Properties

Label 1521.2.b.a.1351.1
Level $1521$
Weight $2$
Character 1521.1351
Analytic conductor $12.145$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,2,Mod(1351,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.1351");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1521.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1452461474\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1521.1351
Dual form 1521.2.b.a.1351.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{2} -1.00000 q^{4} +1.73205i q^{5} -1.73205i q^{8} +O(q^{10})\) \(q-1.73205i q^{2} -1.00000 q^{4} +1.73205i q^{5} -1.73205i q^{8} +3.00000 q^{10} -5.00000 q^{16} +3.00000 q^{17} -3.46410i q^{19} -1.73205i q^{20} +6.00000 q^{23} +2.00000 q^{25} -3.00000 q^{29} +3.46410i q^{31} +5.19615i q^{32} -5.19615i q^{34} -8.66025i q^{37} -6.00000 q^{38} +3.00000 q^{40} -5.19615i q^{41} +8.00000 q^{43} -10.3923i q^{46} +3.46410i q^{47} +7.00000 q^{49} -3.46410i q^{50} +3.00000 q^{53} +5.19615i q^{58} -6.92820i q^{59} +1.00000 q^{61} +6.00000 q^{62} -1.00000 q^{64} -3.46410i q^{67} -3.00000 q^{68} -3.46410i q^{71} +1.73205i q^{73} -15.0000 q^{74} +3.46410i q^{76} +4.00000 q^{79} -8.66025i q^{80} -9.00000 q^{82} -13.8564i q^{83} +5.19615i q^{85} -13.8564i q^{86} -6.92820i q^{89} -6.00000 q^{92} +6.00000 q^{94} +6.00000 q^{95} +6.92820i q^{97} -12.1244i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} + 6 q^{10} - 10 q^{16} + 6 q^{17} + 12 q^{23} + 4 q^{25} - 6 q^{29} - 12 q^{38} + 6 q^{40} + 16 q^{43} + 14 q^{49} + 6 q^{53} + 2 q^{61} + 12 q^{62} - 2 q^{64} - 6 q^{68} - 30 q^{74} + 8 q^{79} - 18 q^{82} - 12 q^{92} + 12 q^{94} + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1521\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.73205i − 1.22474i −0.790569 0.612372i \(-0.790215\pi\)
0.790569 0.612372i \(-0.209785\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.73205i 0.774597i 0.921954 + 0.387298i \(0.126592\pi\)
−0.921954 + 0.387298i \(0.873408\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) − 1.73205i − 0.612372i
\(9\) 0 0
\(10\) 3.00000 0.948683
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) − 3.46410i − 0.794719i −0.917663 0.397360i \(-0.869927\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) − 1.73205i − 0.387298i
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 2.00000 0.400000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i 0.950382 + 0.311086i \(0.100693\pi\)
−0.950382 + 0.311086i \(0.899307\pi\)
\(32\) 5.19615i 0.918559i
\(33\) 0 0
\(34\) − 5.19615i − 0.891133i
\(35\) 0 0
\(36\) 0 0
\(37\) − 8.66025i − 1.42374i −0.702313 0.711868i \(-0.747849\pi\)
0.702313 0.711868i \(-0.252151\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) − 5.19615i − 0.811503i −0.913984 0.405751i \(-0.867010\pi\)
0.913984 0.405751i \(-0.132990\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) − 10.3923i − 1.53226i
\(47\) 3.46410i 0.505291i 0.967559 + 0.252646i \(0.0813007\pi\)
−0.967559 + 0.252646i \(0.918699\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) − 3.46410i − 0.489898i
\(51\) 0 0
\(52\) 0 0
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 5.19615i 0.682288i
\(59\) − 6.92820i − 0.901975i −0.892530 0.450988i \(-0.851072\pi\)
0.892530 0.450988i \(-0.148928\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 6.00000 0.762001
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 3.46410i − 0.423207i −0.977356 0.211604i \(-0.932131\pi\)
0.977356 0.211604i \(-0.0678686\pi\)
\(68\) −3.00000 −0.363803
\(69\) 0 0
\(70\) 0 0
\(71\) − 3.46410i − 0.411113i −0.978645 0.205557i \(-0.934100\pi\)
0.978645 0.205557i \(-0.0659005\pi\)
\(72\) 0 0
\(73\) 1.73205i 0.202721i 0.994850 + 0.101361i \(0.0323196\pi\)
−0.994850 + 0.101361i \(0.967680\pi\)
\(74\) −15.0000 −1.74371
\(75\) 0 0
\(76\) 3.46410i 0.397360i
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) − 8.66025i − 0.968246i
\(81\) 0 0
\(82\) −9.00000 −0.993884
\(83\) − 13.8564i − 1.52094i −0.649374 0.760469i \(-0.724969\pi\)
0.649374 0.760469i \(-0.275031\pi\)
\(84\) 0 0
\(85\) 5.19615i 0.563602i
\(86\) − 13.8564i − 1.49417i
\(87\) 0 0
\(88\) 0 0
\(89\) − 6.92820i − 0.734388i −0.930144 0.367194i \(-0.880318\pi\)
0.930144 0.367194i \(-0.119682\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) 6.00000 0.618853
\(95\) 6.00000 0.615587
\(96\) 0 0
\(97\) 6.92820i 0.703452i 0.936103 + 0.351726i \(0.114405\pi\)
−0.936103 + 0.351726i \(0.885595\pi\)
\(98\) − 12.1244i − 1.22474i
\(99\) 0 0
\(100\) −2.00000 −0.200000
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) −10.0000 −0.985329 −0.492665 0.870219i \(-0.663977\pi\)
−0.492665 + 0.870219i \(0.663977\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) − 5.19615i − 0.504695i
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0 0
\(109\) − 13.8564i − 1.32720i −0.748086 0.663602i \(-0.769027\pi\)
0.748086 0.663602i \(-0.230973\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.0000 1.41108 0.705541 0.708669i \(-0.250704\pi\)
0.705541 + 0.708669i \(0.250704\pi\)
\(114\) 0 0
\(115\) 10.3923i 0.969087i
\(116\) 3.00000 0.278543
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) − 1.73205i − 0.156813i
\(123\) 0 0
\(124\) − 3.46410i − 0.311086i
\(125\) 12.1244i 1.08444i
\(126\) 0 0
\(127\) −2.00000 −0.177471 −0.0887357 0.996055i \(-0.528283\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 12.1244i 1.07165i
\(129\) 0 0
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −6.00000 −0.518321
\(135\) 0 0
\(136\) − 5.19615i − 0.445566i
\(137\) 15.5885i 1.33181i 0.746036 + 0.665906i \(0.231955\pi\)
−0.746036 + 0.665906i \(0.768045\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.00000 −0.503509
\(143\) 0 0
\(144\) 0 0
\(145\) − 5.19615i − 0.431517i
\(146\) 3.00000 0.248282
\(147\) 0 0
\(148\) 8.66025i 0.711868i
\(149\) 19.0526i 1.56085i 0.625252 + 0.780423i \(0.284996\pi\)
−0.625252 + 0.780423i \(0.715004\pi\)
\(150\) 0 0
\(151\) 17.3205i 1.40952i 0.709444 + 0.704761i \(0.248946\pi\)
−0.709444 + 0.704761i \(0.751054\pi\)
\(152\) −6.00000 −0.486664
\(153\) 0 0
\(154\) 0 0
\(155\) −6.00000 −0.481932
\(156\) 0 0
\(157\) −13.0000 −1.03751 −0.518756 0.854922i \(-0.673605\pi\)
−0.518756 + 0.854922i \(0.673605\pi\)
\(158\) − 6.92820i − 0.551178i
\(159\) 0 0
\(160\) −9.00000 −0.711512
\(161\) 0 0
\(162\) 0 0
\(163\) 20.7846i 1.62798i 0.580881 + 0.813988i \(0.302708\pi\)
−0.580881 + 0.813988i \(0.697292\pi\)
\(164\) 5.19615i 0.405751i
\(165\) 0 0
\(166\) −24.0000 −1.86276
\(167\) − 13.8564i − 1.07224i −0.844141 0.536120i \(-0.819889\pi\)
0.844141 0.536120i \(-0.180111\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 9.00000 0.690268
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −12.0000 −0.899438
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 11.0000 0.817624 0.408812 0.912619i \(-0.365943\pi\)
0.408812 + 0.912619i \(0.365943\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) − 10.3923i − 0.766131i
\(185\) 15.0000 1.10282
\(186\) 0 0
\(187\) 0 0
\(188\) − 3.46410i − 0.252646i
\(189\) 0 0
\(190\) − 10.3923i − 0.753937i
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) 5.19615i 0.374027i 0.982357 + 0.187014i \(0.0598809\pi\)
−0.982357 + 0.187014i \(0.940119\pi\)
\(194\) 12.0000 0.861550
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) 13.8564i 0.987228i 0.869681 + 0.493614i \(0.164324\pi\)
−0.869681 + 0.493614i \(0.835676\pi\)
\(198\) 0 0
\(199\) −2.00000 −0.141776 −0.0708881 0.997484i \(-0.522583\pi\)
−0.0708881 + 0.997484i \(0.522583\pi\)
\(200\) − 3.46410i − 0.244949i
\(201\) 0 0
\(202\) − 5.19615i − 0.365600i
\(203\) 0 0
\(204\) 0 0
\(205\) 9.00000 0.628587
\(206\) 17.3205i 1.20678i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 10.0000 0.688428 0.344214 0.938891i \(-0.388145\pi\)
0.344214 + 0.938891i \(0.388145\pi\)
\(212\) −3.00000 −0.206041
\(213\) 0 0
\(214\) 10.3923i 0.710403i
\(215\) 13.8564i 0.944999i
\(216\) 0 0
\(217\) 0 0
\(218\) −24.0000 −1.62549
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 10.3923i 0.695920i 0.937509 + 0.347960i \(0.113126\pi\)
−0.937509 + 0.347960i \(0.886874\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) − 25.9808i − 1.72821i
\(227\) − 24.2487i − 1.60944i −0.593652 0.804722i \(-0.702314\pi\)
0.593652 0.804722i \(-0.297686\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 18.0000 1.18688
\(231\) 0 0
\(232\) 5.19615i 0.341144i
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −6.00000 −0.391397
\(236\) 6.92820i 0.450988i
\(237\) 0 0
\(238\) 0 0
\(239\) 20.7846i 1.34444i 0.740349 + 0.672222i \(0.234660\pi\)
−0.740349 + 0.672222i \(0.765340\pi\)
\(240\) 0 0
\(241\) − 1.73205i − 0.111571i −0.998443 0.0557856i \(-0.982234\pi\)
0.998443 0.0557856i \(-0.0177663\pi\)
\(242\) − 19.0526i − 1.22474i
\(243\) 0 0
\(244\) −1.00000 −0.0640184
\(245\) 12.1244i 0.774597i
\(246\) 0 0
\(247\) 0 0
\(248\) 6.00000 0.381000
\(249\) 0 0
\(250\) 21.0000 1.32816
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 3.46410i 0.217357i
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) −3.00000 −0.187135 −0.0935674 0.995613i \(-0.529827\pi\)
−0.0935674 + 0.995613i \(0.529827\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 31.1769i 1.92612i
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 5.19615i 0.319197i
\(266\) 0 0
\(267\) 0 0
\(268\) 3.46410i 0.211604i
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) − 20.7846i − 1.26258i −0.775549 0.631288i \(-0.782527\pi\)
0.775549 0.631288i \(-0.217473\pi\)
\(272\) −15.0000 −0.909509
\(273\) 0 0
\(274\) 27.0000 1.63113
\(275\) 0 0
\(276\) 0 0
\(277\) −7.00000 −0.420589 −0.210295 0.977638i \(-0.567442\pi\)
−0.210295 + 0.977638i \(0.567442\pi\)
\(278\) 6.92820i 0.415526i
\(279\) 0 0
\(280\) 0 0
\(281\) 22.5167i 1.34323i 0.740900 + 0.671616i \(0.234399\pi\)
−0.740900 + 0.671616i \(0.765601\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 3.46410i 0.205557i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) −9.00000 −0.528498
\(291\) 0 0
\(292\) − 1.73205i − 0.101361i
\(293\) − 5.19615i − 0.303562i −0.988414 0.151781i \(-0.951499\pi\)
0.988414 0.151781i \(-0.0485009\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) −15.0000 −0.871857
\(297\) 0 0
\(298\) 33.0000 1.91164
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 30.0000 1.72631
\(303\) 0 0
\(304\) 17.3205i 0.993399i
\(305\) 1.73205i 0.0991769i
\(306\) 0 0
\(307\) − 17.3205i − 0.988534i −0.869310 0.494267i \(-0.835437\pi\)
0.869310 0.494267i \(-0.164563\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 10.3923i 0.590243i
\(311\) 30.0000 1.70114 0.850572 0.525859i \(-0.176256\pi\)
0.850572 + 0.525859i \(0.176256\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 22.5167i 1.27069i
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) 5.19615i 0.291845i 0.989296 + 0.145922i \(0.0466150\pi\)
−0.989296 + 0.145922i \(0.953385\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) − 1.73205i − 0.0968246i
\(321\) 0 0
\(322\) 0 0
\(323\) − 10.3923i − 0.578243i
\(324\) 0 0
\(325\) 0 0
\(326\) 36.0000 1.99386
\(327\) 0 0
\(328\) −9.00000 −0.496942
\(329\) 0 0
\(330\) 0 0
\(331\) − 27.7128i − 1.52323i −0.648027 0.761617i \(-0.724406\pi\)
0.648027 0.761617i \(-0.275594\pi\)
\(332\) 13.8564i 0.760469i
\(333\) 0 0
\(334\) −24.0000 −1.31322
\(335\) 6.00000 0.327815
\(336\) 0 0
\(337\) −23.0000 −1.25289 −0.626445 0.779466i \(-0.715491\pi\)
−0.626445 + 0.779466i \(0.715491\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) − 5.19615i − 0.281801i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) − 13.8564i − 0.747087i
\(345\) 0 0
\(346\) 10.3923i 0.558694i
\(347\) 30.0000 1.61048 0.805242 0.592946i \(-0.202035\pi\)
0.805242 + 0.592946i \(0.202035\pi\)
\(348\) 0 0
\(349\) − 13.8564i − 0.741716i −0.928689 0.370858i \(-0.879064\pi\)
0.928689 0.370858i \(-0.120936\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 32.9090i 1.75157i 0.482704 + 0.875784i \(0.339655\pi\)
−0.482704 + 0.875784i \(0.660345\pi\)
\(354\) 0 0
\(355\) 6.00000 0.318447
\(356\) 6.92820i 0.367194i
\(357\) 0 0
\(358\) 0 0
\(359\) 6.92820i 0.365657i 0.983145 + 0.182828i \(0.0585252\pi\)
−0.983145 + 0.182828i \(0.941475\pi\)
\(360\) 0 0
\(361\) 7.00000 0.368421
\(362\) − 19.0526i − 1.00138i
\(363\) 0 0
\(364\) 0 0
\(365\) −3.00000 −0.157027
\(366\) 0 0
\(367\) −22.0000 −1.14839 −0.574195 0.818718i \(-0.694685\pi\)
−0.574195 + 0.818718i \(0.694685\pi\)
\(368\) −30.0000 −1.56386
\(369\) 0 0
\(370\) − 25.9808i − 1.35068i
\(371\) 0 0
\(372\) 0 0
\(373\) 19.0000 0.983783 0.491891 0.870657i \(-0.336306\pi\)
0.491891 + 0.870657i \(0.336306\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 6.00000 0.309426
\(377\) 0 0
\(378\) 0 0
\(379\) 24.2487i 1.24557i 0.782392 + 0.622786i \(0.213999\pi\)
−0.782392 + 0.622786i \(0.786001\pi\)
\(380\) −6.00000 −0.307794
\(381\) 0 0
\(382\) 31.1769i 1.59515i
\(383\) 20.7846i 1.06204i 0.847358 + 0.531022i \(0.178192\pi\)
−0.847358 + 0.531022i \(0.821808\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 9.00000 0.458088
\(387\) 0 0
\(388\) − 6.92820i − 0.351726i
\(389\) 9.00000 0.456318 0.228159 0.973624i \(-0.426729\pi\)
0.228159 + 0.973624i \(0.426729\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) − 12.1244i − 0.612372i
\(393\) 0 0
\(394\) 24.0000 1.20910
\(395\) 6.92820i 0.348596i
\(396\) 0 0
\(397\) − 13.8564i − 0.695433i −0.937600 0.347717i \(-0.886957\pi\)
0.937600 0.347717i \(-0.113043\pi\)
\(398\) 3.46410i 0.173640i
\(399\) 0 0
\(400\) −10.0000 −0.500000
\(401\) − 1.73205i − 0.0864945i −0.999064 0.0432472i \(-0.986230\pi\)
0.999064 0.0432472i \(-0.0137703\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −3.00000 −0.149256
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 15.5885i 0.770800i 0.922750 + 0.385400i \(0.125936\pi\)
−0.922750 + 0.385400i \(0.874064\pi\)
\(410\) − 15.5885i − 0.769859i
\(411\) 0 0
\(412\) 10.0000 0.492665
\(413\) 0 0
\(414\) 0 0
\(415\) 24.0000 1.17811
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −18.0000 −0.879358 −0.439679 0.898155i \(-0.644908\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) 0 0
\(421\) 15.5885i 0.759735i 0.925041 + 0.379867i \(0.124030\pi\)
−0.925041 + 0.379867i \(0.875970\pi\)
\(422\) − 17.3205i − 0.843149i
\(423\) 0 0
\(424\) − 5.19615i − 0.252347i
\(425\) 6.00000 0.291043
\(426\) 0 0
\(427\) 0 0
\(428\) 6.00000 0.290021
\(429\) 0 0
\(430\) 24.0000 1.15738
\(431\) − 6.92820i − 0.333720i −0.985981 0.166860i \(-0.946637\pi\)
0.985981 0.166860i \(-0.0533628\pi\)
\(432\) 0 0
\(433\) −17.0000 −0.816968 −0.408484 0.912766i \(-0.633942\pi\)
−0.408484 + 0.912766i \(0.633942\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 13.8564i 0.663602i
\(437\) − 20.7846i − 0.994263i
\(438\) 0 0
\(439\) −28.0000 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) 18.0000 0.852325
\(447\) 0 0
\(448\) 0 0
\(449\) 6.92820i 0.326962i 0.986546 + 0.163481i \(0.0522723\pi\)
−0.986546 + 0.163481i \(0.947728\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −15.0000 −0.705541
\(453\) 0 0
\(454\) −42.0000 −1.97116
\(455\) 0 0
\(456\) 0 0
\(457\) − 1.73205i − 0.0810219i −0.999179 0.0405110i \(-0.987101\pi\)
0.999179 0.0405110i \(-0.0128986\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) − 10.3923i − 0.484544i
\(461\) − 22.5167i − 1.04871i −0.851501 0.524353i \(-0.824307\pi\)
0.851501 0.524353i \(-0.175693\pi\)
\(462\) 0 0
\(463\) 13.8564i 0.643962i 0.946746 + 0.321981i \(0.104349\pi\)
−0.946746 + 0.321981i \(0.895651\pi\)
\(464\) 15.0000 0.696358
\(465\) 0 0
\(466\) 10.3923i 0.481414i
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 10.3923i 0.479361i
\(471\) 0 0
\(472\) −12.0000 −0.552345
\(473\) 0 0
\(474\) 0 0
\(475\) − 6.92820i − 0.317888i
\(476\) 0 0
\(477\) 0 0
\(478\) 36.0000 1.64660
\(479\) 24.2487i 1.10795i 0.832533 + 0.553976i \(0.186890\pi\)
−0.832533 + 0.553976i \(0.813110\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −3.00000 −0.136646
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) −12.0000 −0.544892
\(486\) 0 0
\(487\) − 6.92820i − 0.313947i −0.987603 0.156973i \(-0.949826\pi\)
0.987603 0.156973i \(-0.0501737\pi\)
\(488\) − 1.73205i − 0.0784063i
\(489\) 0 0
\(490\) 21.0000 0.948683
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) −9.00000 −0.405340
\(494\) 0 0
\(495\) 0 0
\(496\) − 17.3205i − 0.777714i
\(497\) 0 0
\(498\) 0 0
\(499\) 31.1769i 1.39567i 0.716258 + 0.697835i \(0.245853\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) − 12.1244i − 0.542218i
\(501\) 0 0
\(502\) − 31.1769i − 1.39149i
\(503\) −36.0000 −1.60516 −0.802580 0.596544i \(-0.796540\pi\)
−0.802580 + 0.596544i \(0.796540\pi\)
\(504\) 0 0
\(505\) 5.19615i 0.231226i
\(506\) 0 0
\(507\) 0 0
\(508\) 2.00000 0.0887357
\(509\) 19.0526i 0.844490i 0.906482 + 0.422245i \(0.138758\pi\)
−0.906482 + 0.422245i \(0.861242\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 8.66025i − 0.382733i
\(513\) 0 0
\(514\) 5.19615i 0.229192i
\(515\) − 17.3205i − 0.763233i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.00000 −0.394297 −0.197149 0.980374i \(-0.563168\pi\)
−0.197149 + 0.980374i \(0.563168\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 18.0000 0.786334
\(525\) 0 0
\(526\) 20.7846i 0.906252i
\(527\) 10.3923i 0.452696i
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 9.00000 0.390935
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 10.3923i − 0.449299i
\(536\) −6.00000 −0.259161
\(537\) 0 0
\(538\) − 10.3923i − 0.448044i
\(539\) 0 0
\(540\) 0 0
\(541\) 29.4449i 1.26593i 0.774179 + 0.632967i \(0.218163\pi\)
−0.774179 + 0.632967i \(0.781837\pi\)
\(542\) −36.0000 −1.54633
\(543\) 0 0
\(544\) 15.5885i 0.668350i
\(545\) 24.0000 1.02805
\(546\) 0 0
\(547\) −22.0000 −0.940652 −0.470326 0.882493i \(-0.655864\pi\)
−0.470326 + 0.882493i \(0.655864\pi\)
\(548\) − 15.5885i − 0.665906i
\(549\) 0 0
\(550\) 0 0
\(551\) 10.3923i 0.442727i
\(552\) 0 0
\(553\) 0 0
\(554\) 12.1244i 0.515115i
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) − 15.5885i − 0.660504i −0.943893 0.330252i \(-0.892866\pi\)
0.943893 0.330252i \(-0.107134\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 39.0000 1.64512
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 25.9808i 1.09302i
\(566\) − 6.92820i − 0.291214i
\(567\) 0 0
\(568\) −6.00000 −0.251754
\(569\) 42.0000 1.76073 0.880366 0.474295i \(-0.157297\pi\)
0.880366 + 0.474295i \(0.157297\pi\)
\(570\) 0 0
\(571\) 40.0000 1.67395 0.836974 0.547243i \(-0.184323\pi\)
0.836974 + 0.547243i \(0.184323\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) − 19.0526i − 0.793168i −0.917998 0.396584i \(-0.870195\pi\)
0.917998 0.396584i \(-0.129805\pi\)
\(578\) 13.8564i 0.576351i
\(579\) 0 0
\(580\) 5.19615i 0.215758i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 3.00000 0.124141
\(585\) 0 0
\(586\) −9.00000 −0.371787
\(587\) − 20.7846i − 0.857873i −0.903335 0.428936i \(-0.858888\pi\)
0.903335 0.428936i \(-0.141112\pi\)
\(588\) 0 0
\(589\) 12.0000 0.494451
\(590\) − 20.7846i − 0.855689i
\(591\) 0 0
\(592\) 43.3013i 1.77967i
\(593\) 25.9808i 1.06690i 0.845831 + 0.533451i \(0.179105\pi\)
−0.845831 + 0.533451i \(0.820895\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 19.0526i − 0.780423i
\(597\) 0 0
\(598\) 0 0
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 0 0
\(601\) 25.0000 1.01977 0.509886 0.860242i \(-0.329688\pi\)
0.509886 + 0.860242i \(0.329688\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) − 17.3205i − 0.704761i
\(605\) 19.0526i 0.774597i
\(606\) 0 0
\(607\) −34.0000 −1.38002 −0.690009 0.723801i \(-0.742393\pi\)
−0.690009 + 0.723801i \(0.742393\pi\)
\(608\) 18.0000 0.729996
\(609\) 0 0
\(610\) 3.00000 0.121466
\(611\) 0 0
\(612\) 0 0
\(613\) 12.1244i 0.489698i 0.969561 + 0.244849i \(0.0787384\pi\)
−0.969561 + 0.244849i \(0.921262\pi\)
\(614\) −30.0000 −1.21070
\(615\) 0 0
\(616\) 0 0
\(617\) 22.5167i 0.906487i 0.891387 + 0.453243i \(0.149733\pi\)
−0.891387 + 0.453243i \(0.850267\pi\)
\(618\) 0 0
\(619\) − 20.7846i − 0.835404i −0.908584 0.417702i \(-0.862836\pi\)
0.908584 0.417702i \(-0.137164\pi\)
\(620\) 6.00000 0.240966
\(621\) 0 0
\(622\) − 51.9615i − 2.08347i
\(623\) 0 0
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) − 17.3205i − 0.692267i
\(627\) 0 0
\(628\) 13.0000 0.518756
\(629\) − 25.9808i − 1.03592i
\(630\) 0 0
\(631\) − 48.4974i − 1.93065i −0.261048 0.965326i \(-0.584068\pi\)
0.261048 0.965326i \(-0.415932\pi\)
\(632\) − 6.92820i − 0.275589i
\(633\) 0 0
\(634\) 9.00000 0.357436
\(635\) − 3.46410i − 0.137469i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −21.0000 −0.830098
\(641\) −33.0000 −1.30342 −0.651711 0.758468i \(-0.725948\pi\)
−0.651711 + 0.758468i \(0.725948\pi\)
\(642\) 0 0
\(643\) 13.8564i 0.546443i 0.961951 + 0.273222i \(0.0880892\pi\)
−0.961951 + 0.273222i \(0.911911\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −18.0000 −0.708201
\(647\) −18.0000 −0.707653 −0.353827 0.935311i \(-0.615120\pi\)
−0.353827 + 0.935311i \(0.615120\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) − 20.7846i − 0.813988i
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) 0 0
\(655\) − 31.1769i − 1.21818i
\(656\) 25.9808i 1.01438i
\(657\) 0 0
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) 46.7654i 1.81896i 0.415745 + 0.909481i \(0.363521\pi\)
−0.415745 + 0.909481i \(0.636479\pi\)
\(662\) −48.0000 −1.86557
\(663\) 0 0
\(664\) −24.0000 −0.931381
\(665\) 0 0
\(666\) 0 0
\(667\) −18.0000 −0.696963
\(668\) 13.8564i 0.536120i
\(669\) 0 0
\(670\) − 10.3923i − 0.401490i
\(671\) 0 0
\(672\) 0 0
\(673\) −19.0000 −0.732396 −0.366198 0.930537i \(-0.619341\pi\)
−0.366198 + 0.930537i \(0.619341\pi\)
\(674\) 39.8372i 1.53447i
\(675\) 0 0
\(676\) 0 0
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 9.00000 0.345134
\(681\) 0 0
\(682\) 0 0
\(683\) − 24.2487i − 0.927851i −0.885874 0.463926i \(-0.846441\pi\)
0.885874 0.463926i \(-0.153559\pi\)
\(684\) 0 0
\(685\) −27.0000 −1.03162
\(686\) 0 0
\(687\) 0 0
\(688\) −40.0000 −1.52499
\(689\) 0 0
\(690\) 0 0
\(691\) − 13.8564i − 0.527123i −0.964643 0.263561i \(-0.915103\pi\)
0.964643 0.263561i \(-0.0848971\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) − 51.9615i − 1.97243i
\(695\) − 6.92820i − 0.262802i
\(696\) 0 0
\(697\) − 15.5885i − 0.590455i
\(698\) −24.0000 −0.908413
\(699\) 0 0
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) −30.0000 −1.13147
\(704\) 0 0
\(705\) 0 0
\(706\) 57.0000 2.14522
\(707\) 0 0
\(708\) 0 0
\(709\) − 5.19615i − 0.195146i −0.995228 0.0975728i \(-0.968892\pi\)
0.995228 0.0975728i \(-0.0311079\pi\)
\(710\) − 10.3923i − 0.390016i
\(711\) 0 0
\(712\) −12.0000 −0.449719
\(713\) 20.7846i 0.778390i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 12.0000 0.447836
\(719\) 48.0000 1.79010 0.895049 0.445968i \(-0.147140\pi\)
0.895049 + 0.445968i \(0.147140\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 12.1244i − 0.451222i
\(723\) 0 0
\(724\) −11.0000 −0.408812
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 5.19615i 0.192318i
\(731\) 24.0000 0.887672
\(732\) 0 0
\(733\) 12.1244i 0.447823i 0.974609 + 0.223912i \(0.0718827\pi\)
−0.974609 + 0.223912i \(0.928117\pi\)
\(734\) 38.1051i 1.40649i
\(735\) 0 0
\(736\) 31.1769i 1.14920i
\(737\) 0 0
\(738\) 0 0
\(739\) 20.7846i 0.764574i 0.924044 + 0.382287i \(0.124863\pi\)
−0.924044 + 0.382287i \(0.875137\pi\)
\(740\) −15.0000 −0.551411
\(741\) 0 0
\(742\) 0 0
\(743\) − 34.6410i − 1.27086i −0.772160 0.635428i \(-0.780824\pi\)
0.772160 0.635428i \(-0.219176\pi\)
\(744\) 0 0
\(745\) −33.0000 −1.20903
\(746\) − 32.9090i − 1.20488i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −16.0000 −0.583848 −0.291924 0.956441i \(-0.594295\pi\)
−0.291924 + 0.956441i \(0.594295\pi\)
\(752\) − 17.3205i − 0.631614i
\(753\) 0 0
\(754\) 0 0
\(755\) −30.0000 −1.09181
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 42.0000 1.52551
\(759\) 0 0
\(760\) − 10.3923i − 0.376969i
\(761\) − 34.6410i − 1.25574i −0.778320 0.627868i \(-0.783928\pi\)
0.778320 0.627868i \(-0.216072\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 18.0000 0.651217
\(765\) 0 0
\(766\) 36.0000 1.30073
\(767\) 0 0
\(768\) 0 0
\(769\) − 6.92820i − 0.249837i −0.992167 0.124919i \(-0.960133\pi\)
0.992167 0.124919i \(-0.0398670\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 5.19615i − 0.187014i
\(773\) 34.6410i 1.24595i 0.782241 + 0.622975i \(0.214076\pi\)
−0.782241 + 0.622975i \(0.785924\pi\)
\(774\) 0 0
\(775\) 6.92820i 0.248868i
\(776\) 12.0000 0.430775
\(777\) 0 0
\(778\) − 15.5885i − 0.558873i
\(779\) −18.0000 −0.644917
\(780\) 0 0
\(781\) 0 0
\(782\) − 31.1769i − 1.11488i
\(783\) 0 0
\(784\) −35.0000 −1.25000
\(785\) − 22.5167i − 0.803654i
\(786\) 0 0
\(787\) 38.1051i 1.35830i 0.733999 + 0.679150i \(0.237652\pi\)
−0.733999 + 0.679150i \(0.762348\pi\)
\(788\) − 13.8564i − 0.493614i
\(789\) 0 0
\(790\) 12.0000 0.426941
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −24.0000 −0.851728
\(795\) 0 0
\(796\) 2.00000 0.0708881
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 0 0
\(799\) 10.3923i 0.367653i
\(800\) 10.3923i 0.367423i
\(801\) 0 0
\(802\) −3.00000 −0.105934
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) − 5.19615i − 0.182800i
\(809\) −33.0000 −1.16022 −0.580109 0.814539i \(-0.696990\pi\)
−0.580109 + 0.814539i \(0.696990\pi\)
\(810\) 0 0
\(811\) − 38.1051i − 1.33805i −0.743239 0.669026i \(-0.766712\pi\)
0.743239 0.669026i \(-0.233288\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −36.0000 −1.26102
\(816\) 0 0
\(817\) − 27.7128i − 0.969549i
\(818\) 27.0000 0.944033
\(819\) 0 0
\(820\) −9.00000 −0.314294
\(821\) − 41.5692i − 1.45078i −0.688340 0.725388i \(-0.741660\pi\)
0.688340 0.725388i \(-0.258340\pi\)
\(822\) 0 0
\(823\) −4.00000 −0.139431 −0.0697156 0.997567i \(-0.522209\pi\)
−0.0697156 + 0.997567i \(0.522209\pi\)
\(824\) 17.3205i 0.603388i
\(825\) 0 0
\(826\) 0 0
\(827\) − 20.7846i − 0.722752i −0.932420 0.361376i \(-0.882307\pi\)
0.932420 0.361376i \(-0.117693\pi\)
\(828\) 0 0
\(829\) 25.0000 0.868286 0.434143 0.900844i \(-0.357051\pi\)
0.434143 + 0.900844i \(0.357051\pi\)
\(830\) − 41.5692i − 1.44289i
\(831\) 0 0
\(832\) 0 0
\(833\) 21.0000 0.727607
\(834\) 0 0
\(835\) 24.0000 0.830554
\(836\) 0 0
\(837\) 0 0
\(838\) 31.1769i 1.07699i
\(839\) − 45.0333i − 1.55472i −0.629054 0.777361i \(-0.716558\pi\)
0.629054 0.777361i \(-0.283442\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 27.0000 0.930481
\(843\) 0 0
\(844\) −10.0000 −0.344214
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −15.0000 −0.515102
\(849\) 0 0
\(850\) − 10.3923i − 0.356453i
\(851\) − 51.9615i − 1.78122i
\(852\) 0 0
\(853\) 25.9808i 0.889564i 0.895639 + 0.444782i \(0.146719\pi\)
−0.895639 + 0.444782i \(0.853281\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 10.3923i 0.355202i
\(857\) −3.00000 −0.102478 −0.0512390 0.998686i \(-0.516317\pi\)
−0.0512390 + 0.998686i \(0.516317\pi\)
\(858\) 0 0
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) − 13.8564i − 0.472500i
\(861\) 0 0
\(862\) −12.0000 −0.408722
\(863\) 27.7128i 0.943355i 0.881771 + 0.471678i \(0.156351\pi\)
−0.881771 + 0.471678i \(0.843649\pi\)
\(864\) 0 0
\(865\) − 10.3923i − 0.353349i
\(866\) 29.4449i 1.00058i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −24.0000 −0.812743
\(873\) 0 0
\(874\) −36.0000 −1.21772
\(875\) 0 0
\(876\) 0 0
\(877\) 12.1244i 0.409410i 0.978824 + 0.204705i \(0.0656236\pi\)
−0.978824 + 0.204705i \(0.934376\pi\)
\(878\) 48.4974i 1.63671i
\(879\) 0 0
\(880\) 0 0
\(881\) −27.0000 −0.909653 −0.454827 0.890580i \(-0.650299\pi\)
−0.454827 + 0.890580i \(0.650299\pi\)
\(882\) 0 0
\(883\) 10.0000 0.336527 0.168263 0.985742i \(-0.446184\pi\)
0.168263 + 0.985742i \(0.446184\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) − 20.7846i − 0.698273i
\(887\) −36.0000 −1.20876 −0.604381 0.796696i \(-0.706579\pi\)
−0.604381 + 0.796696i \(0.706579\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) − 20.7846i − 0.696702i
\(891\) 0 0
\(892\) − 10.3923i − 0.347960i
\(893\) 12.0000 0.401565
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 12.0000 0.400445
\(899\) − 10.3923i − 0.346603i
\(900\) 0 0
\(901\) 9.00000 0.299833
\(902\) 0 0
\(903\) 0 0
\(904\) − 25.9808i − 0.864107i
\(905\) 19.0526i 0.633328i
\(906\) 0 0
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) 24.2487i 0.804722i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −3.00000 −0.0992312
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 22.0000 0.725713 0.362857 0.931845i \(-0.381802\pi\)
0.362857 + 0.931845i \(0.381802\pi\)
\(920\) 18.0000 0.593442
\(921\) 0 0
\(922\) −39.0000 −1.28440
\(923\) 0 0
\(924\) 0 0
\(925\) − 17.3205i − 0.569495i
\(926\) 24.0000 0.788689
\(927\) 0 0
\(928\) − 15.5885i − 0.511716i
\(929\) 46.7654i 1.53432i 0.641455 + 0.767161i \(0.278331\pi\)
−0.641455 + 0.767161i \(0.721669\pi\)
\(930\) 0 0
\(931\) − 24.2487i − 0.794719i
\(932\) 6.00000 0.196537
\(933\) 0 0
\(934\) 20.7846i 0.680093i
\(935\) 0 0
\(936\) 0 0
\(937\) 7.00000 0.228680 0.114340 0.993442i \(-0.463525\pi\)
0.114340 + 0.993442i \(0.463525\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 6.00000 0.195698
\(941\) − 20.7846i − 0.677559i −0.940866 0.338779i \(-0.889986\pi\)
0.940866 0.338779i \(-0.110014\pi\)
\(942\) 0 0
\(943\) − 31.1769i − 1.01526i
\(944\) 34.6410i 1.12747i
\(945\) 0 0
\(946\) 0 0
\(947\) − 17.3205i − 0.562841i −0.959585 0.281420i \(-0.909194\pi\)
0.959585 0.281420i \(-0.0908056\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −12.0000 −0.389331
\(951\) 0 0
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) − 31.1769i − 1.00886i
\(956\) − 20.7846i − 0.672222i
\(957\) 0 0
\(958\) 42.0000 1.35696
\(959\) 0 0
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 0 0
\(963\) 0 0
\(964\) 1.73205i 0.0557856i
\(965\) −9.00000 −0.289720
\(966\) 0 0
\(967\) 58.8897i 1.89377i 0.321578 + 0.946883i \(0.395787\pi\)
−0.321578 + 0.946883i \(0.604213\pi\)
\(968\) − 19.0526i − 0.612372i
\(969\) 0 0
\(970\) 20.7846i 0.667354i
\(971\) −6.00000 −0.192549 −0.0962746 0.995355i \(-0.530693\pi\)
−0.0962746 + 0.995355i \(0.530693\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −12.0000 −0.384505
\(975\) 0 0
\(976\) −5.00000 −0.160046
\(977\) 43.3013i 1.38533i 0.721259 + 0.692665i \(0.243564\pi\)
−0.721259 + 0.692665i \(0.756436\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) − 12.1244i − 0.387298i
\(981\) 0 0
\(982\) 20.7846i 0.663264i
\(983\) − 51.9615i − 1.65732i −0.559756 0.828658i \(-0.689105\pi\)
0.559756 0.828658i \(-0.310895\pi\)
\(984\) 0 0
\(985\) −24.0000 −0.764704
\(986\) 15.5885i 0.496438i
\(987\) 0 0
\(988\) 0 0
\(989\) 48.0000 1.52631
\(990\) 0 0
\(991\) 2.00000 0.0635321 0.0317660 0.999495i \(-0.489887\pi\)
0.0317660 + 0.999495i \(0.489887\pi\)
\(992\) −18.0000 −0.571501
\(993\) 0 0
\(994\) 0 0
\(995\) − 3.46410i − 0.109819i
\(996\) 0 0
\(997\) 17.0000 0.538395 0.269198 0.963085i \(-0.413241\pi\)
0.269198 + 0.963085i \(0.413241\pi\)
\(998\) 54.0000 1.70934
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1521.2.b.a.1351.1 2
3.2 odd 2 169.2.b.a.168.2 2
12.11 even 2 2704.2.f.b.337.1 2
13.3 even 3 117.2.q.c.82.1 2
13.4 even 6 117.2.q.c.10.1 2
13.5 odd 4 1521.2.a.k.1.1 2
13.8 odd 4 1521.2.a.k.1.2 2
13.12 even 2 inner 1521.2.b.a.1351.2 2
39.2 even 12 169.2.c.a.22.1 4
39.5 even 4 169.2.a.a.1.2 2
39.8 even 4 169.2.a.a.1.1 2
39.11 even 12 169.2.c.a.22.2 4
39.17 odd 6 13.2.e.a.10.1 yes 2
39.20 even 12 169.2.c.a.146.2 4
39.23 odd 6 169.2.e.a.147.1 2
39.29 odd 6 13.2.e.a.4.1 2
39.32 even 12 169.2.c.a.146.1 4
39.35 odd 6 169.2.e.a.23.1 2
39.38 odd 2 169.2.b.a.168.1 2
52.3 odd 6 1872.2.by.d.433.1 2
52.43 odd 6 1872.2.by.d.1297.1 2
156.47 odd 4 2704.2.a.o.1.2 2
156.83 odd 4 2704.2.a.o.1.1 2
156.95 even 6 208.2.w.b.49.1 2
156.107 even 6 208.2.w.b.17.1 2
156.155 even 2 2704.2.f.b.337.2 2
195.17 even 12 325.2.m.a.49.1 4
195.29 odd 6 325.2.n.a.251.1 2
195.44 even 4 4225.2.a.v.1.1 2
195.68 even 12 325.2.m.a.199.1 4
195.107 even 12 325.2.m.a.199.2 4
195.134 odd 6 325.2.n.a.101.1 2
195.164 even 4 4225.2.a.v.1.2 2
195.173 even 12 325.2.m.a.49.2 4
273.17 even 6 637.2.k.c.569.1 2
273.68 even 6 637.2.k.c.459.1 2
273.83 odd 4 8281.2.a.q.1.2 2
273.95 odd 6 637.2.k.a.569.1 2
273.107 odd 6 637.2.k.a.459.1 2
273.125 odd 4 8281.2.a.q.1.1 2
273.146 even 6 637.2.q.a.589.1 2
273.173 even 6 637.2.u.b.361.1 2
273.185 even 6 637.2.u.b.30.1 2
273.212 odd 6 637.2.u.c.361.1 2
273.251 even 6 637.2.q.a.491.1 2
273.263 odd 6 637.2.u.c.30.1 2
312.29 odd 6 832.2.w.d.641.1 2
312.107 even 6 832.2.w.a.641.1 2
312.173 odd 6 832.2.w.d.257.1 2
312.251 even 6 832.2.w.a.257.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.2.e.a.4.1 2 39.29 odd 6
13.2.e.a.10.1 yes 2 39.17 odd 6
117.2.q.c.10.1 2 13.4 even 6
117.2.q.c.82.1 2 13.3 even 3
169.2.a.a.1.1 2 39.8 even 4
169.2.a.a.1.2 2 39.5 even 4
169.2.b.a.168.1 2 39.38 odd 2
169.2.b.a.168.2 2 3.2 odd 2
169.2.c.a.22.1 4 39.2 even 12
169.2.c.a.22.2 4 39.11 even 12
169.2.c.a.146.1 4 39.32 even 12
169.2.c.a.146.2 4 39.20 even 12
169.2.e.a.23.1 2 39.35 odd 6
169.2.e.a.147.1 2 39.23 odd 6
208.2.w.b.17.1 2 156.107 even 6
208.2.w.b.49.1 2 156.95 even 6
325.2.m.a.49.1 4 195.17 even 12
325.2.m.a.49.2 4 195.173 even 12
325.2.m.a.199.1 4 195.68 even 12
325.2.m.a.199.2 4 195.107 even 12
325.2.n.a.101.1 2 195.134 odd 6
325.2.n.a.251.1 2 195.29 odd 6
637.2.k.a.459.1 2 273.107 odd 6
637.2.k.a.569.1 2 273.95 odd 6
637.2.k.c.459.1 2 273.68 even 6
637.2.k.c.569.1 2 273.17 even 6
637.2.q.a.491.1 2 273.251 even 6
637.2.q.a.589.1 2 273.146 even 6
637.2.u.b.30.1 2 273.185 even 6
637.2.u.b.361.1 2 273.173 even 6
637.2.u.c.30.1 2 273.263 odd 6
637.2.u.c.361.1 2 273.212 odd 6
832.2.w.a.257.1 2 312.251 even 6
832.2.w.a.641.1 2 312.107 even 6
832.2.w.d.257.1 2 312.173 odd 6
832.2.w.d.641.1 2 312.29 odd 6
1521.2.a.k.1.1 2 13.5 odd 4
1521.2.a.k.1.2 2 13.8 odd 4
1521.2.b.a.1351.1 2 1.1 even 1 trivial
1521.2.b.a.1351.2 2 13.12 even 2 inner
1872.2.by.d.433.1 2 52.3 odd 6
1872.2.by.d.1297.1 2 52.43 odd 6
2704.2.a.o.1.1 2 156.83 odd 4
2704.2.a.o.1.2 2 156.47 odd 4
2704.2.f.b.337.1 2 12.11 even 2
2704.2.f.b.337.2 2 156.155 even 2
4225.2.a.v.1.1 2 195.44 even 4
4225.2.a.v.1.2 2 195.164 even 4
8281.2.a.q.1.1 2 273.125 odd 4
8281.2.a.q.1.2 2 273.83 odd 4