(0.738477\pi\)
\(968\) 20433.0 0.678452
\(969\) 0 0
\(970\) 23004.0 0.761458
\(971\) 48933.0 1.61723 0.808617 0.588335i \(-0.200216\pi\)
0.808617 + 0.588335i \(0.200216\pi\)
\(972\) 0 0
\(973\) −36285.0 −1.19552
\(974\) 10980.0 0.361213
\(975\) 0 0
\(976\) −26696.0 −0.875531
\(977\) −47388.0 −1.55177 −0.775884 0.630876i \(-0.782696\pi\)
−0.775884 + 0.630876i \(0.782696\pi\)
\(978\) 0 0
\(979\) 21024.0 0.686343
\(980\) −1062.00 −0.0346167
\(981\) 0 0
\(982\) −2241.00 −0.0728240
\(983\) −16803.0 −0.545201 −0.272600 0.962127i \(-0.587884\pi\)
−0.272600 + 0.962127i \(0.587884\pi\)
\(984\) 0 0
\(985\) −729.000 −0.0235816
\(986\) 19440.0 0.627886
\(987\) 0 0
\(988\) 0 0
\(989\) 15714.0 0.505234
\(990\) 0 0
\(991\) −57526.0 −1.84397 −0.921985 0.387226i \(-0.873433\pi\)
−0.921985 + 0.387226i \(0.873433\pi\)
\(992\) 11880.0 0.380232
\(993\) 0 0
\(994\) 16065.0 0.512627
\(995\) −17964.0 −0.572359
\(996\) 0 0
\(997\) −25000.0 −0.794140 −0.397070 0.917788i \(-0.629973\pi\)
−0.397070 + 0.917788i \(0.629973\pi\)
\(998\) 47412.0 1.50381
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1521.4.a.d.1.1 1
3.2 odd 2 169.4.a.c.1.1 1
13.5 odd 4 117.4.b.a.64.2 2
13.8 odd 4 117.4.b.a.64.1 2
13.12 even 2 1521.4.a.i.1.1 1
39.2 even 12 169.4.e.d.147.2 4
39.5 even 4 13.4.b.a.12.1 2
39.8 even 4 13.4.b.a.12.2 yes 2
39.11 even 12 169.4.e.d.147.1 4
39.17 odd 6 169.4.c.c.146.1 2
39.20 even 12 169.4.e.d.23.2 4
39.23 odd 6 169.4.c.c.22.1 2
39.29 odd 6 169.4.c.b.22.1 2
39.32 even 12 169.4.e.d.23.1 4
39.35 odd 6 169.4.c.b.146.1 2
39.38 odd 2 169.4.a.b.1.1 1
156.47 odd 4 208.4.f.b.129.1 2
156.83 odd 4 208.4.f.b.129.2 2
195.8 odd 4 325.4.d.b.324.1 2
195.44 even 4 325.4.c.b.51.2 2
195.47 odd 4 325.4.d.a.324.2 2
195.83 odd 4 325.4.d.a.324.1 2
195.122 odd 4 325.4.d.b.324.2 2
195.164 even 4 325.4.c.b.51.1 2
312.5 even 4 832.4.f.e.129.1 2
312.83 odd 4 832.4.f.c.129.1 2
312.125 even 4 832.4.f.e.129.2 2
312.203 odd 4 832.4.f.c.129.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.4.b.a.12.1 2 39.5 even 4
13.4.b.a.12.2 yes 2 39.8 even 4
117.4.b.a.64.1 2 13.8 odd 4
117.4.b.a.64.2 2 13.5 odd 4
169.4.a.b.1.1 1 39.38 odd 2
169.4.a.c.1.1 1 3.2 odd 2
169.4.c.b.22.1 2 39.29 odd 6
169.4.c.b.146.1 2 39.35 odd 6
169.4.c.c.22.1 2 39.23 odd 6
169.4.c.c.146.1 2 39.17 odd 6
169.4.e.d.23.1 4 39.32 even 12
169.4.e.d.23.2 4 39.20 even 12
169.4.e.d.147.1 4 39.11 even 12
169.4.e.d.147.2 4 39.2 even 12
208.4.f.b.129.1 2 156.47 odd 4
208.4.f.b.129.2 2 156.83 odd 4
325.4.c.b.51.1 2 195.164 even 4
325.4.c.b.51.2 2 195.44 even 4
325.4.d.a.324.1 2 195.83 odd 4
325.4.d.a.324.2 2 195.47 odd 4
325.4.d.b.324.1 2 195.8 odd 4
325.4.d.b.324.2 2 195.122 odd 4
832.4.f.c.129.1 2 312.83 odd 4
832.4.f.c.129.2 2 312.203 odd 4
832.4.f.e.129.1 2 312.5 even 4
832.4.f.e.129.2 2 312.125 even 4
1521.4.a.d.1.1 1 1.1 even 1 trivial
1521.4.a.i.1.1 1 13.12 even 2