Defining parameters
Level: | \( N \) | \(=\) | \( 1521 = 3^{2} \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1521.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 40 \) | ||
Sturm bound: | \(728\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1521))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 574 | 199 | 375 |
Cusp forms | 518 | 188 | 330 |
Eisenstein series | 56 | 11 | 45 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(13\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(41\) |
\(+\) | \(-\) | \(-\) | \(36\) |
\(-\) | \(+\) | \(-\) | \(54\) |
\(-\) | \(-\) | \(+\) | \(57\) |
Plus space | \(+\) | \(98\) | |
Minus space | \(-\) | \(90\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1521))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1521))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1521)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(507))\)\(^{\oplus 2}\)