Defining parameters
Level: | \( N \) | = | \( 1521 = 3^{2} \cdot 13^{2} \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 30 \) | ||
Sturm bound: | \(681408\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1521))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 257352 | 200827 | 56525 |
Cusp forms | 253704 | 198986 | 54718 |
Eisenstein series | 3648 | 1841 | 1807 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1521))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1521))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(1521)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(117))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(507))\)\(^{\oplus 2}\)