Properties

Label 1521.4
Level 1521
Weight 4
Dimension 198986
Nonzero newspaces 30
Sturm bound 681408
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 30 \)
Sturm bound: \(681408\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1521))\).

Total New Old
Modular forms 257352 200827 56525
Cusp forms 253704 198986 54718
Eisenstein series 3648 1841 1807

Trace form

\( 198986 q - 201 q^{2} - 267 q^{3} - 211 q^{4} - 213 q^{5} - 255 q^{6} - 113 q^{7} + 12 q^{8} - 219 q^{9} - 762 q^{10} - 384 q^{11} - 420 q^{12} - 360 q^{13} - 678 q^{14} - 237 q^{15} - 127 q^{16} + 378 q^{17}+ \cdots + 27393 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1521))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1521.4.a \(\chi_{1521}(1, \cdot)\) 1521.4.a.a 1 1
1521.4.a.b 1
1521.4.a.c 1
1521.4.a.d 1
1521.4.a.e 1
1521.4.a.f 1
1521.4.a.g 1
1521.4.a.h 1
1521.4.a.i 1
1521.4.a.j 1
1521.4.a.k 1
1521.4.a.l 2
1521.4.a.m 2
1521.4.a.n 2
1521.4.a.o 2
1521.4.a.p 2
1521.4.a.q 2
1521.4.a.r 2
1521.4.a.s 2
1521.4.a.t 2
1521.4.a.u 3
1521.4.a.v 4
1521.4.a.w 4
1521.4.a.x 4
1521.4.a.y 4
1521.4.a.z 4
1521.4.a.ba 4
1521.4.a.bb 4
1521.4.a.bc 8
1521.4.a.bd 8
1521.4.a.be 9
1521.4.a.bf 9
1521.4.a.bg 9
1521.4.a.bh 9
1521.4.a.bi 9
1521.4.a.bj 9
1521.4.a.bk 10
1521.4.a.bl 12
1521.4.a.bm 18
1521.4.a.bn 18
1521.4.b \(\chi_{1521}(1351, \cdot)\) n/a 188 1
1521.4.e \(\chi_{1521}(508, \cdot)\) n/a 908 2
1521.4.f \(\chi_{1521}(529, \cdot)\) n/a 904 2
1521.4.g \(\chi_{1521}(991, \cdot)\) n/a 374 2
1521.4.h \(\chi_{1521}(22, \cdot)\) n/a 904 2
1521.4.i \(\chi_{1521}(746, \cdot)\) n/a 308 2
1521.4.l \(\chi_{1521}(823, \cdot)\) n/a 904 2
1521.4.q \(\chi_{1521}(316, \cdot)\) n/a 376 2
1521.4.r \(\chi_{1521}(868, \cdot)\) n/a 904 2
1521.4.t \(\chi_{1521}(337, \cdot)\) n/a 904 2
1521.4.x \(\chi_{1521}(587, \cdot)\) n/a 1808 4
1521.4.z \(\chi_{1521}(239, \cdot)\) n/a 1808 4
1521.4.ba \(\chi_{1521}(80, \cdot)\) n/a 616 4
1521.4.bc \(\chi_{1521}(488, \cdot)\) n/a 1808 4
1521.4.be \(\chi_{1521}(118, \cdot)\) n/a 2724 12
1521.4.bh \(\chi_{1521}(64, \cdot)\) n/a 2712 12
1521.4.bi \(\chi_{1521}(16, \cdot)\) n/a 13056 24
1521.4.bj \(\chi_{1521}(55, \cdot)\) n/a 5448 24
1521.4.bk \(\chi_{1521}(61, \cdot)\) n/a 13056 24
1521.4.bl \(\chi_{1521}(40, \cdot)\) n/a 13056 24
1521.4.bn \(\chi_{1521}(8, \cdot)\) n/a 4368 24
1521.4.bq \(\chi_{1521}(25, \cdot)\) n/a 13056 24
1521.4.bs \(\chi_{1521}(43, \cdot)\) n/a 13056 24
1521.4.bt \(\chi_{1521}(10, \cdot)\) n/a 5424 24
1521.4.by \(\chi_{1521}(4, \cdot)\) n/a 13056 24
1521.4.cb \(\chi_{1521}(20, \cdot)\) n/a 26112 48
1521.4.cd \(\chi_{1521}(71, \cdot)\) n/a 8736 48
1521.4.ce \(\chi_{1521}(5, \cdot)\) n/a 26112 48
1521.4.cg \(\chi_{1521}(2, \cdot)\) n/a 26112 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1521))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1521)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(117))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(507))\)\(^{\oplus 2}\)