Properties

Label 1521.2.b.m.1351.5
Level $1521$
Weight $2$
Character 1521.1351
Analytic conductor $12.145$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1521.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.1452461474\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Defining polynomial: \(x^{6} + 5 x^{4} + 6 x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 507)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.5
Root \(1.24698i\) of defining polynomial
Character \(\chi\) \(=\) 1521.1351
Dual form 1521.2.b.m.1351.2

$q$-expansion

\(f(q)\) \(=\) \(q+1.24698i q^{2} +0.445042 q^{4} -2.80194i q^{5} -4.80194i q^{7} +3.04892i q^{8} +O(q^{10})\) \(q+1.24698i q^{2} +0.445042 q^{4} -2.80194i q^{5} -4.80194i q^{7} +3.04892i q^{8} +3.49396 q^{10} -1.46681i q^{11} +5.98792 q^{14} -2.91185 q^{16} -2.44504 q^{17} -2.54288i q^{19} -1.24698i q^{20} +1.82908 q^{22} -3.51573 q^{23} -2.85086 q^{25} -2.13706i q^{28} -1.85086 q^{29} +7.63102i q^{31} +2.46681i q^{32} -3.04892i q^{34} -13.4547 q^{35} -4.55496i q^{37} +3.17092 q^{38} +8.54288 q^{40} +1.24698i q^{41} -2.38404 q^{43} -0.652793i q^{44} -4.38404i q^{46} -12.8170i q^{47} -16.0586 q^{49} -3.55496i q^{50} +8.85086 q^{53} -4.10992 q^{55} +14.6407 q^{56} -2.30798i q^{58} -2.17629i q^{59} -7.82908 q^{61} -9.51573 q^{62} -8.89977 q^{64} +3.58211i q^{67} -1.08815 q^{68} -16.7778i q^{70} -8.83877i q^{71} -7.69202i q^{73} +5.67994 q^{74} -1.13169i q^{76} -7.04354 q^{77} -4.02177 q^{79} +8.15883i q^{80} -1.55496 q^{82} -0.652793i q^{83} +6.85086i q^{85} -2.97285i q^{86} +4.47219 q^{88} -6.29590i q^{89} -1.56465 q^{92} +15.9825 q^{94} -7.12498 q^{95} +10.0315i q^{97} -20.0248i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + 2q^{4} + O(q^{10}) \) \( 6q + 2q^{4} + 2q^{10} - 2q^{14} - 10q^{16} - 14q^{17} - 10q^{22} + 4q^{23} + 10q^{25} + 16q^{29} - 36q^{35} + 40q^{38} + 14q^{40} + 6q^{43} - 34q^{49} + 26q^{53} - 26q^{55} + 14q^{56} - 26q^{61} - 32q^{62} - 8q^{64} - 14q^{68} - 14q^{74} - 30q^{77} - 18q^{79} - 10q^{82} + 14q^{88} + 34q^{92} + 64q^{94} + 6q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1521\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.24698i 0.881748i 0.897569 + 0.440874i \(0.145331\pi\)
−0.897569 + 0.440874i \(0.854669\pi\)
\(3\) 0 0
\(4\) 0.445042 0.222521
\(5\) − 2.80194i − 1.25306i −0.779395 0.626532i \(-0.784474\pi\)
0.779395 0.626532i \(-0.215526\pi\)
\(6\) 0 0
\(7\) − 4.80194i − 1.81496i −0.420093 0.907481i \(-0.638003\pi\)
0.420093 0.907481i \(-0.361997\pi\)
\(8\) 3.04892i 1.07796i
\(9\) 0 0
\(10\) 3.49396 1.10489
\(11\) − 1.46681i − 0.442260i −0.975244 0.221130i \(-0.929025\pi\)
0.975244 0.221130i \(-0.0709746\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 5.98792 1.60034
\(15\) 0 0
\(16\) −2.91185 −0.727963
\(17\) −2.44504 −0.593010 −0.296505 0.955031i \(-0.595821\pi\)
−0.296505 + 0.955031i \(0.595821\pi\)
\(18\) 0 0
\(19\) − 2.54288i − 0.583376i −0.956514 0.291688i \(-0.905783\pi\)
0.956514 0.291688i \(-0.0942169\pi\)
\(20\) − 1.24698i − 0.278833i
\(21\) 0 0
\(22\) 1.82908 0.389962
\(23\) −3.51573 −0.733080 −0.366540 0.930402i \(-0.619458\pi\)
−0.366540 + 0.930402i \(0.619458\pi\)
\(24\) 0 0
\(25\) −2.85086 −0.570171
\(26\) 0 0
\(27\) 0 0
\(28\) − 2.13706i − 0.403867i
\(29\) −1.85086 −0.343695 −0.171848 0.985124i \(-0.554974\pi\)
−0.171848 + 0.985124i \(0.554974\pi\)
\(30\) 0 0
\(31\) 7.63102i 1.37057i 0.728274 + 0.685286i \(0.240323\pi\)
−0.728274 + 0.685286i \(0.759677\pi\)
\(32\) 2.46681i 0.436075i
\(33\) 0 0
\(34\) − 3.04892i − 0.522885i
\(35\) −13.4547 −2.27426
\(36\) 0 0
\(37\) − 4.55496i − 0.748831i −0.927261 0.374415i \(-0.877843\pi\)
0.927261 0.374415i \(-0.122157\pi\)
\(38\) 3.17092 0.514390
\(39\) 0 0
\(40\) 8.54288 1.35075
\(41\) 1.24698i 0.194745i 0.995248 + 0.0973727i \(0.0310439\pi\)
−0.995248 + 0.0973727i \(0.968956\pi\)
\(42\) 0 0
\(43\) −2.38404 −0.363563 −0.181782 0.983339i \(-0.558186\pi\)
−0.181782 + 0.983339i \(0.558186\pi\)
\(44\) − 0.652793i − 0.0984122i
\(45\) 0 0
\(46\) − 4.38404i − 0.646392i
\(47\) − 12.8170i − 1.86955i −0.355238 0.934776i \(-0.615600\pi\)
0.355238 0.934776i \(-0.384400\pi\)
\(48\) 0 0
\(49\) −16.0586 −2.29409
\(50\) − 3.55496i − 0.502747i
\(51\) 0 0
\(52\) 0 0
\(53\) 8.85086 1.21576 0.607879 0.794030i \(-0.292020\pi\)
0.607879 + 0.794030i \(0.292020\pi\)
\(54\) 0 0
\(55\) −4.10992 −0.554181
\(56\) 14.6407 1.95645
\(57\) 0 0
\(58\) − 2.30798i − 0.303052i
\(59\) − 2.17629i − 0.283329i −0.989915 0.141665i \(-0.954755\pi\)
0.989915 0.141665i \(-0.0452454\pi\)
\(60\) 0 0
\(61\) −7.82908 −1.00241 −0.501206 0.865328i \(-0.667110\pi\)
−0.501206 + 0.865328i \(0.667110\pi\)
\(62\) −9.51573 −1.20850
\(63\) 0 0
\(64\) −8.89977 −1.11247
\(65\) 0 0
\(66\) 0 0
\(67\) 3.58211i 0.437624i 0.975767 + 0.218812i \(0.0702181\pi\)
−0.975767 + 0.218812i \(0.929782\pi\)
\(68\) −1.08815 −0.131957
\(69\) 0 0
\(70\) − 16.7778i − 2.00533i
\(71\) − 8.83877i − 1.04897i −0.851420 0.524485i \(-0.824258\pi\)
0.851420 0.524485i \(-0.175742\pi\)
\(72\) 0 0
\(73\) − 7.69202i − 0.900283i −0.892957 0.450142i \(-0.851374\pi\)
0.892957 0.450142i \(-0.148626\pi\)
\(74\) 5.67994 0.660280
\(75\) 0 0
\(76\) − 1.13169i − 0.129813i
\(77\) −7.04354 −0.802686
\(78\) 0 0
\(79\) −4.02177 −0.452485 −0.226242 0.974071i \(-0.572644\pi\)
−0.226242 + 0.974071i \(0.572644\pi\)
\(80\) 8.15883i 0.912185i
\(81\) 0 0
\(82\) −1.55496 −0.171716
\(83\) − 0.652793i − 0.0716533i −0.999358 0.0358267i \(-0.988594\pi\)
0.999358 0.0358267i \(-0.0114064\pi\)
\(84\) 0 0
\(85\) 6.85086i 0.743080i
\(86\) − 2.97285i − 0.320571i
\(87\) 0 0
\(88\) 4.47219 0.476737
\(89\) − 6.29590i − 0.667364i −0.942686 0.333682i \(-0.891709\pi\)
0.942686 0.333682i \(-0.108291\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.56465 −0.163126
\(93\) 0 0
\(94\) 15.9825 1.64847
\(95\) −7.12498 −0.731008
\(96\) 0 0
\(97\) 10.0315i 1.01854i 0.860607 + 0.509270i \(0.170085\pi\)
−0.860607 + 0.509270i \(0.829915\pi\)
\(98\) − 20.0248i − 2.02281i
\(99\) 0 0
\(100\) −1.26875 −0.126875
\(101\) 13.8877 1.38188 0.690938 0.722914i \(-0.257198\pi\)
0.690938 + 0.722914i \(0.257198\pi\)
\(102\) 0 0
\(103\) 17.4034 1.71481 0.857405 0.514642i \(-0.172075\pi\)
0.857405 + 0.514642i \(0.172075\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 11.0368i 1.07199i
\(107\) −10.5526 −1.02015 −0.510077 0.860128i \(-0.670383\pi\)
−0.510077 + 0.860128i \(0.670383\pi\)
\(108\) 0 0
\(109\) − 1.07069i − 0.102553i −0.998684 0.0512766i \(-0.983671\pi\)
0.998684 0.0512766i \(-0.0163290\pi\)
\(110\) − 5.12498i − 0.488648i
\(111\) 0 0
\(112\) 13.9825i 1.32123i
\(113\) 16.5308 1.55509 0.777543 0.628830i \(-0.216466\pi\)
0.777543 + 0.628830i \(0.216466\pi\)
\(114\) 0 0
\(115\) 9.85086i 0.918597i
\(116\) −0.823708 −0.0764794
\(117\) 0 0
\(118\) 2.71379 0.249825
\(119\) 11.7409i 1.07629i
\(120\) 0 0
\(121\) 8.84846 0.804406
\(122\) − 9.76271i − 0.883874i
\(123\) 0 0
\(124\) 3.39612i 0.304981i
\(125\) − 6.02177i − 0.538604i
\(126\) 0 0
\(127\) 9.53750 0.846316 0.423158 0.906056i \(-0.360921\pi\)
0.423158 + 0.906056i \(0.360921\pi\)
\(128\) − 6.16421i − 0.544844i
\(129\) 0 0
\(130\) 0 0
\(131\) 5.50902 0.481326 0.240663 0.970609i \(-0.422635\pi\)
0.240663 + 0.970609i \(0.422635\pi\)
\(132\) 0 0
\(133\) −12.2107 −1.05880
\(134\) −4.46681 −0.385874
\(135\) 0 0
\(136\) − 7.45473i − 0.639238i
\(137\) 16.1836i 1.38266i 0.722540 + 0.691329i \(0.242974\pi\)
−0.722540 + 0.691329i \(0.757026\pi\)
\(138\) 0 0
\(139\) −10.5090 −0.891364 −0.445682 0.895191i \(-0.647039\pi\)
−0.445682 + 0.895191i \(0.647039\pi\)
\(140\) −5.98792 −0.506071
\(141\) 0 0
\(142\) 11.0218 0.924926
\(143\) 0 0
\(144\) 0 0
\(145\) 5.18598i 0.430672i
\(146\) 9.59179 0.793823
\(147\) 0 0
\(148\) − 2.02715i − 0.166630i
\(149\) 14.3502i 1.17561i 0.809001 + 0.587807i \(0.200008\pi\)
−0.809001 + 0.587807i \(0.799992\pi\)
\(150\) 0 0
\(151\) 1.96615i 0.160003i 0.996795 + 0.0800014i \(0.0254925\pi\)
−0.996795 + 0.0800014i \(0.974508\pi\)
\(152\) 7.75302 0.628853
\(153\) 0 0
\(154\) − 8.78315i − 0.707767i
\(155\) 21.3817 1.71742
\(156\) 0 0
\(157\) 10.7017 0.854089 0.427045 0.904231i \(-0.359555\pi\)
0.427045 + 0.904231i \(0.359555\pi\)
\(158\) − 5.01507i − 0.398977i
\(159\) 0 0
\(160\) 6.91185 0.546430
\(161\) 16.8823i 1.33051i
\(162\) 0 0
\(163\) 3.89977i 0.305454i 0.988268 + 0.152727i \(0.0488055\pi\)
−0.988268 + 0.152727i \(0.951195\pi\)
\(164\) 0.554958i 0.0433349i
\(165\) 0 0
\(166\) 0.814019 0.0631802
\(167\) − 21.0194i − 1.62653i −0.581895 0.813264i \(-0.697688\pi\)
0.581895 0.813264i \(-0.302312\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −8.54288 −0.655209
\(171\) 0 0
\(172\) −1.06100 −0.0809004
\(173\) 13.2349 1.00623 0.503115 0.864219i \(-0.332187\pi\)
0.503115 + 0.864219i \(0.332187\pi\)
\(174\) 0 0
\(175\) 13.6896i 1.03484i
\(176\) 4.27114i 0.321950i
\(177\) 0 0
\(178\) 7.85086 0.588446
\(179\) 8.52781 0.637399 0.318699 0.947856i \(-0.396754\pi\)
0.318699 + 0.947856i \(0.396754\pi\)
\(180\) 0 0
\(181\) 3.63640 0.270291 0.135146 0.990826i \(-0.456850\pi\)
0.135146 + 0.990826i \(0.456850\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) − 10.7192i − 0.790228i
\(185\) −12.7627 −0.938333
\(186\) 0 0
\(187\) 3.58642i 0.262265i
\(188\) − 5.70410i − 0.416014i
\(189\) 0 0
\(190\) − 8.88471i − 0.644564i
\(191\) −21.3817 −1.54712 −0.773561 0.633722i \(-0.781526\pi\)
−0.773561 + 0.633722i \(0.781526\pi\)
\(192\) 0 0
\(193\) − 8.42758i − 0.606631i −0.952890 0.303315i \(-0.901906\pi\)
0.952890 0.303315i \(-0.0980936\pi\)
\(194\) −12.5090 −0.898096
\(195\) 0 0
\(196\) −7.14675 −0.510482
\(197\) − 26.4765i − 1.88637i −0.332264 0.943186i \(-0.607813\pi\)
0.332264 0.943186i \(-0.392187\pi\)
\(198\) 0 0
\(199\) 14.2524 1.01032 0.505161 0.863025i \(-0.331433\pi\)
0.505161 + 0.863025i \(0.331433\pi\)
\(200\) − 8.69202i − 0.614619i
\(201\) 0 0
\(202\) 17.3177i 1.21847i
\(203\) 8.88769i 0.623794i
\(204\) 0 0
\(205\) 3.49396 0.244029
\(206\) 21.7017i 1.51203i
\(207\) 0 0
\(208\) 0 0
\(209\) −3.72992 −0.258004
\(210\) 0 0
\(211\) 1.85086 0.127418 0.0637091 0.997969i \(-0.479707\pi\)
0.0637091 + 0.997969i \(0.479707\pi\)
\(212\) 3.93900 0.270532
\(213\) 0 0
\(214\) − 13.1588i − 0.899519i
\(215\) 6.67994i 0.455568i
\(216\) 0 0
\(217\) 36.6437 2.48754
\(218\) 1.33513 0.0904261
\(219\) 0 0
\(220\) −1.82908 −0.123317
\(221\) 0 0
\(222\) 0 0
\(223\) − 18.6504i − 1.24892i −0.781056 0.624462i \(-0.785318\pi\)
0.781056 0.624462i \(-0.214682\pi\)
\(224\) 11.8455 0.791459
\(225\) 0 0
\(226\) 20.6136i 1.37119i
\(227\) 9.75733i 0.647617i 0.946123 + 0.323808i \(0.104963\pi\)
−0.946123 + 0.323808i \(0.895037\pi\)
\(228\) 0 0
\(229\) − 2.86294i − 0.189188i −0.995516 0.0945941i \(-0.969845\pi\)
0.995516 0.0945941i \(-0.0301553\pi\)
\(230\) −12.2838 −0.809971
\(231\) 0 0
\(232\) − 5.64310i − 0.370488i
\(233\) −5.78554 −0.379024 −0.189512 0.981878i \(-0.560691\pi\)
−0.189512 + 0.981878i \(0.560691\pi\)
\(234\) 0 0
\(235\) −35.9124 −2.34267
\(236\) − 0.968541i − 0.0630467i
\(237\) 0 0
\(238\) −14.6407 −0.949016
\(239\) 7.09246i 0.458773i 0.973335 + 0.229386i \(0.0736720\pi\)
−0.973335 + 0.229386i \(0.926328\pi\)
\(240\) 0 0
\(241\) 3.89977i 0.251206i 0.992081 + 0.125603i \(0.0400866\pi\)
−0.992081 + 0.125603i \(0.959913\pi\)
\(242\) 11.0339i 0.709283i
\(243\) 0 0
\(244\) −3.48427 −0.223058
\(245\) 44.9952i 2.87464i
\(246\) 0 0
\(247\) 0 0
\(248\) −23.2664 −1.47742
\(249\) 0 0
\(250\) 7.50902 0.474912
\(251\) −2.44504 −0.154330 −0.0771648 0.997018i \(-0.524587\pi\)
−0.0771648 + 0.997018i \(0.524587\pi\)
\(252\) 0 0
\(253\) 5.15691i 0.324212i
\(254\) 11.8931i 0.746237i
\(255\) 0 0
\(256\) −10.1129 −0.632056
\(257\) −14.1304 −0.881428 −0.440714 0.897648i \(-0.645275\pi\)
−0.440714 + 0.897648i \(0.645275\pi\)
\(258\) 0 0
\(259\) −21.8726 −1.35910
\(260\) 0 0
\(261\) 0 0
\(262\) 6.86964i 0.424408i
\(263\) 23.7235 1.46285 0.731426 0.681921i \(-0.238855\pi\)
0.731426 + 0.681921i \(0.238855\pi\)
\(264\) 0 0
\(265\) − 24.7995i − 1.52342i
\(266\) − 15.2265i − 0.933599i
\(267\) 0 0
\(268\) 1.59419i 0.0973805i
\(269\) 5.91617 0.360715 0.180357 0.983601i \(-0.442275\pi\)
0.180357 + 0.983601i \(0.442275\pi\)
\(270\) 0 0
\(271\) 3.19029i 0.193796i 0.995294 + 0.0968982i \(0.0308921\pi\)
−0.995294 + 0.0968982i \(0.969108\pi\)
\(272\) 7.11960 0.431689
\(273\) 0 0
\(274\) −20.1806 −1.21915
\(275\) 4.18167i 0.252164i
\(276\) 0 0
\(277\) −21.9366 −1.31804 −0.659022 0.752124i \(-0.729029\pi\)
−0.659022 + 0.752124i \(0.729029\pi\)
\(278\) − 13.1045i − 0.785958i
\(279\) 0 0
\(280\) − 41.0224i − 2.45155i
\(281\) 11.9903i 0.715282i 0.933859 + 0.357641i \(0.116419\pi\)
−0.933859 + 0.357641i \(0.883581\pi\)
\(282\) 0 0
\(283\) 14.3666 0.854005 0.427002 0.904250i \(-0.359570\pi\)
0.427002 + 0.904250i \(0.359570\pi\)
\(284\) − 3.93362i − 0.233418i
\(285\) 0 0
\(286\) 0 0
\(287\) 5.98792 0.353456
\(288\) 0 0
\(289\) −11.0218 −0.648339
\(290\) −6.46681 −0.379744
\(291\) 0 0
\(292\) − 3.42327i − 0.200332i
\(293\) 18.7584i 1.09588i 0.836519 + 0.547939i \(0.184587\pi\)
−0.836519 + 0.547939i \(0.815413\pi\)
\(294\) 0 0
\(295\) −6.09783 −0.355030
\(296\) 13.8877 0.807206
\(297\) 0 0
\(298\) −17.8944 −1.03659
\(299\) 0 0
\(300\) 0 0
\(301\) 11.4480i 0.659853i
\(302\) −2.45175 −0.141082
\(303\) 0 0
\(304\) 7.40449i 0.424676i
\(305\) 21.9366i 1.25609i
\(306\) 0 0
\(307\) − 25.6262i − 1.46257i −0.682074 0.731283i \(-0.738922\pi\)
0.682074 0.731283i \(-0.261078\pi\)
\(308\) −3.13467 −0.178614
\(309\) 0 0
\(310\) 26.6625i 1.51433i
\(311\) 11.3817 0.645394 0.322697 0.946502i \(-0.395410\pi\)
0.322697 + 0.946502i \(0.395410\pi\)
\(312\) 0 0
\(313\) 27.5743 1.55859 0.779297 0.626655i \(-0.215576\pi\)
0.779297 + 0.626655i \(0.215576\pi\)
\(314\) 13.3448i 0.753091i
\(315\) 0 0
\(316\) −1.78986 −0.100687
\(317\) 11.2597i 0.632405i 0.948692 + 0.316203i \(0.102408\pi\)
−0.948692 + 0.316203i \(0.897592\pi\)
\(318\) 0 0
\(319\) 2.71486i 0.152003i
\(320\) 24.9366i 1.39400i
\(321\) 0 0
\(322\) −21.0519 −1.17318
\(323\) 6.21744i 0.345948i
\(324\) 0 0
\(325\) 0 0
\(326\) −4.86294 −0.269333
\(327\) 0 0
\(328\) −3.80194 −0.209927
\(329\) −61.5465 −3.39317
\(330\) 0 0
\(331\) − 11.9065i − 0.654439i −0.944948 0.327220i \(-0.893888\pi\)
0.944948 0.327220i \(-0.106112\pi\)
\(332\) − 0.290520i − 0.0159444i
\(333\) 0 0
\(334\) 26.2107 1.43419
\(335\) 10.0368 0.548371
\(336\) 0 0
\(337\) −17.1672 −0.935157 −0.467578 0.883952i \(-0.654873\pi\)
−0.467578 + 0.883952i \(0.654873\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 3.04892i 0.165351i
\(341\) 11.1933 0.606150
\(342\) 0 0
\(343\) 43.4989i 2.34872i
\(344\) − 7.26875i − 0.391905i
\(345\) 0 0
\(346\) 16.5036i 0.887242i
\(347\) 24.2760 1.30321 0.651603 0.758560i \(-0.274097\pi\)
0.651603 + 0.758560i \(0.274097\pi\)
\(348\) 0 0
\(349\) 4.57242i 0.244756i 0.992484 + 0.122378i \(0.0390520\pi\)
−0.992484 + 0.122378i \(0.960948\pi\)
\(350\) −17.0707 −0.912467
\(351\) 0 0
\(352\) 3.61835 0.192859
\(353\) 6.07606i 0.323396i 0.986840 + 0.161698i \(0.0516971\pi\)
−0.986840 + 0.161698i \(0.948303\pi\)
\(354\) 0 0
\(355\) −24.7657 −1.31443
\(356\) − 2.80194i − 0.148502i
\(357\) 0 0
\(358\) 10.6340i 0.562025i
\(359\) − 14.9661i − 0.789883i −0.918706 0.394942i \(-0.870765\pi\)
0.918706 0.394942i \(-0.129235\pi\)
\(360\) 0 0
\(361\) 12.5338 0.659673
\(362\) 4.53452i 0.238329i
\(363\) 0 0
\(364\) 0 0
\(365\) −21.5526 −1.12811
\(366\) 0 0
\(367\) 37.0834 1.93574 0.967868 0.251459i \(-0.0809105\pi\)
0.967868 + 0.251459i \(0.0809105\pi\)
\(368\) 10.2373 0.533656
\(369\) 0 0
\(370\) − 15.9148i − 0.827373i
\(371\) − 42.5013i − 2.20656i
\(372\) 0 0
\(373\) −36.5090 −1.89037 −0.945183 0.326542i \(-0.894117\pi\)
−0.945183 + 0.326542i \(0.894117\pi\)
\(374\) −4.47219 −0.231251
\(375\) 0 0
\(376\) 39.0780 2.01529
\(377\) 0 0
\(378\) 0 0
\(379\) − 26.5851i − 1.36558i −0.730613 0.682792i \(-0.760765\pi\)
0.730613 0.682792i \(-0.239235\pi\)
\(380\) −3.17092 −0.162665
\(381\) 0 0
\(382\) − 26.6625i − 1.36417i
\(383\) 14.3502i 0.733261i 0.930367 + 0.366630i \(0.119489\pi\)
−0.930367 + 0.366630i \(0.880511\pi\)
\(384\) 0 0
\(385\) 19.7356i 1.00582i
\(386\) 10.5090 0.534895
\(387\) 0 0
\(388\) 4.46442i 0.226647i
\(389\) −22.6582 −1.14881 −0.574407 0.818570i \(-0.694767\pi\)
−0.574407 + 0.818570i \(0.694767\pi\)
\(390\) 0 0
\(391\) 8.59611 0.434724
\(392\) − 48.9614i − 2.47292i
\(393\) 0 0
\(394\) 33.0157 1.66330
\(395\) 11.2687i 0.566992i
\(396\) 0 0
\(397\) − 7.90754i − 0.396868i −0.980114 0.198434i \(-0.936414\pi\)
0.980114 0.198434i \(-0.0635856\pi\)
\(398\) 17.7724i 0.890850i
\(399\) 0 0
\(400\) 8.30127 0.415064
\(401\) 2.93661i 0.146647i 0.997308 + 0.0733236i \(0.0233606\pi\)
−0.997308 + 0.0733236i \(0.976639\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 6.18060 0.307497
\(405\) 0 0
\(406\) −11.0828 −0.550029
\(407\) −6.68127 −0.331178
\(408\) 0 0
\(409\) 11.7549i 0.581244i 0.956838 + 0.290622i \(0.0938623\pi\)
−0.956838 + 0.290622i \(0.906138\pi\)
\(410\) 4.35690i 0.215172i
\(411\) 0 0
\(412\) 7.74525 0.381581
\(413\) −10.4504 −0.514231
\(414\) 0 0
\(415\) −1.82908 −0.0897862
\(416\) 0 0
\(417\) 0 0
\(418\) − 4.65114i − 0.227495i
\(419\) −7.34183 −0.358672 −0.179336 0.983788i \(-0.557395\pi\)
−0.179336 + 0.983788i \(0.557395\pi\)
\(420\) 0 0
\(421\) 25.6963i 1.25236i 0.779677 + 0.626181i \(0.215383\pi\)
−0.779677 + 0.626181i \(0.784617\pi\)
\(422\) 2.30798i 0.112351i
\(423\) 0 0
\(424\) 26.9855i 1.31053i
\(425\) 6.97046 0.338117
\(426\) 0 0
\(427\) 37.5948i 1.81934i
\(428\) −4.69633 −0.227006
\(429\) 0 0
\(430\) −8.32975 −0.401696
\(431\) − 8.94198i − 0.430720i −0.976535 0.215360i \(-0.930907\pi\)
0.976535 0.215360i \(-0.0690925\pi\)
\(432\) 0 0
\(433\) −2.91484 −0.140078 −0.0700391 0.997544i \(-0.522312\pi\)
−0.0700391 + 0.997544i \(0.522312\pi\)
\(434\) 45.6939i 2.19338i
\(435\) 0 0
\(436\) − 0.476501i − 0.0228203i
\(437\) 8.94007i 0.427661i
\(438\) 0 0
\(439\) −9.05861 −0.432344 −0.216172 0.976355i \(-0.569357\pi\)
−0.216172 + 0.976355i \(0.569357\pi\)
\(440\) − 12.5308i − 0.597382i
\(441\) 0 0
\(442\) 0 0
\(443\) −11.2325 −0.533672 −0.266836 0.963742i \(-0.585978\pi\)
−0.266836 + 0.963742i \(0.585978\pi\)
\(444\) 0 0
\(445\) −17.6407 −0.836250
\(446\) 23.2567 1.10124
\(447\) 0 0
\(448\) 42.7362i 2.01909i
\(449\) 28.7579i 1.35717i 0.734522 + 0.678585i \(0.237407\pi\)
−0.734522 + 0.678585i \(0.762593\pi\)
\(450\) 0 0
\(451\) 1.82908 0.0861282
\(452\) 7.35690 0.346039
\(453\) 0 0
\(454\) −12.1672 −0.571035
\(455\) 0 0
\(456\) 0 0
\(457\) − 19.0761i − 0.892341i −0.894948 0.446170i \(-0.852788\pi\)
0.894948 0.446170i \(-0.147212\pi\)
\(458\) 3.57002 0.166816
\(459\) 0 0
\(460\) 4.38404i 0.204407i
\(461\) − 31.7332i − 1.47796i −0.673727 0.738981i \(-0.735308\pi\)
0.673727 0.738981i \(-0.264692\pi\)
\(462\) 0 0
\(463\) 36.4784i 1.69530i 0.530559 + 0.847648i \(0.321982\pi\)
−0.530559 + 0.847648i \(0.678018\pi\)
\(464\) 5.38942 0.250198
\(465\) 0 0
\(466\) − 7.21446i − 0.334203i
\(467\) 13.0000 0.601568 0.300784 0.953692i \(-0.402752\pi\)
0.300784 + 0.953692i \(0.402752\pi\)
\(468\) 0 0
\(469\) 17.2010 0.794271
\(470\) − 44.7821i − 2.06564i
\(471\) 0 0
\(472\) 6.63533 0.305416
\(473\) 3.49694i 0.160790i
\(474\) 0 0
\(475\) 7.24937i 0.332624i
\(476\) 5.22521i 0.239497i
\(477\) 0 0
\(478\) −8.84415 −0.404522
\(479\) 5.61655i 0.256627i 0.991734 + 0.128313i \(0.0409563\pi\)
−0.991734 + 0.128313i \(0.959044\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −4.86294 −0.221501
\(483\) 0 0
\(484\) 3.93794 0.178997
\(485\) 28.1075 1.27630
\(486\) 0 0
\(487\) − 9.75733i − 0.442147i −0.975257 0.221073i \(-0.929044\pi\)
0.975257 0.221073i \(-0.0709561\pi\)
\(488\) − 23.8702i − 1.08055i
\(489\) 0 0
\(490\) −56.1081 −2.53471
\(491\) −7.38835 −0.333432 −0.166716 0.986005i \(-0.553316\pi\)
−0.166716 + 0.986005i \(0.553316\pi\)
\(492\) 0 0
\(493\) 4.52542 0.203815
\(494\) 0 0
\(495\) 0 0
\(496\) − 22.2204i − 0.997726i
\(497\) −42.4432 −1.90384
\(498\) 0 0
\(499\) − 43.2814i − 1.93754i −0.247956 0.968771i \(-0.579759\pi\)
0.247956 0.968771i \(-0.420241\pi\)
\(500\) − 2.67994i − 0.119851i
\(501\) 0 0
\(502\) − 3.04892i − 0.136080i
\(503\) −10.7670 −0.480078 −0.240039 0.970763i \(-0.577160\pi\)
−0.240039 + 0.970763i \(0.577160\pi\)
\(504\) 0 0
\(505\) − 38.9124i − 1.73158i
\(506\) −6.43057 −0.285874
\(507\) 0 0
\(508\) 4.24459 0.188323
\(509\) 41.5448i 1.84144i 0.390223 + 0.920720i \(0.372398\pi\)
−0.390223 + 0.920720i \(0.627602\pi\)
\(510\) 0 0
\(511\) −36.9366 −1.63398
\(512\) − 24.9390i − 1.10216i
\(513\) 0 0
\(514\) − 17.6203i − 0.777197i
\(515\) − 48.7633i − 2.14877i
\(516\) 0 0
\(517\) −18.8001 −0.826829
\(518\) − 27.2747i − 1.19838i
\(519\) 0 0
\(520\) 0 0
\(521\) −25.7198 −1.12680 −0.563402 0.826183i \(-0.690508\pi\)
−0.563402 + 0.826183i \(0.690508\pi\)
\(522\) 0 0
\(523\) 8.59286 0.375739 0.187870 0.982194i \(-0.439842\pi\)
0.187870 + 0.982194i \(0.439842\pi\)
\(524\) 2.45175 0.107105
\(525\) 0 0
\(526\) 29.5827i 1.28987i
\(527\) − 18.6582i − 0.812763i
\(528\) 0 0
\(529\) −10.6396 −0.462593
\(530\) 30.9245 1.34328
\(531\) 0 0
\(532\) −5.43429 −0.235606
\(533\) 0 0
\(534\) 0 0
\(535\) 29.5676i 1.27832i
\(536\) −10.9215 −0.471739
\(537\) 0 0
\(538\) 7.37734i 0.318060i
\(539\) 23.5550i 1.01458i
\(540\) 0 0
\(541\) − 31.3534i − 1.34799i −0.738736 0.673995i \(-0.764577\pi\)
0.738736 0.673995i \(-0.235423\pi\)
\(542\) −3.97823 −0.170880
\(543\) 0 0
\(544\) − 6.03146i − 0.258597i
\(545\) −3.00000 −0.128506
\(546\) 0 0
\(547\) 19.9342 0.852325 0.426163 0.904647i \(-0.359865\pi\)
0.426163 + 0.904647i \(0.359865\pi\)
\(548\) 7.20237i 0.307670i
\(549\) 0 0
\(550\) −5.21446 −0.222345
\(551\) 4.70650i 0.200503i
\(552\) 0 0
\(553\) 19.3123i 0.821242i
\(554\) − 27.3545i − 1.16218i
\(555\) 0 0
\(556\) −4.67696 −0.198347
\(557\) 33.2349i 1.40821i 0.710097 + 0.704104i \(0.248651\pi\)
−0.710097 + 0.704104i \(0.751349\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 39.1782 1.65558
\(561\) 0 0
\(562\) −14.9517 −0.630698
\(563\) 3.87130 0.163156 0.0815779 0.996667i \(-0.474004\pi\)
0.0815779 + 0.996667i \(0.474004\pi\)
\(564\) 0 0
\(565\) − 46.3183i − 1.94862i
\(566\) 17.9148i 0.753017i
\(567\) 0 0
\(568\) 26.9487 1.13074
\(569\) 20.1457 0.844551 0.422276 0.906468i \(-0.361231\pi\)
0.422276 + 0.906468i \(0.361231\pi\)
\(570\) 0 0
\(571\) 32.1269 1.34447 0.672234 0.740338i \(-0.265335\pi\)
0.672234 + 0.740338i \(0.265335\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 7.46681i 0.311659i
\(575\) 10.0228 0.417981
\(576\) 0 0
\(577\) − 16.7506i − 0.697338i −0.937246 0.348669i \(-0.886634\pi\)
0.937246 0.348669i \(-0.113366\pi\)
\(578\) − 13.7439i − 0.571672i
\(579\) 0 0
\(580\) 2.30798i 0.0958336i
\(581\) −3.13467 −0.130048
\(582\) 0 0
\(583\) − 12.9825i − 0.537682i
\(584\) 23.4523 0.970465
\(585\) 0 0
\(586\) −23.3913 −0.966287
\(587\) 6.73795i 0.278105i 0.990285 + 0.139053i \(0.0444057\pi\)
−0.990285 + 0.139053i \(0.955594\pi\)
\(588\) 0 0
\(589\) 19.4047 0.799559
\(590\) − 7.60388i − 0.313047i
\(591\) 0 0
\(592\) 13.2634i 0.545121i
\(593\) 18.1172i 0.743985i 0.928236 + 0.371992i \(0.121325\pi\)
−0.928236 + 0.371992i \(0.878675\pi\)
\(594\) 0 0
\(595\) 32.8974 1.34866
\(596\) 6.38644i 0.261599i
\(597\) 0 0
\(598\) 0 0
\(599\) 26.7851 1.09441 0.547204 0.836999i \(-0.315692\pi\)
0.547204 + 0.836999i \(0.315692\pi\)
\(600\) 0 0
\(601\) −4.70171 −0.191787 −0.0958934 0.995392i \(-0.530571\pi\)
−0.0958934 + 0.995392i \(0.530571\pi\)
\(602\) −14.2755 −0.581824
\(603\) 0 0
\(604\) 0.875018i 0.0356040i
\(605\) − 24.7928i − 1.00797i
\(606\) 0 0
\(607\) 27.6396 1.12186 0.560929 0.827864i \(-0.310444\pi\)
0.560929 + 0.827864i \(0.310444\pi\)
\(608\) 6.27280 0.254396
\(609\) 0 0
\(610\) −27.3545 −1.10755
\(611\) 0 0
\(612\) 0 0
\(613\) 48.1782i 1.94590i 0.231017 + 0.972950i \(0.425795\pi\)
−0.231017 + 0.972950i \(0.574205\pi\)
\(614\) 31.9554 1.28961
\(615\) 0 0
\(616\) − 21.4752i − 0.865259i
\(617\) − 30.3043i − 1.22000i −0.792400 0.610002i \(-0.791169\pi\)
0.792400 0.610002i \(-0.208831\pi\)
\(618\) 0 0
\(619\) 10.9041i 0.438272i 0.975694 + 0.219136i \(0.0703239\pi\)
−0.975694 + 0.219136i \(0.929676\pi\)
\(620\) 9.51573 0.382161
\(621\) 0 0
\(622\) 14.1927i 0.569075i
\(623\) −30.2325 −1.21124
\(624\) 0 0
\(625\) −31.1269 −1.24508
\(626\) 34.3846i 1.37429i
\(627\) 0 0
\(628\) 4.76271 0.190053
\(629\) 11.1371i 0.444064i
\(630\) 0 0
\(631\) 10.4523i 0.416101i 0.978118 + 0.208050i \(0.0667118\pi\)
−0.978118 + 0.208050i \(0.933288\pi\)
\(632\) − 12.2620i − 0.487758i
\(633\) 0 0
\(634\) −14.0406 −0.557622
\(635\) − 26.7235i − 1.06049i
\(636\) 0 0
\(637\) 0 0
\(638\) −3.38537 −0.134028
\(639\) 0 0
\(640\) −17.2717 −0.682725
\(641\) −17.5942 −0.694929 −0.347464 0.937693i \(-0.612957\pi\)
−0.347464 + 0.937693i \(0.612957\pi\)
\(642\) 0 0
\(643\) 22.6058i 0.891486i 0.895161 + 0.445743i \(0.147060\pi\)
−0.895161 + 0.445743i \(0.852940\pi\)
\(644\) 7.51334i 0.296067i
\(645\) 0 0
\(646\) −7.75302 −0.305039
\(647\) −24.7918 −0.974665 −0.487333 0.873216i \(-0.662030\pi\)
−0.487333 + 0.873216i \(0.662030\pi\)
\(648\) 0 0
\(649\) −3.19221 −0.125305
\(650\) 0 0
\(651\) 0 0
\(652\) 1.73556i 0.0679699i
\(653\) 21.8106 0.853513 0.426757 0.904367i \(-0.359656\pi\)
0.426757 + 0.904367i \(0.359656\pi\)
\(654\) 0 0
\(655\) − 15.4359i − 0.603132i
\(656\) − 3.63102i − 0.141768i
\(657\) 0 0
\(658\) − 76.7472i − 2.99192i
\(659\) −16.5526 −0.644796 −0.322398 0.946604i \(-0.604489\pi\)
−0.322398 + 0.946604i \(0.604489\pi\)
\(660\) 0 0
\(661\) 15.9541i 0.620541i 0.950648 + 0.310271i \(0.100420\pi\)
−0.950648 + 0.310271i \(0.899580\pi\)
\(662\) 14.8471 0.577050
\(663\) 0 0
\(664\) 1.99031 0.0772391
\(665\) 34.2137i 1.32675i
\(666\) 0 0
\(667\) 6.50711 0.251956
\(668\) − 9.35450i − 0.361937i
\(669\) 0 0
\(670\) 12.5157i 0.483525i
\(671\) 11.4838i 0.443327i
\(672\) 0 0
\(673\) 7.38835 0.284800 0.142400 0.989809i \(-0.454518\pi\)
0.142400 + 0.989809i \(0.454518\pi\)
\(674\) − 21.4071i − 0.824572i
\(675\) 0 0
\(676\) 0 0
\(677\) 22.1454 0.851118 0.425559 0.904931i \(-0.360078\pi\)
0.425559 + 0.904931i \(0.360078\pi\)
\(678\) 0 0
\(679\) 48.1704 1.84861
\(680\) −20.8877 −0.801006
\(681\) 0 0
\(682\) 13.9578i 0.534471i
\(683\) 9.10023i 0.348211i 0.984727 + 0.174105i \(0.0557033\pi\)
−0.984727 + 0.174105i \(0.944297\pi\)
\(684\) 0 0
\(685\) 45.3454 1.73256
\(686\) −54.2422 −2.07098
\(687\) 0 0
\(688\) 6.94198 0.264661
\(689\) 0 0
\(690\) 0 0
\(691\) 13.7711i 0.523876i 0.965085 + 0.261938i \(0.0843616\pi\)
−0.965085 + 0.261938i \(0.915638\pi\)
\(692\) 5.89008 0.223907
\(693\) 0 0
\(694\) 30.2717i 1.14910i
\(695\) 29.4456i 1.11694i
\(696\) 0 0
\(697\) − 3.04892i − 0.115486i
\(698\) −5.70171 −0.215813
\(699\) 0 0
\(700\) 6.09246i 0.230273i
\(701\) 46.5090 1.75662 0.878311 0.478090i \(-0.158671\pi\)
0.878311 + 0.478090i \(0.158671\pi\)
\(702\) 0 0
\(703\) −11.5827 −0.436850
\(704\) 13.0543i 0.492002i
\(705\) 0 0
\(706\) −7.57673 −0.285154
\(707\) − 66.6878i − 2.50805i
\(708\) 0 0
\(709\) − 7.24565i − 0.272116i −0.990701 0.136058i \(-0.956557\pi\)
0.990701 0.136058i \(-0.0434434\pi\)
\(710\) − 30.8823i − 1.15899i
\(711\) 0 0
\(712\) 19.1957 0.719388
\(713\) − 26.8286i − 1.00474i
\(714\) 0 0
\(715\) 0 0
\(716\) 3.79523 0.141835
\(717\) 0 0
\(718\) 18.6625 0.696478
\(719\) 25.5147 0.951536 0.475768 0.879571i \(-0.342170\pi\)
0.475768 + 0.879571i \(0.342170\pi\)
\(720\) 0 0
\(721\) − 83.5701i − 3.11231i
\(722\) 15.6294i 0.581665i
\(723\) 0 0
\(724\) 1.61835 0.0601455
\(725\) 5.27652 0.195965
\(726\) 0 0
\(727\) 14.4873 0.537303 0.268651 0.963238i \(-0.413422\pi\)
0.268651 + 0.963238i \(0.413422\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) − 26.8756i − 0.994711i
\(731\) 5.82908 0.215596
\(732\) 0 0
\(733\) 37.5036i 1.38523i 0.721308 + 0.692614i \(0.243541\pi\)
−0.721308 + 0.692614i \(0.756459\pi\)
\(734\) 46.2422i 1.70683i
\(735\) 0 0
\(736\) − 8.67264i − 0.319678i
\(737\) 5.25428 0.193544
\(738\) 0 0
\(739\) − 43.1876i − 1.58868i −0.607472 0.794341i \(-0.707816\pi\)
0.607472 0.794341i \(-0.292184\pi\)
\(740\) −5.67994 −0.208799
\(741\) 0 0
\(742\) 52.9982 1.94563
\(743\) − 13.4765i − 0.494405i −0.968964 0.247202i \(-0.920489\pi\)
0.968964 0.247202i \(-0.0795113\pi\)
\(744\) 0 0
\(745\) 40.2083 1.47312
\(746\) − 45.5260i − 1.66683i
\(747\) 0 0
\(748\) 1.59611i 0.0583594i
\(749\) 50.6728i 1.85154i
\(750\) 0 0
\(751\) −35.5894 −1.29868 −0.649338 0.760500i \(-0.724954\pi\)
−0.649338 + 0.760500i \(0.724954\pi\)
\(752\) 37.3212i 1.36097i
\(753\) 0 0
\(754\) 0 0
\(755\) 5.50902 0.200494
\(756\) 0 0
\(757\) −12.2107 −0.443807 −0.221903 0.975069i \(-0.571227\pi\)
−0.221903 + 0.975069i \(0.571227\pi\)
\(758\) 33.1511 1.20410
\(759\) 0 0
\(760\) − 21.7235i − 0.787993i
\(761\) 30.9071i 1.12038i 0.828364 + 0.560190i \(0.189272\pi\)
−0.828364 + 0.560190i \(0.810728\pi\)
\(762\) 0 0
\(763\) −5.14138 −0.186130
\(764\) −9.51573 −0.344267
\(765\) 0 0
\(766\) −17.8944 −0.646551
\(767\) 0 0
\(768\) 0 0
\(769\) 11.9892i 0.432343i 0.976355 + 0.216172i \(0.0693571\pi\)
−0.976355 + 0.216172i \(0.930643\pi\)
\(770\) −24.6098 −0.886877
\(771\) 0 0
\(772\) − 3.75063i − 0.134988i
\(773\) − 43.9661i − 1.58135i −0.612235 0.790676i \(-0.709729\pi\)
0.612235 0.790676i \(-0.290271\pi\)
\(774\) 0 0
\(775\) − 21.7549i − 0.781460i
\(776\) −30.5851 −1.09794
\(777\) 0 0
\(778\) − 28.2543i − 1.01296i
\(779\) 3.17092 0.113610
\(780\) 0 0
\(781\) −12.9648 −0.463918
\(782\) 10.7192i 0.383317i
\(783\) 0 0
\(784\) 46.7603 1.67001
\(785\) − 29.9855i − 1.07023i
\(786\) 0 0
\(787\) − 30.3763i − 1.08280i −0.840766 0.541399i \(-0.817895\pi\)
0.840766 0.541399i \(-0.182105\pi\)
\(788\) − 11.7832i − 0.419757i
\(789\) 0 0
\(790\) −14.0519 −0.499944
\(791\) − 79.3798i − 2.82242i
\(792\) 0 0
\(793\) 0 0
\(794\) 9.86054 0.349938
\(795\) 0 0
\(796\) 6.34290 0.224818
\(797\) 52.5763 1.86235 0.931173 0.364577i \(-0.118786\pi\)
0.931173 + 0.364577i \(0.118786\pi\)
\(798\) 0 0
\(799\) 31.3381i 1.10866i
\(800\) − 7.03252i − 0.248637i
\(801\) 0 0
\(802\) −3.66189 −0.129306
\(803\) −11.2828 −0.398160
\(804\) 0 0
\(805\) 47.3032 1.66722
\(806\) 0 0
\(807\) 0 0
\(808\) 42.3424i 1.48960i
\(809\) −49.4215 −1.73757 −0.868783 0.495193i \(-0.835097\pi\)
−0.868783 + 0.495193i \(0.835097\pi\)
\(810\) 0 0
\(811\) − 1.36526i − 0.0479406i −0.999713 0.0239703i \(-0.992369\pi\)
0.999713 0.0239703i \(-0.00763072\pi\)
\(812\) 3.95539i 0.138807i
\(813\) 0 0
\(814\) − 8.33140i − 0.292016i
\(815\) 10.9269 0.382753
\(816\) 0 0
\(817\) 6.06233i 0.212094i
\(818\) −14.6582 −0.512511
\(819\) 0 0
\(820\) 1.55496 0.0543015
\(821\) − 0.665939i − 0.0232414i −0.999932 0.0116207i \(-0.996301\pi\)
0.999932 0.0116207i \(-0.00369907\pi\)
\(822\) 0 0
\(823\) 10.0592 0.350642 0.175321 0.984511i \(-0.443904\pi\)
0.175321 + 0.984511i \(0.443904\pi\)
\(824\) 53.0616i 1.84849i
\(825\) 0 0
\(826\) − 13.0315i − 0.453422i
\(827\) − 37.3038i − 1.29718i −0.761138 0.648590i \(-0.775359\pi\)
0.761138 0.648590i \(-0.224641\pi\)
\(828\) 0 0
\(829\) 42.6209 1.48028 0.740142 0.672451i \(-0.234758\pi\)
0.740142 + 0.672451i \(0.234758\pi\)
\(830\) − 2.28083i − 0.0791688i
\(831\) 0 0
\(832\) 0 0
\(833\) 39.2640 1.36042
\(834\) 0 0
\(835\) −58.8950 −2.03815
\(836\) −1.65997 −0.0574113
\(837\) 0 0
\(838\) − 9.15511i − 0.316258i
\(839\) 4.14005i 0.142930i 0.997443 + 0.0714652i \(0.0227675\pi\)
−0.997443 + 0.0714652i \(0.977233\pi\)
\(840\) 0 0
\(841\) −25.5743 −0.881874
\(842\) −32.0428 −1.10427
\(843\) 0 0
\(844\) 0.823708 0.0283532
\(845\) 0 0
\(846\) 0 0
\(847\) − 42.4898i − 1.45997i
\(848\) −25.7724 −0.885028
\(849\) 0 0
\(850\) 8.69202i 0.298134i
\(851\) 16.0140i 0.548953i
\(852\) 0 0
\(853\) − 17.3502i − 0.594059i −0.954868 0.297030i \(-0.904004\pi\)
0.954868 0.297030i \(-0.0959960\pi\)
\(854\) −46.8799 −1.60420
\(855\) 0 0
\(856\) − 32.1739i − 1.09968i
\(857\) 41.0180 1.40115 0.700575 0.713579i \(-0.252927\pi\)
0.700575 + 0.713579i \(0.252927\pi\)
\(858\) 0 0
\(859\) 6.59286 0.224945 0.112473 0.993655i \(-0.464123\pi\)
0.112473 + 0.993655i \(0.464123\pi\)
\(860\) 2.97285i 0.101373i
\(861\) 0 0
\(862\) 11.1505 0.379787
\(863\) 16.6455i 0.566619i 0.959028 + 0.283310i \(0.0914324\pi\)
−0.959028 + 0.283310i \(0.908568\pi\)
\(864\) 0 0
\(865\) − 37.0834i − 1.26087i
\(866\) − 3.63474i − 0.123514i
\(867\) 0 0
\(868\) 16.3080 0.553529
\(869\) 5.89918i 0.200116i
\(870\) 0 0
\(871\) 0 0
\(872\) 3.26444 0.110548
\(873\) 0 0
\(874\) −11.1481 −0.377089
\(875\) −28.9162 −0.977545
\(876\) 0 0
\(877\) 54.4965i 1.84022i 0.391666 + 0.920108i \(0.371899\pi\)
−0.391666 + 0.920108i \(0.628101\pi\)
\(878\) − 11.2959i − 0.381218i
\(879\) 0 0
\(880\) 11.9675 0.403424
\(881\) −9.00670 −0.303444 −0.151722 0.988423i \(-0.548482\pi\)
−0.151722 + 0.988423i \(0.548482\pi\)
\(882\) 0 0
\(883\) −18.8907 −0.635722 −0.317861 0.948137i \(-0.602965\pi\)
−0.317861 + 0.948137i \(0.602965\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) − 14.0067i − 0.470564i
\(887\) 46.9124 1.57517 0.787583 0.616209i \(-0.211332\pi\)
0.787583 + 0.616209i \(0.211332\pi\)
\(888\) 0 0
\(889\) − 45.7985i − 1.53603i
\(890\) − 21.9976i − 0.737361i
\(891\) 0 0
\(892\) − 8.30021i − 0.277912i
\(893\) −32.5921 −1.09065
\(894\) 0 0
\(895\) − 23.8944i − 0.798702i
\(896\) −29.6002 −0.988872
\(897\) 0 0
\(898\) −35.8605 −1.19668
\(899\) − 14.1239i − 0.471059i
\(900\) 0 0
\(901\) −21.6407 −0.720957
\(902\) 2.28083i 0.0759434i
\(903\) 0 0
\(904\) 50.4010i 1.67631i
\(905\) − 10.1890i − 0.338693i
\(906\) 0 0
\(907\) 35.3013 1.17216 0.586080 0.810253i \(-0.300671\pi\)
0.586080 + 0.810253i \(0.300671\pi\)
\(908\) 4.34242i 0.144108i
\(909\) 0 0
\(910\) 0 0
\(911\) 9.80731 0.324931 0.162465 0.986714i \(-0.448055\pi\)
0.162465 + 0.986714i \(0.448055\pi\)
\(912\) 0 0
\(913\) −0.957524 −0.0316894
\(914\) 23.7875 0.786819
\(915\) 0 0
\(916\) − 1.27413i − 0.0420983i
\(917\) − 26.4540i − 0.873588i
\(918\) 0 0
\(919\) 18.4655 0.609120 0.304560 0.952493i \(-0.401491\pi\)
0.304560 + 0.952493i \(0.401491\pi\)
\(920\) −30.0344 −0.990206
\(921\) 0 0
\(922\) 39.5706 1.30319
\(923\) 0 0
\(924\) 0 0
\(925\) 12.9855i 0.426961i
\(926\) −45.4878 −1.49482
\(927\) 0 0
\(928\) − 4.56571i − 0.149877i
\(929\) 25.6267i 0.840785i 0.907342 + 0.420393i \(0.138108\pi\)
−0.907342 + 0.420393i \(0.861892\pi\)
\(930\) 0 0
\(931\) 40.8351i 1.33831i
\(932\) −2.57481 −0.0843407
\(933\) 0 0
\(934\) 16.2107i 0.530431i
\(935\) 10.0489 0.328635
\(936\) 0 0
\(937\) 7.54932 0.246625 0.123313 0.992368i \(-0.460648\pi\)
0.123313 + 0.992368i \(0.460648\pi\)
\(938\) 21.4494i 0.700346i
\(939\) 0 0
\(940\) −15.9825 −0.521293
\(941\) 12.6418i 0.412110i 0.978540 + 0.206055i \(0.0660626\pi\)
−0.978540 + 0.206055i \(0.933937\pi\)
\(942\) 0 0
\(943\) − 4.38404i − 0.142764i
\(944\) 6.33704i 0.206253i
\(945\) 0 0
\(946\) −4.36062 −0.141776
\(947\) 27.9801i 0.909233i 0.890687 + 0.454616i \(0.150224\pi\)
−0.890687 + 0.454616i \(0.849776\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −9.03982 −0.293290
\(951\) 0 0
\(952\) −35.7972 −1.16019
\(953\) 4.00239 0.129650 0.0648251 0.997897i \(-0.479351\pi\)
0.0648251 + 0.997897i \(0.479351\pi\)
\(954\) 0 0
\(955\) 59.9101i 1.93864i
\(956\) 3.15644i 0.102087i
\(957\) 0 0
\(958\) −7.00372 −0.226280
\(959\) 77.7126 2.50947
\(960\) 0 0
\(961\) −27.2325 −0.878468
\(962\) 0 0
\(963\) 0 0
\(964\) 1.73556i 0.0558987i
\(965\) −23.6136 −0.760148
\(966\) 0 0
\(967\) 12.2239i 0.393094i 0.980494 + 0.196547i \(0.0629728\pi\)
−0.980494 + 0.196547i \(0.937027\pi\)
\(968\) 26.9782i 0.867113i
\(969\) 0 0
\(970\) 35.0495i 1.12537i
\(971\) 23.6401 0.758648 0.379324 0.925264i \(-0.376157\pi\)
0.379324 + 0.925264i \(0.376157\pi\)
\(972\) 0 0
\(973\) 50.4637i 1.61779i
\(974\) 12.1672 0.389862
\(975\) 0 0
\(976\) 22.7972 0.729719
\(977\) − 18.7313i − 0.599266i −0.954055 0.299633i \(-0.903136\pi\)
0.954055 0.299633i \(-0.0968642\pi\)
\(978\) 0 0
\(979\) −9.23490 −0.295149
\(980\) 20.0248i 0.639667i
\(981\) 0 0
\(982\) − 9.21313i − 0.294003i
\(983\) 12.0954i 0.385785i 0.981220 + 0.192892i \(0.0617868\pi\)
−0.981220 + 0.192892i \(0.938213\pi\)
\(984\) 0 0
\(985\) −74.1855 −2.36375
\(986\) 5.64310i 0.179713i
\(987\) 0 0
\(988\) 0 0
\(989\) 8.38165 0.266521
\(990\) 0 0
\(991\) −28.5526 −0.907002 −0.453501 0.891256i \(-0.649825\pi\)
−0.453501 + 0.891256i \(0.649825\pi\)
\(992\) −18.8243 −0.597672
\(993\) 0 0
\(994\) − 52.9259i − 1.67871i
\(995\) − 39.9342i − 1.26600i
\(996\) 0 0
\(997\) −23.9347 −0.758019 −0.379010 0.925393i \(-0.623735\pi\)
−0.379010 + 0.925393i \(0.623735\pi\)
\(998\) 53.9711 1.70842
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1521.2.b.m.1351.5 6
3.2 odd 2 507.2.b.g.337.2 6
13.5 odd 4 1521.2.a.p.1.3 3
13.8 odd 4 1521.2.a.q.1.1 3
13.12 even 2 inner 1521.2.b.m.1351.2 6
39.2 even 12 507.2.e.j.22.3 6
39.5 even 4 507.2.a.k.1.1 yes 3
39.8 even 4 507.2.a.j.1.3 3
39.11 even 12 507.2.e.k.22.1 6
39.17 odd 6 507.2.j.h.361.5 12
39.20 even 12 507.2.e.k.484.1 6
39.23 odd 6 507.2.j.h.316.2 12
39.29 odd 6 507.2.j.h.316.5 12
39.32 even 12 507.2.e.j.484.3 6
39.35 odd 6 507.2.j.h.361.2 12
39.38 odd 2 507.2.b.g.337.5 6
156.47 odd 4 8112.2.a.by.1.1 3
156.83 odd 4 8112.2.a.cf.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
507.2.a.j.1.3 3 39.8 even 4
507.2.a.k.1.1 yes 3 39.5 even 4
507.2.b.g.337.2 6 3.2 odd 2
507.2.b.g.337.5 6 39.38 odd 2
507.2.e.j.22.3 6 39.2 even 12
507.2.e.j.484.3 6 39.32 even 12
507.2.e.k.22.1 6 39.11 even 12
507.2.e.k.484.1 6 39.20 even 12
507.2.j.h.316.2 12 39.23 odd 6
507.2.j.h.316.5 12 39.29 odd 6
507.2.j.h.361.2 12 39.35 odd 6
507.2.j.h.361.5 12 39.17 odd 6
1521.2.a.p.1.3 3 13.5 odd 4
1521.2.a.q.1.1 3 13.8 odd 4
1521.2.b.m.1351.2 6 13.12 even 2 inner
1521.2.b.m.1351.5 6 1.1 even 1 trivial
8112.2.a.by.1.1 3 156.47 odd 4
8112.2.a.cf.1.3 3 156.83 odd 4