Properties

Label 1521.2.b.j.1351.3
Level $1521$
Weight $2$
Character 1521.1351
Analytic conductor $12.145$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1521.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.1452461474\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.3
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1521.1351
Dual form 1521.2.b.j.1351.2

$q$-expansion

\(f(q)\) \(=\) \(q+0.414214i q^{2} +1.82843 q^{4} -2.82843i q^{5} +2.82843i q^{7} +1.58579i q^{8} +O(q^{10})\) \(q+0.414214i q^{2} +1.82843 q^{4} -2.82843i q^{5} +2.82843i q^{7} +1.58579i q^{8} +1.17157 q^{10} +2.00000i q^{11} -1.17157 q^{14} +3.00000 q^{16} +7.65685 q^{17} +2.82843i q^{19} -5.17157i q^{20} -0.828427 q^{22} -4.00000 q^{23} -3.00000 q^{25} +5.17157i q^{28} -2.00000 q^{29} +1.17157i q^{31} +4.41421i q^{32} +3.17157i q^{34} +8.00000 q^{35} -7.65685i q^{37} -1.17157 q^{38} +4.48528 q^{40} +5.17157i q^{41} +1.65685 q^{43} +3.65685i q^{44} -1.65685i q^{46} +11.6569i q^{47} -1.00000 q^{49} -1.24264i q^{50} +2.00000 q^{53} +5.65685 q^{55} -4.48528 q^{56} -0.828427i q^{58} -7.65685i q^{59} +13.3137 q^{61} -0.485281 q^{62} +4.17157 q^{64} -6.82843i q^{67} +14.0000 q^{68} +3.31371i q^{70} +2.00000i q^{71} +0.343146i q^{73} +3.17157 q^{74} +5.17157i q^{76} -5.65685 q^{77} -11.3137 q^{79} -8.48528i q^{80} -2.14214 q^{82} +3.65685i q^{83} -21.6569i q^{85} +0.686292i q^{86} -3.17157 q^{88} -14.8284i q^{89} -7.31371 q^{92} -4.82843 q^{94} +8.00000 q^{95} -3.65685i q^{97} -0.414214i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{4} + O(q^{10}) \) \( 4q - 4q^{4} + 16q^{10} - 16q^{14} + 12q^{16} + 8q^{17} + 8q^{22} - 16q^{23} - 12q^{25} - 8q^{29} + 32q^{35} - 16q^{38} - 16q^{40} - 16q^{43} - 4q^{49} + 8q^{53} + 16q^{56} + 8q^{61} + 32q^{62} + 28q^{64} + 56q^{68} + 24q^{74} + 48q^{82} - 24q^{88} + 16q^{92} - 8q^{94} + 32q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1521\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.414214i 0.292893i 0.989219 + 0.146447i \(0.0467837\pi\)
−0.989219 + 0.146447i \(0.953216\pi\)
\(3\) 0 0
\(4\) 1.82843 0.914214
\(5\) − 2.82843i − 1.26491i −0.774597 0.632456i \(-0.782047\pi\)
0.774597 0.632456i \(-0.217953\pi\)
\(6\) 0 0
\(7\) 2.82843i 1.06904i 0.845154 + 0.534522i \(0.179509\pi\)
−0.845154 + 0.534522i \(0.820491\pi\)
\(8\) 1.58579i 0.560660i
\(9\) 0 0
\(10\) 1.17157 0.370484
\(11\) 2.00000i 0.603023i 0.953463 + 0.301511i \(0.0974911\pi\)
−0.953463 + 0.301511i \(0.902509\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) −1.17157 −0.313116
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) 7.65685 1.85706 0.928530 0.371257i \(-0.121073\pi\)
0.928530 + 0.371257i \(0.121073\pi\)
\(18\) 0 0
\(19\) 2.82843i 0.648886i 0.945905 + 0.324443i \(0.105177\pi\)
−0.945905 + 0.324443i \(0.894823\pi\)
\(20\) − 5.17157i − 1.15640i
\(21\) 0 0
\(22\) −0.828427 −0.176621
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −3.00000 −0.600000
\(26\) 0 0
\(27\) 0 0
\(28\) 5.17157i 0.977335i
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 1.17157i 0.210421i 0.994450 + 0.105210i \(0.0335516\pi\)
−0.994450 + 0.105210i \(0.966448\pi\)
\(32\) 4.41421i 0.780330i
\(33\) 0 0
\(34\) 3.17157i 0.543920i
\(35\) 8.00000 1.35225
\(36\) 0 0
\(37\) − 7.65685i − 1.25878i −0.777090 0.629390i \(-0.783305\pi\)
0.777090 0.629390i \(-0.216695\pi\)
\(38\) −1.17157 −0.190054
\(39\) 0 0
\(40\) 4.48528 0.709185
\(41\) 5.17157i 0.807664i 0.914833 + 0.403832i \(0.132322\pi\)
−0.914833 + 0.403832i \(0.867678\pi\)
\(42\) 0 0
\(43\) 1.65685 0.252668 0.126334 0.991988i \(-0.459679\pi\)
0.126334 + 0.991988i \(0.459679\pi\)
\(44\) 3.65685i 0.551292i
\(45\) 0 0
\(46\) − 1.65685i − 0.244290i
\(47\) 11.6569i 1.70033i 0.526519 + 0.850163i \(0.323497\pi\)
−0.526519 + 0.850163i \(0.676503\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) − 1.24264i − 0.175736i
\(51\) 0 0
\(52\) 0 0
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) 5.65685 0.762770
\(56\) −4.48528 −0.599371
\(57\) 0 0
\(58\) − 0.828427i − 0.108778i
\(59\) − 7.65685i − 0.996838i −0.866936 0.498419i \(-0.833914\pi\)
0.866936 0.498419i \(-0.166086\pi\)
\(60\) 0 0
\(61\) 13.3137 1.70465 0.852323 0.523016i \(-0.175193\pi\)
0.852323 + 0.523016i \(0.175193\pi\)
\(62\) −0.485281 −0.0616308
\(63\) 0 0
\(64\) 4.17157 0.521447
\(65\) 0 0
\(66\) 0 0
\(67\) − 6.82843i − 0.834225i −0.908855 0.417113i \(-0.863042\pi\)
0.908855 0.417113i \(-0.136958\pi\)
\(68\) 14.0000 1.69775
\(69\) 0 0
\(70\) 3.31371i 0.396064i
\(71\) 2.00000i 0.237356i 0.992933 + 0.118678i \(0.0378657\pi\)
−0.992933 + 0.118678i \(0.962134\pi\)
\(72\) 0 0
\(73\) 0.343146i 0.0401622i 0.999798 + 0.0200811i \(0.00639244\pi\)
−0.999798 + 0.0200811i \(0.993608\pi\)
\(74\) 3.17157 0.368688
\(75\) 0 0
\(76\) 5.17157i 0.593220i
\(77\) −5.65685 −0.644658
\(78\) 0 0
\(79\) −11.3137 −1.27289 −0.636446 0.771321i \(-0.719596\pi\)
−0.636446 + 0.771321i \(0.719596\pi\)
\(80\) − 8.48528i − 0.948683i
\(81\) 0 0
\(82\) −2.14214 −0.236559
\(83\) 3.65685i 0.401392i 0.979654 + 0.200696i \(0.0643203\pi\)
−0.979654 + 0.200696i \(0.935680\pi\)
\(84\) 0 0
\(85\) − 21.6569i − 2.34902i
\(86\) 0.686292i 0.0740047i
\(87\) 0 0
\(88\) −3.17157 −0.338091
\(89\) − 14.8284i − 1.57181i −0.618347 0.785905i \(-0.712197\pi\)
0.618347 0.785905i \(-0.287803\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −7.31371 −0.762507
\(93\) 0 0
\(94\) −4.82843 −0.498014
\(95\) 8.00000 0.820783
\(96\) 0 0
\(97\) − 3.65685i − 0.371297i −0.982616 0.185649i \(-0.940561\pi\)
0.982616 0.185649i \(-0.0594386\pi\)
\(98\) − 0.414214i − 0.0418419i
\(99\) 0 0
\(100\) −5.48528 −0.548528
\(101\) 7.65685 0.761885 0.380943 0.924599i \(-0.375599\pi\)
0.380943 + 0.924599i \(0.375599\pi\)
\(102\) 0 0
\(103\) −2.34315 −0.230877 −0.115439 0.993315i \(-0.536827\pi\)
−0.115439 + 0.993315i \(0.536827\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.828427i 0.0804640i
\(107\) 11.3137 1.09374 0.546869 0.837218i \(-0.315820\pi\)
0.546869 + 0.837218i \(0.315820\pi\)
\(108\) 0 0
\(109\) − 5.31371i − 0.508961i −0.967078 0.254480i \(-0.918096\pi\)
0.967078 0.254480i \(-0.0819045\pi\)
\(110\) 2.34315i 0.223410i
\(111\) 0 0
\(112\) 8.48528i 0.801784i
\(113\) 5.31371 0.499872 0.249936 0.968262i \(-0.419590\pi\)
0.249936 + 0.968262i \(0.419590\pi\)
\(114\) 0 0
\(115\) 11.3137i 1.05501i
\(116\) −3.65685 −0.339530
\(117\) 0 0
\(118\) 3.17157 0.291967
\(119\) 21.6569i 1.98528i
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 5.51472i 0.499279i
\(123\) 0 0
\(124\) 2.14214i 0.192369i
\(125\) − 5.65685i − 0.505964i
\(126\) 0 0
\(127\) −5.65685 −0.501965 −0.250982 0.967992i \(-0.580754\pi\)
−0.250982 + 0.967992i \(0.580754\pi\)
\(128\) 10.5563i 0.933058i
\(129\) 0 0
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) −8.00000 −0.693688
\(134\) 2.82843 0.244339
\(135\) 0 0
\(136\) 12.1421i 1.04118i
\(137\) 10.8284i 0.925135i 0.886584 + 0.462567i \(0.153072\pi\)
−0.886584 + 0.462567i \(0.846928\pi\)
\(138\) 0 0
\(139\) −7.31371 −0.620341 −0.310170 0.950681i \(-0.600386\pi\)
−0.310170 + 0.950681i \(0.600386\pi\)
\(140\) 14.6274 1.23624
\(141\) 0 0
\(142\) −0.828427 −0.0695201
\(143\) 0 0
\(144\) 0 0
\(145\) 5.65685i 0.469776i
\(146\) −0.142136 −0.0117632
\(147\) 0 0
\(148\) − 14.0000i − 1.15079i
\(149\) − 9.17157i − 0.751365i −0.926749 0.375682i \(-0.877408\pi\)
0.926749 0.375682i \(-0.122592\pi\)
\(150\) 0 0
\(151\) − 3.51472i − 0.286024i −0.989721 0.143012i \(-0.954321\pi\)
0.989721 0.143012i \(-0.0456787\pi\)
\(152\) −4.48528 −0.363804
\(153\) 0 0
\(154\) − 2.34315i − 0.188816i
\(155\) 3.31371 0.266163
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) − 4.68629i − 0.372821i
\(159\) 0 0
\(160\) 12.4853 0.987048
\(161\) − 11.3137i − 0.891645i
\(162\) 0 0
\(163\) 18.8284i 1.47476i 0.675480 + 0.737378i \(0.263936\pi\)
−0.675480 + 0.737378i \(0.736064\pi\)
\(164\) 9.45584i 0.738377i
\(165\) 0 0
\(166\) −1.51472 −0.117565
\(167\) 3.65685i 0.282976i 0.989940 + 0.141488i \(0.0451886\pi\)
−0.989940 + 0.141488i \(0.954811\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 8.97056 0.688011
\(171\) 0 0
\(172\) 3.02944 0.230992
\(173\) −11.6569 −0.886254 −0.443127 0.896459i \(-0.646131\pi\)
−0.443127 + 0.896459i \(0.646131\pi\)
\(174\) 0 0
\(175\) − 8.48528i − 0.641427i
\(176\) 6.00000i 0.452267i
\(177\) 0 0
\(178\) 6.14214 0.460373
\(179\) −23.3137 −1.74255 −0.871274 0.490797i \(-0.836706\pi\)
−0.871274 + 0.490797i \(0.836706\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) − 6.34315i − 0.467623i
\(185\) −21.6569 −1.59224
\(186\) 0 0
\(187\) 15.3137i 1.11985i
\(188\) 21.3137i 1.55446i
\(189\) 0 0
\(190\) 3.31371i 0.240402i
\(191\) −3.31371 −0.239772 −0.119886 0.992788i \(-0.538253\pi\)
−0.119886 + 0.992788i \(0.538253\pi\)
\(192\) 0 0
\(193\) 5.31371i 0.382489i 0.981542 + 0.191245i \(0.0612524\pi\)
−0.981542 + 0.191245i \(0.938748\pi\)
\(194\) 1.51472 0.108750
\(195\) 0 0
\(196\) −1.82843 −0.130602
\(197\) 0.485281i 0.0345749i 0.999851 + 0.0172874i \(0.00550304\pi\)
−0.999851 + 0.0172874i \(0.994497\pi\)
\(198\) 0 0
\(199\) −21.6569 −1.53521 −0.767607 0.640921i \(-0.778553\pi\)
−0.767607 + 0.640921i \(0.778553\pi\)
\(200\) − 4.75736i − 0.336396i
\(201\) 0 0
\(202\) 3.17157i 0.223151i
\(203\) − 5.65685i − 0.397033i
\(204\) 0 0
\(205\) 14.6274 1.02162
\(206\) − 0.970563i − 0.0676223i
\(207\) 0 0
\(208\) 0 0
\(209\) −5.65685 −0.391293
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 3.65685 0.251154
\(213\) 0 0
\(214\) 4.68629i 0.320348i
\(215\) − 4.68629i − 0.319602i
\(216\) 0 0
\(217\) −3.31371 −0.224949
\(218\) 2.20101 0.149071
\(219\) 0 0
\(220\) 10.3431 0.697335
\(221\) 0 0
\(222\) 0 0
\(223\) 12.4853i 0.836076i 0.908429 + 0.418038i \(0.137282\pi\)
−0.908429 + 0.418038i \(0.862718\pi\)
\(224\) −12.4853 −0.834208
\(225\) 0 0
\(226\) 2.20101i 0.146409i
\(227\) − 17.3137i − 1.14915i −0.818452 0.574576i \(-0.805167\pi\)
0.818452 0.574576i \(-0.194833\pi\)
\(228\) 0 0
\(229\) − 1.31371i − 0.0868123i −0.999058 0.0434062i \(-0.986179\pi\)
0.999058 0.0434062i \(-0.0138209\pi\)
\(230\) −4.68629 −0.309005
\(231\) 0 0
\(232\) − 3.17157i − 0.208224i
\(233\) 6.97056 0.456657 0.228328 0.973584i \(-0.426674\pi\)
0.228328 + 0.973584i \(0.426674\pi\)
\(234\) 0 0
\(235\) 32.9706 2.15076
\(236\) − 14.0000i − 0.911322i
\(237\) 0 0
\(238\) −8.97056 −0.581475
\(239\) 2.00000i 0.129369i 0.997906 + 0.0646846i \(0.0206041\pi\)
−0.997906 + 0.0646846i \(0.979396\pi\)
\(240\) 0 0
\(241\) 0.343146i 0.0221040i 0.999939 + 0.0110520i \(0.00351803\pi\)
−0.999939 + 0.0110520i \(0.996482\pi\)
\(242\) 2.89949i 0.186387i
\(243\) 0 0
\(244\) 24.3431 1.55841
\(245\) 2.82843i 0.180702i
\(246\) 0 0
\(247\) 0 0
\(248\) −1.85786 −0.117975
\(249\) 0 0
\(250\) 2.34315 0.148194
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) − 8.00000i − 0.502956i
\(254\) − 2.34315i − 0.147022i
\(255\) 0 0
\(256\) 3.97056 0.248160
\(257\) −4.34315 −0.270918 −0.135459 0.990783i \(-0.543251\pi\)
−0.135459 + 0.990783i \(0.543251\pi\)
\(258\) 0 0
\(259\) 21.6569 1.34569
\(260\) 0 0
\(261\) 0 0
\(262\) 3.31371i 0.204722i
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) − 5.65685i − 0.347498i
\(266\) − 3.31371i − 0.203177i
\(267\) 0 0
\(268\) − 12.4853i − 0.762660i
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) − 27.7990i − 1.68867i −0.535817 0.844334i \(-0.679996\pi\)
0.535817 0.844334i \(-0.320004\pi\)
\(272\) 22.9706 1.39279
\(273\) 0 0
\(274\) −4.48528 −0.270966
\(275\) − 6.00000i − 0.361814i
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) − 3.02944i − 0.181694i
\(279\) 0 0
\(280\) 12.6863i 0.758151i
\(281\) − 21.1716i − 1.26299i −0.775380 0.631495i \(-0.782442\pi\)
0.775380 0.631495i \(-0.217558\pi\)
\(282\) 0 0
\(283\) −28.9706 −1.72212 −0.861061 0.508502i \(-0.830199\pi\)
−0.861061 + 0.508502i \(0.830199\pi\)
\(284\) 3.65685i 0.216994i
\(285\) 0 0
\(286\) 0 0
\(287\) −14.6274 −0.863429
\(288\) 0 0
\(289\) 41.6274 2.44867
\(290\) −2.34315 −0.137594
\(291\) 0 0
\(292\) 0.627417i 0.0367168i
\(293\) − 2.14214i − 0.125145i −0.998040 0.0625724i \(-0.980070\pi\)
0.998040 0.0625724i \(-0.0199304\pi\)
\(294\) 0 0
\(295\) −21.6569 −1.26091
\(296\) 12.1421 0.705747
\(297\) 0 0
\(298\) 3.79899 0.220070
\(299\) 0 0
\(300\) 0 0
\(301\) 4.68629i 0.270113i
\(302\) 1.45584 0.0837744
\(303\) 0 0
\(304\) 8.48528i 0.486664i
\(305\) − 37.6569i − 2.15623i
\(306\) 0 0
\(307\) − 22.8284i − 1.30289i −0.758697 0.651444i \(-0.774164\pi\)
0.758697 0.651444i \(-0.225836\pi\)
\(308\) −10.3431 −0.589355
\(309\) 0 0
\(310\) 1.37258i 0.0779575i
\(311\) −10.6274 −0.602626 −0.301313 0.953525i \(-0.597425\pi\)
−0.301313 + 0.953525i \(0.597425\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) − 4.14214i − 0.233754i
\(315\) 0 0
\(316\) −20.6863 −1.16369
\(317\) 8.48528i 0.476581i 0.971194 + 0.238290i \(0.0765870\pi\)
−0.971194 + 0.238290i \(0.923413\pi\)
\(318\) 0 0
\(319\) − 4.00000i − 0.223957i
\(320\) − 11.7990i − 0.659584i
\(321\) 0 0
\(322\) 4.68629 0.261157
\(323\) 21.6569i 1.20502i
\(324\) 0 0
\(325\) 0 0
\(326\) −7.79899 −0.431946
\(327\) 0 0
\(328\) −8.20101 −0.452825
\(329\) −32.9706 −1.81773
\(330\) 0 0
\(331\) − 26.1421i − 1.43690i −0.695578 0.718451i \(-0.744852\pi\)
0.695578 0.718451i \(-0.255148\pi\)
\(332\) 6.68629i 0.366958i
\(333\) 0 0
\(334\) −1.51472 −0.0828817
\(335\) −19.3137 −1.05522
\(336\) 0 0
\(337\) −9.31371 −0.507350 −0.253675 0.967290i \(-0.581639\pi\)
−0.253675 + 0.967290i \(0.581639\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) − 39.5980i − 2.14750i
\(341\) −2.34315 −0.126888
\(342\) 0 0
\(343\) 16.9706i 0.916324i
\(344\) 2.62742i 0.141661i
\(345\) 0 0
\(346\) − 4.82843i − 0.259578i
\(347\) 8.68629 0.466305 0.233152 0.972440i \(-0.425096\pi\)
0.233152 + 0.972440i \(0.425096\pi\)
\(348\) 0 0
\(349\) 3.65685i 0.195747i 0.995199 + 0.0978735i \(0.0312040\pi\)
−0.995199 + 0.0978735i \(0.968796\pi\)
\(350\) 3.51472 0.187870
\(351\) 0 0
\(352\) −8.82843 −0.470557
\(353\) − 33.4558i − 1.78067i −0.455301 0.890337i \(-0.650468\pi\)
0.455301 0.890337i \(-0.349532\pi\)
\(354\) 0 0
\(355\) 5.65685 0.300235
\(356\) − 27.1127i − 1.43697i
\(357\) 0 0
\(358\) − 9.65685i − 0.510381i
\(359\) − 34.9706i − 1.84568i −0.385189 0.922838i \(-0.625864\pi\)
0.385189 0.922838i \(-0.374136\pi\)
\(360\) 0 0
\(361\) 11.0000 0.578947
\(362\) − 5.79899i − 0.304788i
\(363\) 0 0
\(364\) 0 0
\(365\) 0.970563 0.0508016
\(366\) 0 0
\(367\) −24.0000 −1.25279 −0.626395 0.779506i \(-0.715470\pi\)
−0.626395 + 0.779506i \(0.715470\pi\)
\(368\) −12.0000 −0.625543
\(369\) 0 0
\(370\) − 8.97056i − 0.466357i
\(371\) 5.65685i 0.293689i
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) −6.34315 −0.327996
\(375\) 0 0
\(376\) −18.4853 −0.953306
\(377\) 0 0
\(378\) 0 0
\(379\) − 0.485281i − 0.0249272i −0.999922 0.0124636i \(-0.996033\pi\)
0.999922 0.0124636i \(-0.00396739\pi\)
\(380\) 14.6274 0.750371
\(381\) 0 0
\(382\) − 1.37258i − 0.0702275i
\(383\) 30.9706i 1.58252i 0.611479 + 0.791261i \(0.290575\pi\)
−0.611479 + 0.791261i \(0.709425\pi\)
\(384\) 0 0
\(385\) 16.0000i 0.815436i
\(386\) −2.20101 −0.112028
\(387\) 0 0
\(388\) − 6.68629i − 0.339445i
\(389\) −26.9706 −1.36746 −0.683731 0.729734i \(-0.739644\pi\)
−0.683731 + 0.729734i \(0.739644\pi\)
\(390\) 0 0
\(391\) −30.6274 −1.54890
\(392\) − 1.58579i − 0.0800943i
\(393\) 0 0
\(394\) −0.201010 −0.0101267
\(395\) 32.0000i 1.61009i
\(396\) 0 0
\(397\) 30.9706i 1.55437i 0.629273 + 0.777184i \(0.283353\pi\)
−0.629273 + 0.777184i \(0.716647\pi\)
\(398\) − 8.97056i − 0.449654i
\(399\) 0 0
\(400\) −9.00000 −0.450000
\(401\) − 26.1421i − 1.30548i −0.757584 0.652738i \(-0.773620\pi\)
0.757584 0.652738i \(-0.226380\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 14.0000 0.696526
\(405\) 0 0
\(406\) 2.34315 0.116288
\(407\) 15.3137 0.759072
\(408\) 0 0
\(409\) 34.9706i 1.72918i 0.502475 + 0.864592i \(0.332423\pi\)
−0.502475 + 0.864592i \(0.667577\pi\)
\(410\) 6.05887i 0.299226i
\(411\) 0 0
\(412\) −4.28427 −0.211071
\(413\) 21.6569 1.06566
\(414\) 0 0
\(415\) 10.3431 0.507725
\(416\) 0 0
\(417\) 0 0
\(418\) − 2.34315i − 0.114607i
\(419\) −14.6274 −0.714596 −0.357298 0.933990i \(-0.616302\pi\)
−0.357298 + 0.933990i \(0.616302\pi\)
\(420\) 0 0
\(421\) − 37.3137i − 1.81856i −0.416186 0.909279i \(-0.636634\pi\)
0.416186 0.909279i \(-0.363366\pi\)
\(422\) − 4.97056i − 0.241963i
\(423\) 0 0
\(424\) 3.17157i 0.154025i
\(425\) −22.9706 −1.11424
\(426\) 0 0
\(427\) 37.6569i 1.82234i
\(428\) 20.6863 0.999910
\(429\) 0 0
\(430\) 1.94113 0.0936094
\(431\) 8.34315i 0.401875i 0.979604 + 0.200938i \(0.0643988\pi\)
−0.979604 + 0.200938i \(0.935601\pi\)
\(432\) 0 0
\(433\) 21.3137 1.02427 0.512136 0.858905i \(-0.328854\pi\)
0.512136 + 0.858905i \(0.328854\pi\)
\(434\) − 1.37258i − 0.0658861i
\(435\) 0 0
\(436\) − 9.71573i − 0.465299i
\(437\) − 11.3137i − 0.541208i
\(438\) 0 0
\(439\) −16.9706 −0.809961 −0.404980 0.914325i \(-0.632722\pi\)
−0.404980 + 0.914325i \(0.632722\pi\)
\(440\) 8.97056i 0.427655i
\(441\) 0 0
\(442\) 0 0
\(443\) 25.9411 1.23250 0.616250 0.787551i \(-0.288651\pi\)
0.616250 + 0.787551i \(0.288651\pi\)
\(444\) 0 0
\(445\) −41.9411 −1.98820
\(446\) −5.17157 −0.244881
\(447\) 0 0
\(448\) 11.7990i 0.557450i
\(449\) 31.7990i 1.50069i 0.661048 + 0.750344i \(0.270112\pi\)
−0.661048 + 0.750344i \(0.729888\pi\)
\(450\) 0 0
\(451\) −10.3431 −0.487040
\(452\) 9.71573 0.456989
\(453\) 0 0
\(454\) 7.17157 0.336579
\(455\) 0 0
\(456\) 0 0
\(457\) 7.65685i 0.358173i 0.983833 + 0.179086i \(0.0573141\pi\)
−0.983833 + 0.179086i \(0.942686\pi\)
\(458\) 0.544156 0.0254267
\(459\) 0 0
\(460\) 20.6863i 0.964503i
\(461\) 5.17157i 0.240864i 0.992722 + 0.120432i \(0.0384280\pi\)
−0.992722 + 0.120432i \(0.961572\pi\)
\(462\) 0 0
\(463\) − 24.4853i − 1.13793i −0.822363 0.568964i \(-0.807344\pi\)
0.822363 0.568964i \(-0.192656\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) 2.88730i 0.133752i
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 0 0
\(469\) 19.3137 0.891824
\(470\) 13.6569i 0.629944i
\(471\) 0 0
\(472\) 12.1421 0.558887
\(473\) 3.31371i 0.152364i
\(474\) 0 0
\(475\) − 8.48528i − 0.389331i
\(476\) 39.5980i 1.81497i
\(477\) 0 0
\(478\) −0.828427 −0.0378914
\(479\) − 25.3137i − 1.15661i −0.815820 0.578306i \(-0.803714\pi\)
0.815820 0.578306i \(-0.196286\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.142136 −0.00647410
\(483\) 0 0
\(484\) 12.7990 0.581772
\(485\) −10.3431 −0.469658
\(486\) 0 0
\(487\) 7.79899i 0.353406i 0.984264 + 0.176703i \(0.0565432\pi\)
−0.984264 + 0.176703i \(0.943457\pi\)
\(488\) 21.1127i 0.955727i
\(489\) 0 0
\(490\) −1.17157 −0.0529263
\(491\) 30.6274 1.38220 0.691098 0.722761i \(-0.257127\pi\)
0.691098 + 0.722761i \(0.257127\pi\)
\(492\) 0 0
\(493\) −15.3137 −0.689695
\(494\) 0 0
\(495\) 0 0
\(496\) 3.51472i 0.157816i
\(497\) −5.65685 −0.253745
\(498\) 0 0
\(499\) − 26.1421i − 1.17028i −0.810931 0.585141i \(-0.801039\pi\)
0.810931 0.585141i \(-0.198961\pi\)
\(500\) − 10.3431i − 0.462560i
\(501\) 0 0
\(502\) 0 0
\(503\) 7.31371 0.326102 0.163051 0.986618i \(-0.447866\pi\)
0.163051 + 0.986618i \(0.447866\pi\)
\(504\) 0 0
\(505\) − 21.6569i − 0.963717i
\(506\) 3.31371 0.147312
\(507\) 0 0
\(508\) −10.3431 −0.458903
\(509\) 11.7990i 0.522981i 0.965206 + 0.261491i \(0.0842140\pi\)
−0.965206 + 0.261491i \(0.915786\pi\)
\(510\) 0 0
\(511\) −0.970563 −0.0429352
\(512\) 22.7574i 1.00574i
\(513\) 0 0
\(514\) − 1.79899i − 0.0793500i
\(515\) 6.62742i 0.292039i
\(516\) 0 0
\(517\) −23.3137 −1.02534
\(518\) 8.97056i 0.394144i
\(519\) 0 0
\(520\) 0 0
\(521\) −25.3137 −1.10901 −0.554507 0.832179i \(-0.687093\pi\)
−0.554507 + 0.832179i \(0.687093\pi\)
\(522\) 0 0
\(523\) −15.3137 −0.669622 −0.334811 0.942285i \(-0.608672\pi\)
−0.334811 + 0.942285i \(0.608672\pi\)
\(524\) 14.6274 0.639002
\(525\) 0 0
\(526\) − 4.97056i − 0.216727i
\(527\) 8.97056i 0.390764i
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 2.34315 0.101780
\(531\) 0 0
\(532\) −14.6274 −0.634179
\(533\) 0 0
\(534\) 0 0
\(535\) − 32.0000i − 1.38348i
\(536\) 10.8284 0.467717
\(537\) 0 0
\(538\) − 7.45584i − 0.321444i
\(539\) − 2.00000i − 0.0861461i
\(540\) 0 0
\(541\) 10.0000i 0.429934i 0.976621 + 0.214967i \(0.0689643\pi\)
−0.976621 + 0.214967i \(0.931036\pi\)
\(542\) 11.5147 0.494600
\(543\) 0 0
\(544\) 33.7990i 1.44912i
\(545\) −15.0294 −0.643790
\(546\) 0 0
\(547\) 23.3137 0.996822 0.498411 0.866941i \(-0.333917\pi\)
0.498411 + 0.866941i \(0.333917\pi\)
\(548\) 19.7990i 0.845771i
\(549\) 0 0
\(550\) 2.48528 0.105973
\(551\) − 5.65685i − 0.240990i
\(552\) 0 0
\(553\) − 32.0000i − 1.36078i
\(554\) 0.828427i 0.0351965i
\(555\) 0 0
\(556\) −13.3726 −0.567124
\(557\) 7.79899i 0.330454i 0.986256 + 0.165227i \(0.0528356\pi\)
−0.986256 + 0.165227i \(0.947164\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 24.0000 1.01419
\(561\) 0 0
\(562\) 8.76955 0.369921
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 0 0
\(565\) − 15.0294i − 0.632293i
\(566\) − 12.0000i − 0.504398i
\(567\) 0 0
\(568\) −3.17157 −0.133076
\(569\) −42.9706 −1.80142 −0.900710 0.434421i \(-0.856953\pi\)
−0.900710 + 0.434421i \(0.856953\pi\)
\(570\) 0 0
\(571\) 12.9706 0.542801 0.271401 0.962466i \(-0.412513\pi\)
0.271401 + 0.962466i \(0.412513\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) − 6.05887i − 0.252893i
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) 31.9411i 1.32973i 0.746965 + 0.664863i \(0.231510\pi\)
−0.746965 + 0.664863i \(0.768490\pi\)
\(578\) 17.2426i 0.717199i
\(579\) 0 0
\(580\) 10.3431i 0.429476i
\(581\) −10.3431 −0.429106
\(582\) 0 0
\(583\) 4.00000i 0.165663i
\(584\) −0.544156 −0.0225173
\(585\) 0 0
\(586\) 0.887302 0.0366541
\(587\) − 10.9706i − 0.452804i −0.974034 0.226402i \(-0.927304\pi\)
0.974034 0.226402i \(-0.0726962\pi\)
\(588\) 0 0
\(589\) −3.31371 −0.136539
\(590\) − 8.97056i − 0.369312i
\(591\) 0 0
\(592\) − 22.9706i − 0.944084i
\(593\) 20.4853i 0.841230i 0.907239 + 0.420615i \(0.138186\pi\)
−0.907239 + 0.420615i \(0.861814\pi\)
\(594\) 0 0
\(595\) 61.2548 2.51120
\(596\) − 16.7696i − 0.686908i
\(597\) 0 0
\(598\) 0 0
\(599\) 23.3137 0.952572 0.476286 0.879290i \(-0.341983\pi\)
0.476286 + 0.879290i \(0.341983\pi\)
\(600\) 0 0
\(601\) −0.627417 −0.0255929 −0.0127964 0.999918i \(-0.504073\pi\)
−0.0127964 + 0.999918i \(0.504073\pi\)
\(602\) −1.94113 −0.0791144
\(603\) 0 0
\(604\) − 6.42641i − 0.261487i
\(605\) − 19.7990i − 0.804943i
\(606\) 0 0
\(607\) 41.9411 1.70234 0.851169 0.524892i \(-0.175894\pi\)
0.851169 + 0.524892i \(0.175894\pi\)
\(608\) −12.4853 −0.506345
\(609\) 0 0
\(610\) 15.5980 0.631544
\(611\) 0 0
\(612\) 0 0
\(613\) 47.6569i 1.92484i 0.271561 + 0.962421i \(0.412460\pi\)
−0.271561 + 0.962421i \(0.587540\pi\)
\(614\) 9.45584 0.381607
\(615\) 0 0
\(616\) − 8.97056i − 0.361434i
\(617\) − 34.8284i − 1.40214i −0.713093 0.701070i \(-0.752706\pi\)
0.713093 0.701070i \(-0.247294\pi\)
\(618\) 0 0
\(619\) 23.7990i 0.956562i 0.878207 + 0.478281i \(0.158740\pi\)
−0.878207 + 0.478281i \(0.841260\pi\)
\(620\) 6.05887 0.243330
\(621\) 0 0
\(622\) − 4.40202i − 0.176505i
\(623\) 41.9411 1.68034
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 2.48528i 0.0993318i
\(627\) 0 0
\(628\) −18.2843 −0.729622
\(629\) − 58.6274i − 2.33763i
\(630\) 0 0
\(631\) 43.1127i 1.71629i 0.513408 + 0.858145i \(0.328383\pi\)
−0.513408 + 0.858145i \(0.671617\pi\)
\(632\) − 17.9411i − 0.713660i
\(633\) 0 0
\(634\) −3.51472 −0.139587
\(635\) 16.0000i 0.634941i
\(636\) 0 0
\(637\) 0 0
\(638\) 1.65685 0.0655955
\(639\) 0 0
\(640\) 29.8579 1.18024
\(641\) 30.2843 1.19616 0.598078 0.801438i \(-0.295931\pi\)
0.598078 + 0.801438i \(0.295931\pi\)
\(642\) 0 0
\(643\) − 22.8284i − 0.900265i −0.892962 0.450133i \(-0.851377\pi\)
0.892962 0.450133i \(-0.148623\pi\)
\(644\) − 20.6863i − 0.815154i
\(645\) 0 0
\(646\) −8.97056 −0.352942
\(647\) 11.3137 0.444788 0.222394 0.974957i \(-0.428613\pi\)
0.222394 + 0.974957i \(0.428613\pi\)
\(648\) 0 0
\(649\) 15.3137 0.601116
\(650\) 0 0
\(651\) 0 0
\(652\) 34.4264i 1.34824i
\(653\) 25.3137 0.990602 0.495301 0.868721i \(-0.335058\pi\)
0.495301 + 0.868721i \(0.335058\pi\)
\(654\) 0 0
\(655\) − 22.6274i − 0.884126i
\(656\) 15.5147i 0.605748i
\(657\) 0 0
\(658\) − 13.6569i − 0.532400i
\(659\) 47.3137 1.84308 0.921540 0.388283i \(-0.126932\pi\)
0.921540 + 0.388283i \(0.126932\pi\)
\(660\) 0 0
\(661\) − 34.9706i − 1.36020i −0.733121 0.680099i \(-0.761937\pi\)
0.733121 0.680099i \(-0.238063\pi\)
\(662\) 10.8284 0.420859
\(663\) 0 0
\(664\) −5.79899 −0.225044
\(665\) 22.6274i 0.877454i
\(666\) 0 0
\(667\) 8.00000 0.309761
\(668\) 6.68629i 0.258700i
\(669\) 0 0
\(670\) − 8.00000i − 0.309067i
\(671\) 26.6274i 1.02794i
\(672\) 0 0
\(673\) −16.6274 −0.640940 −0.320470 0.947259i \(-0.603841\pi\)
−0.320470 + 0.947259i \(0.603841\pi\)
\(674\) − 3.85786i − 0.148599i
\(675\) 0 0
\(676\) 0 0
\(677\) −26.6863 −1.02564 −0.512819 0.858497i \(-0.671399\pi\)
−0.512819 + 0.858497i \(0.671399\pi\)
\(678\) 0 0
\(679\) 10.3431 0.396934
\(680\) 34.3431 1.31700
\(681\) 0 0
\(682\) − 0.970563i − 0.0371648i
\(683\) − 47.9411i − 1.83442i −0.398408 0.917208i \(-0.630437\pi\)
0.398408 0.917208i \(-0.369563\pi\)
\(684\) 0 0
\(685\) 30.6274 1.17021
\(686\) −7.02944 −0.268385
\(687\) 0 0
\(688\) 4.97056 0.189501
\(689\) 0 0
\(690\) 0 0
\(691\) 5.85786i 0.222844i 0.993773 + 0.111422i \(0.0355405\pi\)
−0.993773 + 0.111422i \(0.964460\pi\)
\(692\) −21.3137 −0.810226
\(693\) 0 0
\(694\) 3.59798i 0.136577i
\(695\) 20.6863i 0.784676i
\(696\) 0 0
\(697\) 39.5980i 1.49988i
\(698\) −1.51472 −0.0573329
\(699\) 0 0
\(700\) − 15.5147i − 0.586401i
\(701\) 5.02944 0.189959 0.0949796 0.995479i \(-0.469721\pi\)
0.0949796 + 0.995479i \(0.469721\pi\)
\(702\) 0 0
\(703\) 21.6569 0.816804
\(704\) 8.34315i 0.314444i
\(705\) 0 0
\(706\) 13.8579 0.521548
\(707\) 21.6569i 0.814490i
\(708\) 0 0
\(709\) − 4.62742i − 0.173786i −0.996218 0.0868931i \(-0.972306\pi\)
0.996218 0.0868931i \(-0.0276939\pi\)
\(710\) 2.34315i 0.0879367i
\(711\) 0 0
\(712\) 23.5147 0.881251
\(713\) − 4.68629i − 0.175503i
\(714\) 0 0
\(715\) 0 0
\(716\) −42.6274 −1.59306
\(717\) 0 0
\(718\) 14.4853 0.540586
\(719\) −29.9411 −1.11662 −0.558308 0.829634i \(-0.688549\pi\)
−0.558308 + 0.829634i \(0.688549\pi\)
\(720\) 0 0
\(721\) − 6.62742i − 0.246818i
\(722\) 4.55635i 0.169570i
\(723\) 0 0
\(724\) −25.5980 −0.951341
\(725\) 6.00000 0.222834
\(726\) 0 0
\(727\) 10.3431 0.383606 0.191803 0.981433i \(-0.438567\pi\)
0.191803 + 0.981433i \(0.438567\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0.402020i 0.0148794i
\(731\) 12.6863 0.469219
\(732\) 0 0
\(733\) 36.6274i 1.35286i 0.736505 + 0.676432i \(0.236475\pi\)
−0.736505 + 0.676432i \(0.763525\pi\)
\(734\) − 9.94113i − 0.366934i
\(735\) 0 0
\(736\) − 17.6569i − 0.650840i
\(737\) 13.6569 0.503057
\(738\) 0 0
\(739\) − 18.1421i − 0.667369i −0.942685 0.333685i \(-0.891708\pi\)
0.942685 0.333685i \(-0.108292\pi\)
\(740\) −39.5980 −1.45565
\(741\) 0 0
\(742\) −2.34315 −0.0860196
\(743\) 2.00000i 0.0733729i 0.999327 + 0.0366864i \(0.0116803\pi\)
−0.999327 + 0.0366864i \(0.988320\pi\)
\(744\) 0 0
\(745\) −25.9411 −0.950409
\(746\) 4.14214i 0.151654i
\(747\) 0 0
\(748\) 28.0000i 1.02378i
\(749\) 32.0000i 1.16925i
\(750\) 0 0
\(751\) 0.970563 0.0354163 0.0177082 0.999843i \(-0.494363\pi\)
0.0177082 + 0.999843i \(0.494363\pi\)
\(752\) 34.9706i 1.27525i
\(753\) 0 0
\(754\) 0 0
\(755\) −9.94113 −0.361795
\(756\) 0 0
\(757\) 51.9411 1.88783 0.943916 0.330185i \(-0.107111\pi\)
0.943916 + 0.330185i \(0.107111\pi\)
\(758\) 0.201010 0.00730102
\(759\) 0 0
\(760\) 12.6863i 0.460180i
\(761\) − 32.4853i − 1.17759i −0.808282 0.588795i \(-0.799602\pi\)
0.808282 0.588795i \(-0.200398\pi\)
\(762\) 0 0
\(763\) 15.0294 0.544102
\(764\) −6.05887 −0.219202
\(765\) 0 0
\(766\) −12.8284 −0.463510
\(767\) 0 0
\(768\) 0 0
\(769\) − 42.0000i − 1.51456i −0.653091 0.757279i \(-0.726528\pi\)
0.653091 0.757279i \(-0.273472\pi\)
\(770\) −6.62742 −0.238836
\(771\) 0 0
\(772\) 9.71573i 0.349677i
\(773\) 34.1421i 1.22801i 0.789303 + 0.614004i \(0.210442\pi\)
−0.789303 + 0.614004i \(0.789558\pi\)
\(774\) 0 0
\(775\) − 3.51472i − 0.126252i
\(776\) 5.79899 0.208172
\(777\) 0 0
\(778\) − 11.1716i − 0.400520i
\(779\) −14.6274 −0.524082
\(780\) 0 0
\(781\) −4.00000 −0.143131
\(782\) − 12.6863i − 0.453661i
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 28.2843i 1.00951i
\(786\) 0 0
\(787\) − 40.7696i − 1.45328i −0.687020 0.726639i \(-0.741081\pi\)
0.687020 0.726639i \(-0.258919\pi\)
\(788\) 0.887302i 0.0316088i
\(789\) 0 0
\(790\) −13.2548 −0.471586
\(791\) 15.0294i 0.534385i
\(792\) 0 0
\(793\) 0 0
\(794\) −12.8284 −0.455264
\(795\) 0 0
\(796\) −39.5980 −1.40351
\(797\) 24.3431 0.862278 0.431139 0.902285i \(-0.358112\pi\)
0.431139 + 0.902285i \(0.358112\pi\)
\(798\) 0 0
\(799\) 89.2548i 3.15761i
\(800\) − 13.2426i − 0.468198i
\(801\) 0 0
\(802\) 10.8284 0.382365
\(803\) −0.686292 −0.0242187
\(804\) 0 0
\(805\) −32.0000 −1.12785
\(806\) 0 0
\(807\) 0 0
\(808\) 12.1421i 0.427159i
\(809\) −18.6863 −0.656975 −0.328488 0.944508i \(-0.606539\pi\)
−0.328488 + 0.944508i \(0.606539\pi\)
\(810\) 0 0
\(811\) 30.1421i 1.05843i 0.848487 + 0.529217i \(0.177514\pi\)
−0.848487 + 0.529217i \(0.822486\pi\)
\(812\) − 10.3431i − 0.362973i
\(813\) 0 0
\(814\) 6.34315i 0.222327i
\(815\) 53.2548 1.86544
\(816\) 0 0
\(817\) 4.68629i 0.163953i
\(818\) −14.4853 −0.506466
\(819\) 0 0
\(820\) 26.7452 0.933982
\(821\) − 23.7990i − 0.830590i −0.909687 0.415295i \(-0.863678\pi\)
0.909687 0.415295i \(-0.136322\pi\)
\(822\) 0 0
\(823\) −15.0294 −0.523893 −0.261947 0.965082i \(-0.584364\pi\)
−0.261947 + 0.965082i \(0.584364\pi\)
\(824\) − 3.71573i − 0.129444i
\(825\) 0 0
\(826\) 8.97056i 0.312126i
\(827\) 26.0000i 0.904109i 0.891990 + 0.452054i \(0.149309\pi\)
−0.891990 + 0.452054i \(0.850691\pi\)
\(828\) 0 0
\(829\) 17.3137 0.601330 0.300665 0.953730i \(-0.402791\pi\)
0.300665 + 0.953730i \(0.402791\pi\)
\(830\) 4.28427i 0.148709i
\(831\) 0 0
\(832\) 0 0
\(833\) −7.65685 −0.265294
\(834\) 0 0
\(835\) 10.3431 0.357939
\(836\) −10.3431 −0.357725
\(837\) 0 0
\(838\) − 6.05887i − 0.209300i
\(839\) − 43.2548i − 1.49332i −0.665204 0.746661i \(-0.731656\pi\)
0.665204 0.746661i \(-0.268344\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 15.4558 0.532644
\(843\) 0 0
\(844\) −21.9411 −0.755245
\(845\) 0 0
\(846\) 0 0
\(847\) 19.7990i 0.680301i
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) − 9.51472i − 0.326352i
\(851\) 30.6274i 1.04989i
\(852\) 0 0
\(853\) 3.65685i 0.125208i 0.998038 + 0.0626042i \(0.0199406\pi\)
−0.998038 + 0.0626042i \(0.980059\pi\)
\(854\) −15.5980 −0.533752
\(855\) 0 0
\(856\) 17.9411i 0.613215i
\(857\) −49.5980 −1.69423 −0.847117 0.531406i \(-0.821664\pi\)
−0.847117 + 0.531406i \(0.821664\pi\)
\(858\) 0 0
\(859\) −0.686292 −0.0234160 −0.0117080 0.999931i \(-0.503727\pi\)
−0.0117080 + 0.999931i \(0.503727\pi\)
\(860\) − 8.56854i − 0.292185i
\(861\) 0 0
\(862\) −3.45584 −0.117707
\(863\) − 28.3431i − 0.964812i −0.875948 0.482406i \(-0.839763\pi\)
0.875948 0.482406i \(-0.160237\pi\)
\(864\) 0 0
\(865\) 32.9706i 1.12103i
\(866\) 8.82843i 0.300002i
\(867\) 0 0
\(868\) −6.05887 −0.205652
\(869\) − 22.6274i − 0.767583i
\(870\) 0 0
\(871\) 0 0
\(872\) 8.42641 0.285354
\(873\) 0 0
\(874\) 4.68629 0.158516
\(875\) 16.0000 0.540899
\(876\) 0 0
\(877\) − 42.2843i − 1.42784i −0.700228 0.713919i \(-0.746918\pi\)
0.700228 0.713919i \(-0.253082\pi\)
\(878\) − 7.02944i − 0.237232i
\(879\) 0 0
\(880\) 16.9706 0.572078
\(881\) −25.5980 −0.862418 −0.431209 0.902252i \(-0.641913\pi\)
−0.431209 + 0.902252i \(0.641913\pi\)
\(882\) 0 0
\(883\) −27.5980 −0.928746 −0.464373 0.885640i \(-0.653720\pi\)
−0.464373 + 0.885640i \(0.653720\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 10.7452i 0.360991i
\(887\) 8.00000 0.268614 0.134307 0.990940i \(-0.457119\pi\)
0.134307 + 0.990940i \(0.457119\pi\)
\(888\) 0 0
\(889\) − 16.0000i − 0.536623i
\(890\) − 17.3726i − 0.582330i
\(891\) 0 0
\(892\) 22.8284i 0.764352i
\(893\) −32.9706 −1.10332
\(894\) 0 0
\(895\) 65.9411i 2.20417i
\(896\) −29.8579 −0.997481
\(897\) 0 0
\(898\) −13.1716 −0.439541
\(899\) − 2.34315i − 0.0781483i
\(900\) 0 0
\(901\) 15.3137 0.510174
\(902\) − 4.28427i − 0.142651i
\(903\) 0 0
\(904\) 8.42641i 0.280258i
\(905\) 39.5980i 1.31628i
\(906\) 0 0
\(907\) 12.9706 0.430680 0.215340 0.976539i \(-0.430914\pi\)
0.215340 + 0.976539i \(0.430914\pi\)
\(908\) − 31.6569i − 1.05057i
\(909\) 0 0
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) −7.31371 −0.242048
\(914\) −3.17157 −0.104906
\(915\) 0 0
\(916\) − 2.40202i − 0.0793650i
\(917\) 22.6274i 0.747223i
\(918\) 0 0
\(919\) 3.31371 0.109309 0.0546546 0.998505i \(-0.482594\pi\)
0.0546546 + 0.998505i \(0.482594\pi\)
\(920\) −17.9411 −0.591501
\(921\) 0 0
\(922\) −2.14214 −0.0705475
\(923\) 0 0
\(924\) 0 0
\(925\) 22.9706i 0.755267i
\(926\) 10.1421 0.333291
\(927\) 0 0
\(928\) − 8.82843i − 0.289807i
\(929\) 11.7990i 0.387112i 0.981089 + 0.193556i \(0.0620022\pi\)
−0.981089 + 0.193556i \(0.937998\pi\)
\(930\) 0 0
\(931\) − 2.82843i − 0.0926980i
\(932\) 12.7452 0.417482
\(933\) 0 0
\(934\) − 3.31371i − 0.108428i
\(935\) 43.3137 1.41651
\(936\) 0 0
\(937\) −21.3137 −0.696289 −0.348144 0.937441i \(-0.613188\pi\)
−0.348144 + 0.937441i \(0.613188\pi\)
\(938\) 8.00000i 0.261209i
\(939\) 0 0
\(940\) 60.2843 1.96626
\(941\) 34.1421i 1.11300i 0.830847 + 0.556501i \(0.187856\pi\)
−0.830847 + 0.556501i \(0.812144\pi\)
\(942\) 0 0
\(943\) − 20.6863i − 0.673638i
\(944\) − 22.9706i − 0.747628i
\(945\) 0 0
\(946\) −1.37258 −0.0446265
\(947\) 21.0294i 0.683365i 0.939815 + 0.341682i \(0.110997\pi\)
−0.939815 + 0.341682i \(0.889003\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 3.51472 0.114033
\(951\) 0 0
\(952\) −34.3431 −1.11307
\(953\) 40.3431 1.30684 0.653421 0.756994i \(-0.273333\pi\)
0.653421 + 0.756994i \(0.273333\pi\)
\(954\) 0 0
\(955\) 9.37258i 0.303290i
\(956\) 3.65685i 0.118271i
\(957\) 0 0
\(958\) 10.4853 0.338764
\(959\) −30.6274 −0.989011
\(960\) 0 0
\(961\) 29.6274 0.955723
\(962\) 0 0
\(963\) 0 0
\(964\) 0.627417i 0.0202077i
\(965\) 15.0294 0.483815
\(966\) 0 0
\(967\) − 18.1421i − 0.583412i −0.956508 0.291706i \(-0.905777\pi\)
0.956508 0.291706i \(-0.0942228\pi\)
\(968\) 11.1005i 0.356784i
\(969\) 0 0
\(970\) − 4.28427i − 0.137560i
\(971\) 15.3137 0.491440 0.245720 0.969341i \(-0.420976\pi\)
0.245720 + 0.969341i \(0.420976\pi\)
\(972\) 0 0
\(973\) − 20.6863i − 0.663172i
\(974\) −3.23045 −0.103510
\(975\) 0 0
\(976\) 39.9411 1.27848
\(977\) 42.1421i 1.34825i 0.738619 + 0.674123i \(0.235478\pi\)
−0.738619 + 0.674123i \(0.764522\pi\)
\(978\) 0 0
\(979\) 29.6569 0.947837
\(980\) 5.17157i 0.165200i
\(981\) 0 0
\(982\) 12.6863i 0.404836i
\(983\) − 25.3137i − 0.807382i −0.914895 0.403691i \(-0.867727\pi\)
0.914895 0.403691i \(-0.132273\pi\)
\(984\) 0 0
\(985\) 1.37258 0.0437341
\(986\) − 6.34315i − 0.202007i
\(987\) 0 0
\(988\) 0 0
\(989\) −6.62742 −0.210740
\(990\) 0 0
\(991\) 4.68629 0.148865 0.0744325 0.997226i \(-0.476285\pi\)
0.0744325 + 0.997226i \(0.476285\pi\)
\(992\) −5.17157 −0.164198
\(993\) 0 0
\(994\) − 2.34315i − 0.0743201i
\(995\) 61.2548i 1.94191i
\(996\) 0 0
\(997\) −39.2548 −1.24321 −0.621607 0.783330i \(-0.713520\pi\)
−0.621607 + 0.783330i \(0.713520\pi\)
\(998\) 10.8284 0.342768
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1521.2.b.j.1351.3 4
3.2 odd 2 507.2.b.e.337.2 4
13.5 odd 4 1521.2.a.f.1.2 2
13.8 odd 4 117.2.a.c.1.1 2
13.12 even 2 inner 1521.2.b.j.1351.2 4
39.2 even 12 507.2.e.d.22.2 4
39.5 even 4 507.2.a.h.1.1 2
39.8 even 4 39.2.a.b.1.2 2
39.11 even 12 507.2.e.h.22.1 4
39.17 odd 6 507.2.j.f.361.3 8
39.20 even 12 507.2.e.h.484.1 4
39.23 odd 6 507.2.j.f.316.2 8
39.29 odd 6 507.2.j.f.316.3 8
39.32 even 12 507.2.e.d.484.2 4
39.35 odd 6 507.2.j.f.361.2 8
39.38 odd 2 507.2.b.e.337.3 4
52.47 even 4 1872.2.a.w.1.2 2
65.8 even 4 2925.2.c.u.2224.3 4
65.34 odd 4 2925.2.a.v.1.2 2
65.47 even 4 2925.2.c.u.2224.2 4
91.34 even 4 5733.2.a.u.1.1 2
104.21 odd 4 7488.2.a.cl.1.1 2
104.99 even 4 7488.2.a.co.1.1 2
117.34 odd 12 1053.2.e.e.352.2 4
117.47 even 12 1053.2.e.m.352.1 4
117.86 even 12 1053.2.e.m.703.1 4
117.112 odd 12 1053.2.e.e.703.2 4
156.47 odd 4 624.2.a.k.1.1 2
156.83 odd 4 8112.2.a.bm.1.2 2
195.8 odd 4 975.2.c.h.274.2 4
195.47 odd 4 975.2.c.h.274.3 4
195.164 even 4 975.2.a.l.1.1 2
273.125 odd 4 1911.2.a.h.1.2 2
312.125 even 4 2496.2.a.bf.1.2 2
312.203 odd 4 2496.2.a.bi.1.2 2
429.164 odd 4 4719.2.a.p.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.a.b.1.2 2 39.8 even 4
117.2.a.c.1.1 2 13.8 odd 4
507.2.a.h.1.1 2 39.5 even 4
507.2.b.e.337.2 4 3.2 odd 2
507.2.b.e.337.3 4 39.38 odd 2
507.2.e.d.22.2 4 39.2 even 12
507.2.e.d.484.2 4 39.32 even 12
507.2.e.h.22.1 4 39.11 even 12
507.2.e.h.484.1 4 39.20 even 12
507.2.j.f.316.2 8 39.23 odd 6
507.2.j.f.316.3 8 39.29 odd 6
507.2.j.f.361.2 8 39.35 odd 6
507.2.j.f.361.3 8 39.17 odd 6
624.2.a.k.1.1 2 156.47 odd 4
975.2.a.l.1.1 2 195.164 even 4
975.2.c.h.274.2 4 195.8 odd 4
975.2.c.h.274.3 4 195.47 odd 4
1053.2.e.e.352.2 4 117.34 odd 12
1053.2.e.e.703.2 4 117.112 odd 12
1053.2.e.m.352.1 4 117.47 even 12
1053.2.e.m.703.1 4 117.86 even 12
1521.2.a.f.1.2 2 13.5 odd 4
1521.2.b.j.1351.2 4 13.12 even 2 inner
1521.2.b.j.1351.3 4 1.1 even 1 trivial
1872.2.a.w.1.2 2 52.47 even 4
1911.2.a.h.1.2 2 273.125 odd 4
2496.2.a.bf.1.2 2 312.125 even 4
2496.2.a.bi.1.2 2 312.203 odd 4
2925.2.a.v.1.2 2 65.34 odd 4
2925.2.c.u.2224.2 4 65.47 even 4
2925.2.c.u.2224.3 4 65.8 even 4
4719.2.a.p.1.1 2 429.164 odd 4
5733.2.a.u.1.1 2 91.34 even 4
7488.2.a.cl.1.1 2 104.21 odd 4
7488.2.a.co.1.1 2 104.99 even 4
8112.2.a.bm.1.2 2 156.83 odd 4