Properties

Label 1521.4.a
Level $1521$
Weight $4$
Character orbit 1521.a
Rep. character $\chi_{1521}(1,\cdot)$
Character field $\Q$
Dimension $188$
Newform subspaces $40$
Sturm bound $728$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1521.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 40 \)
Sturm bound: \(728\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(2\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1521))\).

Total New Old
Modular forms 574 199 375
Cusp forms 518 188 330
Eisenstein series 56 11 45

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(41\)
\(+\)\(-\)\(-\)\(36\)
\(-\)\(+\)\(-\)\(54\)
\(-\)\(-\)\(+\)\(57\)
Plus space\(+\)\(98\)
Minus space\(-\)\(90\)

Trace form

\( 188 q + 718 q^{4} + 6 q^{5} - 22 q^{7} + O(q^{10}) \) \( 188 q + 718 q^{4} + 6 q^{5} - 22 q^{7} + 90 q^{10} - 42 q^{11} - 86 q^{14} + 2658 q^{16} + 34 q^{17} + 106 q^{19} - 192 q^{20} - 64 q^{22} - 80 q^{23} + 3958 q^{25} - 728 q^{28} + 356 q^{29} + 422 q^{31} - 180 q^{32} + 184 q^{34} + 388 q^{35} - 188 q^{37} + 1146 q^{38} + 1502 q^{40} + 402 q^{41} + 6 q^{43} - 600 q^{44} + 1996 q^{46} + 282 q^{47} + 8648 q^{49} - 144 q^{50} - 980 q^{53} - 404 q^{55} - 784 q^{56} + 1172 q^{58} - 1734 q^{59} - 1906 q^{61} - 638 q^{62} + 6636 q^{64} - 1298 q^{67} + 3120 q^{68} + 3388 q^{70} - 1098 q^{71} + 680 q^{73} + 3364 q^{74} + 2112 q^{76} + 2852 q^{77} + 624 q^{79} - 1392 q^{80} - 498 q^{82} - 1422 q^{83} + 712 q^{85} + 5004 q^{86} - 768 q^{88} - 534 q^{89} - 2052 q^{92} - 5110 q^{94} - 3852 q^{95} - 428 q^{97} - 5424 q^{98} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1521))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 13
1521.4.a.a 1521.a 1.a $1$ $89.742$ \(\Q\) None 13.4.a.a \(-5\) \(0\) \(-7\) \(13\) $-$ $+$ $\mathrm{SU}(2)$ \(q-5q^{2}+17q^{4}-7q^{5}+13q^{7}-45q^{8}+\cdots\)
1521.4.a.b 1521.a 1.a $1$ $89.742$ \(\Q\) None 13.4.c.a \(-4\) \(0\) \(-17\) \(20\) $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+8q^{4}-17q^{5}+20q^{7}+68q^{10}+\cdots\)
1521.4.a.c 1521.a 1.a $1$ $89.742$ \(\Q\) None 39.4.e.a \(-3\) \(0\) \(9\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{2}+q^{4}+9q^{5}+2q^{7}+21q^{8}+\cdots\)
1521.4.a.d 1521.a 1.a $1$ $89.742$ \(\Q\) None 13.4.b.a \(-3\) \(0\) \(9\) \(15\) $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{2}+q^{4}+9q^{5}+15q^{7}+21q^{8}+\cdots\)
1521.4.a.e 1521.a 1.a $1$ $89.742$ \(\Q\) None 39.4.e.b \(-1\) \(0\) \(7\) \(10\) $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-7q^{4}+7q^{5}+10q^{7}+15q^{8}+\cdots\)
1521.4.a.f 1521.a 1.a $1$ $89.742$ \(\Q\) None 39.4.a.a \(0\) \(0\) \(-12\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q-8q^{4}-12q^{5}-2q^{7}-6^{2}q^{11}+2^{6}q^{16}+\cdots\)
1521.4.a.g 1521.a 1.a $1$ $89.742$ \(\Q\) \(\Q(\sqrt{-3}) \) 9.4.a.a \(0\) \(0\) \(0\) \(-20\) $+$ $+$ $N(\mathrm{U}(1))$ \(q-8q^{4}-20q^{7}+2^{6}q^{16}-56q^{19}+\cdots\)
1521.4.a.h 1521.a 1.a $1$ $89.742$ \(\Q\) None 39.4.e.b \(1\) \(0\) \(-7\) \(-10\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-7q^{4}-7q^{5}-10q^{7}-15q^{8}+\cdots\)
1521.4.a.i 1521.a 1.a $1$ $89.742$ \(\Q\) None 13.4.b.a \(3\) \(0\) \(-9\) \(-15\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{2}+q^{4}-9q^{5}-15q^{7}-21q^{8}+\cdots\)
1521.4.a.j 1521.a 1.a $1$ $89.742$ \(\Q\) None 39.4.e.a \(3\) \(0\) \(-9\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{2}+q^{4}-9q^{5}-2q^{7}-21q^{8}+\cdots\)
1521.4.a.k 1521.a 1.a $1$ $89.742$ \(\Q\) None 13.4.c.a \(4\) \(0\) \(17\) \(-20\) $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+8q^{4}+17q^{5}-20q^{7}+68q^{10}+\cdots\)
1521.4.a.l 1521.a 1.a $2$ $89.742$ \(\Q(\sqrt{17}) \) None 13.4.c.b \(-5\) \(0\) \(-15\) \(-15\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta )q^{2}+5\beta q^{4}+(-10+5\beta )q^{5}+\cdots\)
1521.4.a.m 1521.a 1.a $2$ $89.742$ \(\Q(\sqrt{3}) \) None 39.4.j.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-8q^{4}-3\beta q^{5}+6\beta q^{7}+30\beta q^{11}+\cdots\)
1521.4.a.n 1521.a 1.a $2$ $89.742$ \(\Q(\sqrt{3}) \) \(\Q(\sqrt{-3}) \) 117.4.b.b \(0\) \(0\) \(0\) \(0\) $+$ $-$ $N(\mathrm{U}(1))$ \(q-8q^{4}+\beta q^{7}+2^{6}q^{16}-5\beta q^{19}+\cdots\)
1521.4.a.o 1521.a 1.a $2$ $89.742$ \(\Q(\sqrt{3}) \) None 13.4.e.b \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-5q^{4}+\beta q^{5}+8\beta q^{7}-13\beta q^{8}+\cdots\)
1521.4.a.p 1521.a 1.a $2$ $89.742$ \(\Q(\sqrt{7}) \) None 117.4.a.e \(0\) \(0\) \(0\) \(44\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-q^{4}-4\beta q^{5}+22q^{7}-9\beta q^{8}+\cdots\)
1521.4.a.q 1521.a 1.a $2$ $89.742$ \(\Q(\sqrt{3}) \) None 13.4.e.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2\beta q^{2}+4q^{4}+8\beta q^{5}+13\beta q^{7}+\cdots\)
1521.4.a.r 1521.a 1.a $2$ $89.742$ \(\Q(\sqrt{17}) \) None 13.4.a.b \(1\) \(0\) \(-3\) \(9\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-4+\beta )q^{4}+(-2+\beta )q^{5}+\cdots\)
1521.4.a.s 1521.a 1.a $2$ $89.742$ \(\Q(\sqrt{14}) \) None 39.4.a.b \(2\) \(0\) \(24\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+(7+2\beta )q^{4}+(12-2\beta )q^{5}+\cdots\)
1521.4.a.t 1521.a 1.a $2$ $89.742$ \(\Q(\sqrt{17}) \) None 13.4.c.b \(5\) \(0\) \(15\) \(15\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(3-\beta )q^{2}+(5-5\beta )q^{4}+(5+5\beta )q^{5}+\cdots\)
1521.4.a.u 1521.a 1.a $3$ $89.742$ 3.3.3144.1 None 39.4.a.c \(2\) \(0\) \(4\) \(-30\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(3+\beta _{2})q^{4}+(2-2\beta _{2})q^{5}+\cdots\)
1521.4.a.v 1521.a 1.a $4$ $89.742$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 39.4.e.c \(-2\) \(0\) \(6\) \(-14\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(5+\beta _{1}+\beta _{2})q^{4}+(1+\beta _{1}+\cdots)q^{5}+\cdots\)
1521.4.a.w 1521.a 1.a $4$ $89.742$ 4.4.1362828.1 None 39.4.b.b \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(4+\beta _{3})q^{4}+(2\beta _{1}+\beta _{2})q^{5}+\cdots\)
1521.4.a.x 1521.a 1.a $4$ $89.742$ 4.4.5054412.1 None 39.4.b.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(7+\beta _{3})q^{4}-\beta _{2}q^{5}+6\beta _{1}q^{7}+\cdots\)
1521.4.a.y 1521.a 1.a $4$ $89.742$ 4.4.8112.1 \(\Q(\sqrt{-39}) \) 117.4.b.c \(0\) \(0\) \(0\) \(0\) $+$ $-$ $N(\mathrm{U}(1))$ \(q-\beta _{1}q^{2}+(8-\beta _{2})q^{4}+(2\beta _{1}-\beta _{3})q^{5}+\cdots\)
1521.4.a.z 1521.a 1.a $4$ $89.742$ \(\Q(\sqrt{3}, \sqrt{17})\) None 39.4.j.b \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{2}+9q^{4}+(3\beta _{1}-2\beta _{3})q^{5}+(11\beta _{1}+\cdots)q^{7}+\cdots\)
1521.4.a.ba 1521.a 1.a $4$ $89.742$ 4.4.1520092.1 None 117.4.a.g \(0\) \(0\) \(0\) \(-36\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(14+\beta _{2})q^{4}-\beta _{3}q^{5}+(-8+\cdots)q^{7}+\cdots\)
1521.4.a.bb 1521.a 1.a $4$ $89.742$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 39.4.e.c \(2\) \(0\) \(-6\) \(14\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(5+\beta _{1}+\beta _{2})q^{4}+(-1-\beta _{1}+\cdots)q^{5}+\cdots\)
1521.4.a.bc 1521.a 1.a $8$ $89.742$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 117.4.g.f \(0\) \(0\) \(0\) \(-22\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(5+\beta _{2})q^{4}+\beta _{3}q^{5}+(-3+\cdots)q^{7}+\cdots\)
1521.4.a.bd 1521.a 1.a $8$ $89.742$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 117.4.g.f \(0\) \(0\) \(0\) \(22\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(5+\beta _{2})q^{4}+\beta _{3}q^{5}+(3-\beta _{5}+\cdots)q^{7}+\cdots\)
1521.4.a.be 1521.a 1.a $9$ $89.742$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 507.4.a.n \(-8\) \(0\) \(-41\) \(1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(3-2\beta _{1}+\beta _{2}+\beta _{3}+\cdots)q^{4}+\cdots\)
1521.4.a.bf 1521.a 1.a $9$ $89.742$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 507.4.a.o \(-6\) \(0\) \(-33\) \(83\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{3})q^{2}+(5+\beta _{3}+\beta _{5})q^{4}+\cdots\)
1521.4.a.bg 1521.a 1.a $9$ $89.742$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 169.4.a.k \(-5\) \(0\) \(-30\) \(38\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(5+\beta _{5}+\beta _{6}+\beta _{8})q^{4}+\cdots\)
1521.4.a.bh 1521.a 1.a $9$ $89.742$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 169.4.a.k \(5\) \(0\) \(30\) \(-38\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(5+\beta _{5}+\beta _{6}+\beta _{8})q^{4}+\cdots\)
1521.4.a.bi 1521.a 1.a $9$ $89.742$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 507.4.a.o \(6\) \(0\) \(33\) \(-83\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{3})q^{2}+(5+\beta _{3}+\beta _{5})q^{4}+(3+\cdots)q^{5}+\cdots\)
1521.4.a.bj 1521.a 1.a $9$ $89.742$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 507.4.a.n \(8\) \(0\) \(41\) \(-1\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(3-2\beta _{1}+\beta _{2}+\beta _{3}+\cdots)q^{4}+\cdots\)
1521.4.a.bk 1521.a 1.a $10$ $89.742$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 39.4.j.c \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(6+\beta _{4})q^{4}+(\beta _{1}+\beta _{2}-\beta _{8}+\cdots)q^{5}+\cdots\)
1521.4.a.bl 1521.a 1.a $12$ $89.742$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 117.4.q.f \(0\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{6}q^{2}+(3+\beta _{2})q^{4}+(-\beta _{6}+\beta _{8}+\cdots)q^{5}+\cdots\)
1521.4.a.bm 1521.a 1.a $18$ $89.742$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 1521.4.a.bm \(0\) \(0\) \(0\) \(-94\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(3+\beta _{2})q^{4}+(\beta _{1}-\beta _{14})q^{5}+\cdots\)
1521.4.a.bn 1521.a 1.a $18$ $89.742$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 1521.4.a.bm \(0\) \(0\) \(0\) \(94\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(3+\beta _{2})q^{4}+(\beta _{1}-\beta _{14})q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1521))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1521)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(507))\)\(^{\oplus 2}\)