# Properties

 Label 1521.2.b.a.1351.1 Level $1521$ Weight $2$ Character 1521.1351 Analytic conductor $12.145$ Analytic rank $0$ Dimension $2$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1521,2,Mod(1351,1521)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1521, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1521.1351");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1521 = 3^{2} \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1521.b (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$12.1452461474$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 13) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 1351.1 Root $$0.500000 + 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 1521.1351 Dual form 1521.2.b.a.1351.2

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-1.73205i q^{2} -1.00000 q^{4} +1.73205i q^{5} -1.73205i q^{8} +O(q^{10})$$ $$q-1.73205i q^{2} -1.00000 q^{4} +1.73205i q^{5} -1.73205i q^{8} +3.00000 q^{10} -5.00000 q^{16} +3.00000 q^{17} -3.46410i q^{19} -1.73205i q^{20} +6.00000 q^{23} +2.00000 q^{25} -3.00000 q^{29} +3.46410i q^{31} +5.19615i q^{32} -5.19615i q^{34} -8.66025i q^{37} -6.00000 q^{38} +3.00000 q^{40} -5.19615i q^{41} +8.00000 q^{43} -10.3923i q^{46} +3.46410i q^{47} +7.00000 q^{49} -3.46410i q^{50} +3.00000 q^{53} +5.19615i q^{58} -6.92820i q^{59} +1.00000 q^{61} +6.00000 q^{62} -1.00000 q^{64} -3.46410i q^{67} -3.00000 q^{68} -3.46410i q^{71} +1.73205i q^{73} -15.0000 q^{74} +3.46410i q^{76} +4.00000 q^{79} -8.66025i q^{80} -9.00000 q^{82} -13.8564i q^{83} +5.19615i q^{85} -13.8564i q^{86} -6.92820i q^{89} -6.00000 q^{92} +6.00000 q^{94} +6.00000 q^{95} +6.92820i q^{97} -12.1244i q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{4}+O(q^{10})$$ 2 * q - 2 * q^4 $$2 q - 2 q^{4} + 6 q^{10} - 10 q^{16} + 6 q^{17} + 12 q^{23} + 4 q^{25} - 6 q^{29} - 12 q^{38} + 6 q^{40} + 16 q^{43} + 14 q^{49} + 6 q^{53} + 2 q^{61} + 12 q^{62} - 2 q^{64} - 6 q^{68} - 30 q^{74} + 8 q^{79} - 18 q^{82} - 12 q^{92} + 12 q^{94} + 12 q^{95}+O(q^{100})$$ 2 * q - 2 * q^4 + 6 * q^10 - 10 * q^16 + 6 * q^17 + 12 * q^23 + 4 * q^25 - 6 * q^29 - 12 * q^38 + 6 * q^40 + 16 * q^43 + 14 * q^49 + 6 * q^53 + 2 * q^61 + 12 * q^62 - 2 * q^64 - 6 * q^68 - 30 * q^74 + 8 * q^79 - 18 * q^82 - 12 * q^92 + 12 * q^94 + 12 * q^95

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1521\mathbb{Z}\right)^\times$$.

 $$n$$ $$677$$ $$847$$ $$\chi(n)$$ $$1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ − 1.73205i − 1.22474i −0.790569 0.612372i $$-0.790215\pi$$
0.790569 0.612372i $$-0.209785\pi$$
$$3$$ 0 0
$$4$$ −1.00000 −0.500000
$$5$$ 1.73205i 0.774597i 0.921954 + 0.387298i $$0.126592\pi$$
−0.921954 + 0.387298i $$0.873408\pi$$
$$6$$ 0 0
$$7$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$8$$ − 1.73205i − 0.612372i
$$9$$ 0 0
$$10$$ 3.00000 0.948683
$$11$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$12$$ 0 0
$$13$$ 0 0
$$14$$ 0 0
$$15$$ 0 0
$$16$$ −5.00000 −1.25000
$$17$$ 3.00000 0.727607 0.363803 0.931476i $$-0.381478\pi$$
0.363803 + 0.931476i $$0.381478\pi$$
$$18$$ 0 0
$$19$$ − 3.46410i − 0.794719i −0.917663 0.397360i $$-0.869927\pi$$
0.917663 0.397360i $$-0.130073\pi$$
$$20$$ − 1.73205i − 0.387298i
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 6.00000 1.25109 0.625543 0.780189i $$-0.284877\pi$$
0.625543 + 0.780189i $$0.284877\pi$$
$$24$$ 0 0
$$25$$ 2.00000 0.400000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ −3.00000 −0.557086 −0.278543 0.960424i $$-0.589851\pi$$
−0.278543 + 0.960424i $$0.589851\pi$$
$$30$$ 0 0
$$31$$ 3.46410i 0.622171i 0.950382 + 0.311086i $$0.100693\pi$$
−0.950382 + 0.311086i $$0.899307\pi$$
$$32$$ 5.19615i 0.918559i
$$33$$ 0 0
$$34$$ − 5.19615i − 0.891133i
$$35$$ 0 0
$$36$$ 0 0
$$37$$ − 8.66025i − 1.42374i −0.702313 0.711868i $$-0.747849\pi$$
0.702313 0.711868i $$-0.252151\pi$$
$$38$$ −6.00000 −0.973329
$$39$$ 0 0
$$40$$ 3.00000 0.474342
$$41$$ − 5.19615i − 0.811503i −0.913984 0.405751i $$-0.867010\pi$$
0.913984 0.405751i $$-0.132990\pi$$
$$42$$ 0 0
$$43$$ 8.00000 1.21999 0.609994 0.792406i $$-0.291172\pi$$
0.609994 + 0.792406i $$0.291172\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ − 10.3923i − 1.53226i
$$47$$ 3.46410i 0.505291i 0.967559 + 0.252646i $$0.0813007\pi$$
−0.967559 + 0.252646i $$0.918699\pi$$
$$48$$ 0 0
$$49$$ 7.00000 1.00000
$$50$$ − 3.46410i − 0.489898i
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 3.00000 0.412082 0.206041 0.978543i $$-0.433942\pi$$
0.206041 + 0.978543i $$0.433942\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 5.19615i 0.682288i
$$59$$ − 6.92820i − 0.901975i −0.892530 0.450988i $$-0.851072\pi$$
0.892530 0.450988i $$-0.148928\pi$$
$$60$$ 0 0
$$61$$ 1.00000 0.128037 0.0640184 0.997949i $$-0.479608\pi$$
0.0640184 + 0.997949i $$0.479608\pi$$
$$62$$ 6.00000 0.762001
$$63$$ 0 0
$$64$$ −1.00000 −0.125000
$$65$$ 0 0
$$66$$ 0 0
$$67$$ − 3.46410i − 0.423207i −0.977356 0.211604i $$-0.932131\pi$$
0.977356 0.211604i $$-0.0678686\pi$$
$$68$$ −3.00000 −0.363803
$$69$$ 0 0
$$70$$ 0 0
$$71$$ − 3.46410i − 0.411113i −0.978645 0.205557i $$-0.934100\pi$$
0.978645 0.205557i $$-0.0659005\pi$$
$$72$$ 0 0
$$73$$ 1.73205i 0.202721i 0.994850 + 0.101361i $$0.0323196\pi$$
−0.994850 + 0.101361i $$0.967680\pi$$
$$74$$ −15.0000 −1.74371
$$75$$ 0 0
$$76$$ 3.46410i 0.397360i
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 4.00000 0.450035 0.225018 0.974355i $$-0.427756\pi$$
0.225018 + 0.974355i $$0.427756\pi$$
$$80$$ − 8.66025i − 0.968246i
$$81$$ 0 0
$$82$$ −9.00000 −0.993884
$$83$$ − 13.8564i − 1.52094i −0.649374 0.760469i $$-0.724969\pi$$
0.649374 0.760469i $$-0.275031\pi$$
$$84$$ 0 0
$$85$$ 5.19615i 0.563602i
$$86$$ − 13.8564i − 1.49417i
$$87$$ 0 0
$$88$$ 0 0
$$89$$ − 6.92820i − 0.734388i −0.930144 0.367194i $$-0.880318\pi$$
0.930144 0.367194i $$-0.119682\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ −6.00000 −0.625543
$$93$$ 0 0
$$94$$ 6.00000 0.618853
$$95$$ 6.00000 0.615587
$$96$$ 0 0
$$97$$ 6.92820i 0.703452i 0.936103 + 0.351726i $$0.114405\pi$$
−0.936103 + 0.351726i $$0.885595\pi$$
$$98$$ − 12.1244i − 1.22474i
$$99$$ 0 0
$$100$$ −2.00000 −0.200000
$$101$$ 3.00000 0.298511 0.149256 0.988799i $$-0.452312\pi$$
0.149256 + 0.988799i $$0.452312\pi$$
$$102$$ 0 0
$$103$$ −10.0000 −0.985329 −0.492665 0.870219i $$-0.663977\pi$$
−0.492665 + 0.870219i $$0.663977\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ − 5.19615i − 0.504695i
$$107$$ −6.00000 −0.580042 −0.290021 0.957020i $$-0.593662\pi$$
−0.290021 + 0.957020i $$0.593662\pi$$
$$108$$ 0 0
$$109$$ − 13.8564i − 1.32720i −0.748086 0.663602i $$-0.769027\pi$$
0.748086 0.663602i $$-0.230973\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 15.0000 1.41108 0.705541 0.708669i $$-0.250704\pi$$
0.705541 + 0.708669i $$0.250704\pi$$
$$114$$ 0 0
$$115$$ 10.3923i 0.969087i
$$116$$ 3.00000 0.278543
$$117$$ 0 0
$$118$$ −12.0000 −1.10469
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 11.0000 1.00000
$$122$$ − 1.73205i − 0.156813i
$$123$$ 0 0
$$124$$ − 3.46410i − 0.311086i
$$125$$ 12.1244i 1.08444i
$$126$$ 0 0
$$127$$ −2.00000 −0.177471 −0.0887357 0.996055i $$-0.528283\pi$$
−0.0887357 + 0.996055i $$0.528283\pi$$
$$128$$ 12.1244i 1.07165i
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −18.0000 −1.57267 −0.786334 0.617802i $$-0.788023\pi$$
−0.786334 + 0.617802i $$0.788023\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ −6.00000 −0.518321
$$135$$ 0 0
$$136$$ − 5.19615i − 0.445566i
$$137$$ 15.5885i 1.33181i 0.746036 + 0.665906i $$0.231955\pi$$
−0.746036 + 0.665906i $$0.768045\pi$$
$$138$$ 0 0
$$139$$ −4.00000 −0.339276 −0.169638 0.985506i $$-0.554260\pi$$
−0.169638 + 0.985506i $$0.554260\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ −6.00000 −0.503509
$$143$$ 0 0
$$144$$ 0 0
$$145$$ − 5.19615i − 0.431517i
$$146$$ 3.00000 0.248282
$$147$$ 0 0
$$148$$ 8.66025i 0.711868i
$$149$$ 19.0526i 1.56085i 0.625252 + 0.780423i $$0.284996\pi$$
−0.625252 + 0.780423i $$0.715004\pi$$
$$150$$ 0 0
$$151$$ 17.3205i 1.40952i 0.709444 + 0.704761i $$0.248946\pi$$
−0.709444 + 0.704761i $$0.751054\pi$$
$$152$$ −6.00000 −0.486664
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −6.00000 −0.481932
$$156$$ 0 0
$$157$$ −13.0000 −1.03751 −0.518756 0.854922i $$-0.673605\pi$$
−0.518756 + 0.854922i $$0.673605\pi$$
$$158$$ − 6.92820i − 0.551178i
$$159$$ 0 0
$$160$$ −9.00000 −0.711512
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 20.7846i 1.62798i 0.580881 + 0.813988i $$0.302708\pi$$
−0.580881 + 0.813988i $$0.697292\pi$$
$$164$$ 5.19615i 0.405751i
$$165$$ 0 0
$$166$$ −24.0000 −1.86276
$$167$$ − 13.8564i − 1.07224i −0.844141 0.536120i $$-0.819889\pi$$
0.844141 0.536120i $$-0.180111\pi$$
$$168$$ 0 0
$$169$$ 0 0
$$170$$ 9.00000 0.690268
$$171$$ 0 0
$$172$$ −8.00000 −0.609994
$$173$$ −6.00000 −0.456172 −0.228086 0.973641i $$-0.573247\pi$$
−0.228086 + 0.973641i $$0.573247\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ −12.0000 −0.899438
$$179$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$180$$ 0 0
$$181$$ 11.0000 0.817624 0.408812 0.912619i $$-0.365943\pi$$
0.408812 + 0.912619i $$0.365943\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ − 10.3923i − 0.766131i
$$185$$ 15.0000 1.10282
$$186$$ 0 0
$$187$$ 0 0
$$188$$ − 3.46410i − 0.252646i
$$189$$ 0 0
$$190$$ − 10.3923i − 0.753937i
$$191$$ −18.0000 −1.30243 −0.651217 0.758891i $$-0.725741\pi$$
−0.651217 + 0.758891i $$0.725741\pi$$
$$192$$ 0 0
$$193$$ 5.19615i 0.374027i 0.982357 + 0.187014i $$0.0598809\pi$$
−0.982357 + 0.187014i $$0.940119\pi$$
$$194$$ 12.0000 0.861550
$$195$$ 0 0
$$196$$ −7.00000 −0.500000
$$197$$ 13.8564i 0.987228i 0.869681 + 0.493614i $$0.164324\pi$$
−0.869681 + 0.493614i $$0.835676\pi$$
$$198$$ 0 0
$$199$$ −2.00000 −0.141776 −0.0708881 0.997484i $$-0.522583\pi$$
−0.0708881 + 0.997484i $$0.522583\pi$$
$$200$$ − 3.46410i − 0.244949i
$$201$$ 0 0
$$202$$ − 5.19615i − 0.365600i
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 9.00000 0.628587
$$206$$ 17.3205i 1.20678i
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 10.0000 0.688428 0.344214 0.938891i $$-0.388145\pi$$
0.344214 + 0.938891i $$0.388145\pi$$
$$212$$ −3.00000 −0.206041
$$213$$ 0 0
$$214$$ 10.3923i 0.710403i
$$215$$ 13.8564i 0.944999i
$$216$$ 0 0
$$217$$ 0 0
$$218$$ −24.0000 −1.62549
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ 10.3923i 0.695920i 0.937509 + 0.347960i $$0.113126\pi$$
−0.937509 + 0.347960i $$0.886874\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ − 25.9808i − 1.72821i
$$227$$ − 24.2487i − 1.60944i −0.593652 0.804722i $$-0.702314\pi$$
0.593652 0.804722i $$-0.297686\pi$$
$$228$$ 0 0
$$229$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$230$$ 18.0000 1.18688
$$231$$ 0 0
$$232$$ 5.19615i 0.341144i
$$233$$ −6.00000 −0.393073 −0.196537 0.980497i $$-0.562969\pi$$
−0.196537 + 0.980497i $$0.562969\pi$$
$$234$$ 0 0
$$235$$ −6.00000 −0.391397
$$236$$ 6.92820i 0.450988i
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 20.7846i 1.34444i 0.740349 + 0.672222i $$0.234660\pi$$
−0.740349 + 0.672222i $$0.765340\pi$$
$$240$$ 0 0
$$241$$ − 1.73205i − 0.111571i −0.998443 0.0557856i $$-0.982234\pi$$
0.998443 0.0557856i $$-0.0177663\pi$$
$$242$$ − 19.0526i − 1.22474i
$$243$$ 0 0
$$244$$ −1.00000 −0.0640184
$$245$$ 12.1244i 0.774597i
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 6.00000 0.381000
$$249$$ 0 0
$$250$$ 21.0000 1.32816
$$251$$ 18.0000 1.13615 0.568075 0.822977i $$-0.307688\pi$$
0.568075 + 0.822977i $$0.307688\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 3.46410i 0.217357i
$$255$$ 0 0
$$256$$ 19.0000 1.18750
$$257$$ −3.00000 −0.187135 −0.0935674 0.995613i $$-0.529827\pi$$
−0.0935674 + 0.995613i $$0.529827\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 31.1769i 1.92612i
$$263$$ −12.0000 −0.739952 −0.369976 0.929041i $$-0.620634\pi$$
−0.369976 + 0.929041i $$0.620634\pi$$
$$264$$ 0 0
$$265$$ 5.19615i 0.319197i
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 3.46410i 0.211604i
$$269$$ 6.00000 0.365826 0.182913 0.983129i $$-0.441447\pi$$
0.182913 + 0.983129i $$0.441447\pi$$
$$270$$ 0 0
$$271$$ − 20.7846i − 1.26258i −0.775549 0.631288i $$-0.782527\pi$$
0.775549 0.631288i $$-0.217473\pi$$
$$272$$ −15.0000 −0.909509
$$273$$ 0 0
$$274$$ 27.0000 1.63113
$$275$$ 0 0
$$276$$ 0 0
$$277$$ −7.00000 −0.420589 −0.210295 0.977638i $$-0.567442\pi$$
−0.210295 + 0.977638i $$0.567442\pi$$
$$278$$ 6.92820i 0.415526i
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 22.5167i 1.34323i 0.740900 + 0.671616i $$0.234399\pi$$
−0.740900 + 0.671616i $$0.765601\pi$$
$$282$$ 0 0
$$283$$ 4.00000 0.237775 0.118888 0.992908i $$-0.462067\pi$$
0.118888 + 0.992908i $$0.462067\pi$$
$$284$$ 3.46410i 0.205557i
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −8.00000 −0.470588
$$290$$ −9.00000 −0.528498
$$291$$ 0 0
$$292$$ − 1.73205i − 0.101361i
$$293$$ − 5.19615i − 0.303562i −0.988414 0.151781i $$-0.951499\pi$$
0.988414 0.151781i $$-0.0485009\pi$$
$$294$$ 0 0
$$295$$ 12.0000 0.698667
$$296$$ −15.0000 −0.871857
$$297$$ 0 0
$$298$$ 33.0000 1.91164
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 30.0000 1.72631
$$303$$ 0 0
$$304$$ 17.3205i 0.993399i
$$305$$ 1.73205i 0.0991769i
$$306$$ 0 0
$$307$$ − 17.3205i − 0.988534i −0.869310 0.494267i $$-0.835437\pi$$
0.869310 0.494267i $$-0.164563\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 10.3923i 0.590243i
$$311$$ 30.0000 1.70114 0.850572 0.525859i $$-0.176256\pi$$
0.850572 + 0.525859i $$0.176256\pi$$
$$312$$ 0 0
$$313$$ 10.0000 0.565233 0.282617 0.959233i $$-0.408798\pi$$
0.282617 + 0.959233i $$0.408798\pi$$
$$314$$ 22.5167i 1.27069i
$$315$$ 0 0
$$316$$ −4.00000 −0.225018
$$317$$ 5.19615i 0.291845i 0.989296 + 0.145922i $$0.0466150\pi$$
−0.989296 + 0.145922i $$0.953385\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ − 1.73205i − 0.0968246i
$$321$$ 0 0
$$322$$ 0 0
$$323$$ − 10.3923i − 0.578243i
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 36.0000 1.99386
$$327$$ 0 0
$$328$$ −9.00000 −0.496942
$$329$$ 0 0
$$330$$ 0 0
$$331$$ − 27.7128i − 1.52323i −0.648027 0.761617i $$-0.724406\pi$$
0.648027 0.761617i $$-0.275594\pi$$
$$332$$ 13.8564i 0.760469i
$$333$$ 0 0
$$334$$ −24.0000 −1.31322
$$335$$ 6.00000 0.327815
$$336$$ 0 0
$$337$$ −23.0000 −1.25289 −0.626445 0.779466i $$-0.715491\pi$$
−0.626445 + 0.779466i $$0.715491\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ − 5.19615i − 0.281801i
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 0 0
$$344$$ − 13.8564i − 0.747087i
$$345$$ 0 0
$$346$$ 10.3923i 0.558694i
$$347$$ 30.0000 1.61048 0.805242 0.592946i $$-0.202035\pi$$
0.805242 + 0.592946i $$0.202035\pi$$
$$348$$ 0 0
$$349$$ − 13.8564i − 0.741716i −0.928689 0.370858i $$-0.879064\pi$$
0.928689 0.370858i $$-0.120936\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 32.9090i 1.75157i 0.482704 + 0.875784i $$0.339655\pi$$
−0.482704 + 0.875784i $$0.660345\pi$$
$$354$$ 0 0
$$355$$ 6.00000 0.318447
$$356$$ 6.92820i 0.367194i
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 6.92820i 0.365657i 0.983145 + 0.182828i $$0.0585252\pi$$
−0.983145 + 0.182828i $$0.941475\pi$$
$$360$$ 0 0
$$361$$ 7.00000 0.368421
$$362$$ − 19.0526i − 1.00138i
$$363$$ 0 0
$$364$$ 0 0
$$365$$ −3.00000 −0.157027
$$366$$ 0 0
$$367$$ −22.0000 −1.14839 −0.574195 0.818718i $$-0.694685\pi$$
−0.574195 + 0.818718i $$0.694685\pi$$
$$368$$ −30.0000 −1.56386
$$369$$ 0 0
$$370$$ − 25.9808i − 1.35068i
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 19.0000 0.983783 0.491891 0.870657i $$-0.336306\pi$$
0.491891 + 0.870657i $$0.336306\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 6.00000 0.309426
$$377$$ 0 0
$$378$$ 0 0
$$379$$ 24.2487i 1.24557i 0.782392 + 0.622786i $$0.213999\pi$$
−0.782392 + 0.622786i $$0.786001\pi$$
$$380$$ −6.00000 −0.307794
$$381$$ 0 0
$$382$$ 31.1769i 1.59515i
$$383$$ 20.7846i 1.06204i 0.847358 + 0.531022i $$0.178192\pi$$
−0.847358 + 0.531022i $$0.821808\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 9.00000 0.458088
$$387$$ 0 0
$$388$$ − 6.92820i − 0.351726i
$$389$$ 9.00000 0.456318 0.228159 0.973624i $$-0.426729\pi$$
0.228159 + 0.973624i $$0.426729\pi$$
$$390$$ 0 0
$$391$$ 18.0000 0.910299
$$392$$ − 12.1244i − 0.612372i
$$393$$ 0 0
$$394$$ 24.0000 1.20910
$$395$$ 6.92820i 0.348596i
$$396$$ 0 0
$$397$$ − 13.8564i − 0.695433i −0.937600 0.347717i $$-0.886957\pi$$
0.937600 0.347717i $$-0.113043\pi$$
$$398$$ 3.46410i 0.173640i
$$399$$ 0 0
$$400$$ −10.0000 −0.500000
$$401$$ − 1.73205i − 0.0864945i −0.999064 0.0432472i $$-0.986230\pi$$
0.999064 0.0432472i $$-0.0137703\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ −3.00000 −0.149256
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 15.5885i 0.770800i 0.922750 + 0.385400i $$0.125936\pi$$
−0.922750 + 0.385400i $$0.874064\pi$$
$$410$$ − 15.5885i − 0.769859i
$$411$$ 0 0
$$412$$ 10.0000 0.492665
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 24.0000 1.17811
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −18.0000 −0.879358 −0.439679 0.898155i $$-0.644908\pi$$
−0.439679 + 0.898155i $$0.644908\pi$$
$$420$$ 0 0
$$421$$ 15.5885i 0.759735i 0.925041 + 0.379867i $$0.124030\pi$$
−0.925041 + 0.379867i $$0.875970\pi$$
$$422$$ − 17.3205i − 0.843149i
$$423$$ 0 0
$$424$$ − 5.19615i − 0.252347i
$$425$$ 6.00000 0.291043
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 6.00000 0.290021
$$429$$ 0 0
$$430$$ 24.0000 1.15738
$$431$$ − 6.92820i − 0.333720i −0.985981 0.166860i $$-0.946637\pi$$
0.985981 0.166860i $$-0.0533628\pi$$
$$432$$ 0 0
$$433$$ −17.0000 −0.816968 −0.408484 0.912766i $$-0.633942\pi$$
−0.408484 + 0.912766i $$0.633942\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 13.8564i 0.663602i
$$437$$ − 20.7846i − 0.994263i
$$438$$ 0 0
$$439$$ −28.0000 −1.33637 −0.668184 0.743996i $$-0.732928\pi$$
−0.668184 + 0.743996i $$0.732928\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 12.0000 0.570137 0.285069 0.958507i $$-0.407984\pi$$
0.285069 + 0.958507i $$0.407984\pi$$
$$444$$ 0 0
$$445$$ 12.0000 0.568855
$$446$$ 18.0000 0.852325
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 6.92820i 0.326962i 0.986546 + 0.163481i $$0.0522723\pi$$
−0.986546 + 0.163481i $$0.947728\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ −15.0000 −0.705541
$$453$$ 0 0
$$454$$ −42.0000 −1.97116
$$455$$ 0 0
$$456$$ 0 0
$$457$$ − 1.73205i − 0.0810219i −0.999179 0.0405110i $$-0.987101\pi$$
0.999179 0.0405110i $$-0.0128986\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ − 10.3923i − 0.484544i
$$461$$ − 22.5167i − 1.04871i −0.851501 0.524353i $$-0.824307\pi$$
0.851501 0.524353i $$-0.175693\pi$$
$$462$$ 0 0
$$463$$ 13.8564i 0.643962i 0.946746 + 0.321981i $$0.104349\pi$$
−0.946746 + 0.321981i $$0.895651\pi$$
$$464$$ 15.0000 0.696358
$$465$$ 0 0
$$466$$ 10.3923i 0.481414i
$$467$$ −12.0000 −0.555294 −0.277647 0.960683i $$-0.589555\pi$$
−0.277647 + 0.960683i $$0.589555\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 10.3923i 0.479361i
$$471$$ 0 0
$$472$$ −12.0000 −0.552345
$$473$$ 0 0
$$474$$ 0 0
$$475$$ − 6.92820i − 0.317888i
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 36.0000 1.64660
$$479$$ 24.2487i 1.10795i 0.832533 + 0.553976i $$0.186890\pi$$
−0.832533 + 0.553976i $$0.813110\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ −3.00000 −0.136646
$$483$$ 0 0
$$484$$ −11.0000 −0.500000
$$485$$ −12.0000 −0.544892
$$486$$ 0 0
$$487$$ − 6.92820i − 0.313947i −0.987603 0.156973i $$-0.949826\pi$$
0.987603 0.156973i $$-0.0501737\pi$$
$$488$$ − 1.73205i − 0.0784063i
$$489$$ 0 0
$$490$$ 21.0000 0.948683
$$491$$ −12.0000 −0.541552 −0.270776 0.962642i $$-0.587280\pi$$
−0.270776 + 0.962642i $$0.587280\pi$$
$$492$$ 0 0
$$493$$ −9.00000 −0.405340
$$494$$ 0 0
$$495$$ 0 0
$$496$$ − 17.3205i − 0.777714i
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 31.1769i 1.39567i 0.716258 + 0.697835i $$0.245853\pi$$
−0.716258 + 0.697835i $$0.754147\pi$$
$$500$$ − 12.1244i − 0.542218i
$$501$$ 0 0
$$502$$ − 31.1769i − 1.39149i
$$503$$ −36.0000 −1.60516 −0.802580 0.596544i $$-0.796540\pi$$
−0.802580 + 0.596544i $$0.796540\pi$$
$$504$$ 0 0
$$505$$ 5.19615i 0.231226i
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 2.00000 0.0887357
$$509$$ 19.0526i 0.844490i 0.906482 + 0.422245i $$0.138758\pi$$
−0.906482 + 0.422245i $$0.861242\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ − 8.66025i − 0.382733i
$$513$$ 0 0
$$514$$ 5.19615i 0.229192i
$$515$$ − 17.3205i − 0.763233i
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −9.00000 −0.394297 −0.197149 0.980374i $$-0.563168\pi$$
−0.197149 + 0.980374i $$0.563168\pi$$
$$522$$ 0 0
$$523$$ −16.0000 −0.699631 −0.349816 0.936819i $$-0.613756\pi$$
−0.349816 + 0.936819i $$0.613756\pi$$
$$524$$ 18.0000 0.786334
$$525$$ 0 0
$$526$$ 20.7846i 0.906252i
$$527$$ 10.3923i 0.452696i
$$528$$ 0 0
$$529$$ 13.0000 0.565217
$$530$$ 9.00000 0.390935
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ − 10.3923i − 0.449299i
$$536$$ −6.00000 −0.259161
$$537$$ 0 0
$$538$$ − 10.3923i − 0.448044i
$$539$$ 0 0
$$540$$ 0 0
$$541$$ 29.4449i 1.26593i 0.774179 + 0.632967i $$0.218163\pi$$
−0.774179 + 0.632967i $$0.781837\pi$$
$$542$$ −36.0000 −1.54633
$$543$$ 0 0
$$544$$ 15.5885i 0.668350i
$$545$$ 24.0000 1.02805
$$546$$ 0 0
$$547$$ −22.0000 −0.940652 −0.470326 0.882493i $$-0.655864\pi$$
−0.470326 + 0.882493i $$0.655864\pi$$
$$548$$ − 15.5885i − 0.665906i
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 10.3923i 0.442727i
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 12.1244i 0.515115i
$$555$$ 0 0
$$556$$ 4.00000 0.169638
$$557$$ − 15.5885i − 0.660504i −0.943893 0.330252i $$-0.892866\pi$$
0.943893 0.330252i $$-0.107134\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 39.0000 1.64512
$$563$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$564$$ 0 0
$$565$$ 25.9808i 1.09302i
$$566$$ − 6.92820i − 0.291214i
$$567$$ 0 0
$$568$$ −6.00000 −0.251754
$$569$$ 42.0000 1.76073 0.880366 0.474295i $$-0.157297\pi$$
0.880366 + 0.474295i $$0.157297\pi$$
$$570$$ 0 0
$$571$$ 40.0000 1.67395 0.836974 0.547243i $$-0.184323\pi$$
0.836974 + 0.547243i $$0.184323\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 12.0000 0.500435
$$576$$ 0 0
$$577$$ − 19.0526i − 0.793168i −0.917998 0.396584i $$-0.870195\pi$$
0.917998 0.396584i $$-0.129805\pi$$
$$578$$ 13.8564i 0.576351i
$$579$$ 0 0
$$580$$ 5.19615i 0.215758i
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 3.00000 0.124141
$$585$$ 0 0
$$586$$ −9.00000 −0.371787
$$587$$ − 20.7846i − 0.857873i −0.903335 0.428936i $$-0.858888\pi$$
0.903335 0.428936i $$-0.141112\pi$$
$$588$$ 0 0
$$589$$ 12.0000 0.494451
$$590$$ − 20.7846i − 0.855689i
$$591$$ 0 0
$$592$$ 43.3013i 1.77967i
$$593$$ 25.9808i 1.06690i 0.845831 + 0.533451i $$0.179105\pi$$
−0.845831 + 0.533451i $$0.820895\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ − 19.0526i − 0.780423i
$$597$$ 0 0
$$598$$ 0 0
$$599$$ −30.0000 −1.22577 −0.612883 0.790173i $$-0.709990\pi$$
−0.612883 + 0.790173i $$0.709990\pi$$
$$600$$ 0 0
$$601$$ 25.0000 1.01977 0.509886 0.860242i $$-0.329688\pi$$
0.509886 + 0.860242i $$0.329688\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ − 17.3205i − 0.704761i
$$605$$ 19.0526i 0.774597i
$$606$$ 0 0
$$607$$ −34.0000 −1.38002 −0.690009 0.723801i $$-0.742393\pi$$
−0.690009 + 0.723801i $$0.742393\pi$$
$$608$$ 18.0000 0.729996
$$609$$ 0 0
$$610$$ 3.00000 0.121466
$$611$$ 0 0
$$612$$ 0 0
$$613$$ 12.1244i 0.489698i 0.969561 + 0.244849i $$0.0787384\pi$$
−0.969561 + 0.244849i $$0.921262\pi$$
$$614$$ −30.0000 −1.21070
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 22.5167i 0.906487i 0.891387 + 0.453243i $$0.149733\pi$$
−0.891387 + 0.453243i $$0.850267\pi$$
$$618$$ 0 0
$$619$$ − 20.7846i − 0.835404i −0.908584 0.417702i $$-0.862836\pi$$
0.908584 0.417702i $$-0.137164\pi$$
$$620$$ 6.00000 0.240966
$$621$$ 0 0
$$622$$ − 51.9615i − 2.08347i
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −11.0000 −0.440000
$$626$$ − 17.3205i − 0.692267i
$$627$$ 0 0
$$628$$ 13.0000 0.518756
$$629$$ − 25.9808i − 1.03592i
$$630$$ 0 0
$$631$$ − 48.4974i − 1.93065i −0.261048 0.965326i $$-0.584068\pi$$
0.261048 0.965326i $$-0.415932\pi$$
$$632$$ − 6.92820i − 0.275589i
$$633$$ 0 0
$$634$$ 9.00000 0.357436
$$635$$ − 3.46410i − 0.137469i
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ −21.0000 −0.830098
$$641$$ −33.0000 −1.30342 −0.651711 0.758468i $$-0.725948\pi$$
−0.651711 + 0.758468i $$0.725948\pi$$
$$642$$ 0 0
$$643$$ 13.8564i 0.546443i 0.961951 + 0.273222i $$0.0880892\pi$$
−0.961951 + 0.273222i $$0.911911\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ −18.0000 −0.708201
$$647$$ −18.0000 −0.707653 −0.353827 0.935311i $$-0.615120\pi$$
−0.353827 + 0.935311i $$0.615120\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 0 0
$$652$$ − 20.7846i − 0.813988i
$$653$$ 30.0000 1.17399 0.586995 0.809590i $$-0.300311\pi$$
0.586995 + 0.809590i $$0.300311\pi$$
$$654$$ 0 0
$$655$$ − 31.1769i − 1.21818i
$$656$$ 25.9808i 1.01438i
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 12.0000 0.467454 0.233727 0.972302i $$-0.424908\pi$$
0.233727 + 0.972302i $$0.424908\pi$$
$$660$$ 0 0
$$661$$ 46.7654i 1.81896i 0.415745 + 0.909481i $$0.363521\pi$$
−0.415745 + 0.909481i $$0.636479\pi$$
$$662$$ −48.0000 −1.86557
$$663$$ 0 0
$$664$$ −24.0000 −0.931381
$$665$$ 0 0
$$666$$ 0 0
$$667$$ −18.0000 −0.696963
$$668$$ 13.8564i 0.536120i
$$669$$ 0 0
$$670$$ − 10.3923i − 0.401490i
$$671$$ 0 0
$$672$$ 0 0
$$673$$ −19.0000 −0.732396 −0.366198 0.930537i $$-0.619341\pi$$
−0.366198 + 0.930537i $$0.619341\pi$$
$$674$$ 39.8372i 1.53447i
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 6.00000 0.230599 0.115299 0.993331i $$-0.463217\pi$$
0.115299 + 0.993331i $$0.463217\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 9.00000 0.345134
$$681$$ 0 0
$$682$$ 0 0
$$683$$ − 24.2487i − 0.927851i −0.885874 0.463926i $$-0.846441\pi$$
0.885874 0.463926i $$-0.153559\pi$$
$$684$$ 0 0
$$685$$ −27.0000 −1.03162
$$686$$ 0 0
$$687$$ 0 0
$$688$$ −40.0000 −1.52499
$$689$$ 0 0
$$690$$ 0 0
$$691$$ − 13.8564i − 0.527123i −0.964643 0.263561i $$-0.915103\pi$$
0.964643 0.263561i $$-0.0848971\pi$$
$$692$$ 6.00000 0.228086
$$693$$ 0 0
$$694$$ − 51.9615i − 1.97243i
$$695$$ − 6.92820i − 0.262802i
$$696$$ 0 0
$$697$$ − 15.5885i − 0.590455i
$$698$$ −24.0000 −0.908413
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −18.0000 −0.679851 −0.339925 0.940452i $$-0.610402\pi$$
−0.339925 + 0.940452i $$0.610402\pi$$
$$702$$ 0 0
$$703$$ −30.0000 −1.13147
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 57.0000 2.14522
$$707$$ 0 0
$$708$$ 0 0
$$709$$ − 5.19615i − 0.195146i −0.995228 0.0975728i $$-0.968892\pi$$
0.995228 0.0975728i $$-0.0311079\pi$$
$$710$$ − 10.3923i − 0.390016i
$$711$$ 0 0
$$712$$ −12.0000 −0.449719
$$713$$ 20.7846i 0.778390i
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 12.0000 0.447836
$$719$$ 48.0000 1.79010 0.895049 0.445968i $$-0.147140\pi$$
0.895049 + 0.445968i $$0.147140\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ − 12.1244i − 0.451222i
$$723$$ 0 0
$$724$$ −11.0000 −0.408812
$$725$$ −6.00000 −0.222834
$$726$$ 0 0
$$727$$ −32.0000 −1.18681 −0.593407 0.804902i $$-0.702218\pi$$
−0.593407 + 0.804902i $$0.702218\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 5.19615i 0.192318i
$$731$$ 24.0000 0.887672
$$732$$ 0 0
$$733$$ 12.1244i 0.447823i 0.974609 + 0.223912i $$0.0718827\pi$$
−0.974609 + 0.223912i $$0.928117\pi$$
$$734$$ 38.1051i 1.40649i
$$735$$ 0 0
$$736$$ 31.1769i 1.14920i
$$737$$ 0 0
$$738$$ 0 0
$$739$$ 20.7846i 0.764574i 0.924044 + 0.382287i $$0.124863\pi$$
−0.924044 + 0.382287i $$0.875137\pi$$
$$740$$ −15.0000 −0.551411
$$741$$ 0 0
$$742$$ 0 0
$$743$$ − 34.6410i − 1.27086i −0.772160 0.635428i $$-0.780824\pi$$
0.772160 0.635428i $$-0.219176\pi$$
$$744$$ 0 0
$$745$$ −33.0000 −1.20903
$$746$$ − 32.9090i − 1.20488i
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ −16.0000 −0.583848 −0.291924 0.956441i $$-0.594295\pi$$
−0.291924 + 0.956441i $$0.594295\pi$$
$$752$$ − 17.3205i − 0.631614i
$$753$$ 0 0
$$754$$ 0 0
$$755$$ −30.0000 −1.09181
$$756$$ 0 0
$$757$$ −26.0000 −0.944986 −0.472493 0.881334i $$-0.656646\pi$$
−0.472493 + 0.881334i $$0.656646\pi$$
$$758$$ 42.0000 1.52551
$$759$$ 0 0
$$760$$ − 10.3923i − 0.376969i
$$761$$ − 34.6410i − 1.25574i −0.778320 0.627868i $$-0.783928\pi$$
0.778320 0.627868i $$-0.216072\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 18.0000 0.651217
$$765$$ 0 0
$$766$$ 36.0000 1.30073
$$767$$ 0 0
$$768$$ 0 0
$$769$$ − 6.92820i − 0.249837i −0.992167 0.124919i $$-0.960133\pi$$
0.992167 0.124919i $$-0.0398670\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ − 5.19615i − 0.187014i
$$773$$ 34.6410i 1.24595i 0.782241 + 0.622975i $$0.214076\pi$$
−0.782241 + 0.622975i $$0.785924\pi$$
$$774$$ 0 0
$$775$$ 6.92820i 0.248868i
$$776$$ 12.0000 0.430775
$$777$$ 0 0
$$778$$ − 15.5885i − 0.558873i
$$779$$ −18.0000 −0.644917
$$780$$ 0 0
$$781$$ 0 0
$$782$$ − 31.1769i − 1.11488i
$$783$$ 0 0
$$784$$ −35.0000 −1.25000
$$785$$ − 22.5167i − 0.803654i
$$786$$ 0 0
$$787$$ 38.1051i 1.35830i 0.733999 + 0.679150i $$0.237652\pi$$
−0.733999 + 0.679150i $$0.762348\pi$$
$$788$$ − 13.8564i − 0.493614i
$$789$$ 0 0
$$790$$ 12.0000 0.426941
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 0 0
$$794$$ −24.0000 −0.851728
$$795$$ 0 0
$$796$$ 2.00000 0.0708881
$$797$$ −42.0000 −1.48772 −0.743858 0.668338i $$-0.767006\pi$$
−0.743858 + 0.668338i $$0.767006\pi$$
$$798$$ 0 0
$$799$$ 10.3923i 0.367653i
$$800$$ 10.3923i 0.367423i
$$801$$ 0 0
$$802$$ −3.00000 −0.105934
$$803$$ 0 0
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ − 5.19615i − 0.182800i
$$809$$ −33.0000 −1.16022 −0.580109 0.814539i $$-0.696990\pi$$
−0.580109 + 0.814539i $$0.696990\pi$$
$$810$$ 0 0
$$811$$ − 38.1051i − 1.33805i −0.743239 0.669026i $$-0.766712\pi$$
0.743239 0.669026i $$-0.233288\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ −36.0000 −1.26102
$$816$$ 0 0
$$817$$ − 27.7128i − 0.969549i
$$818$$ 27.0000 0.944033
$$819$$ 0 0
$$820$$ −9.00000 −0.314294
$$821$$ − 41.5692i − 1.45078i −0.688340 0.725388i $$-0.741660\pi$$
0.688340 0.725388i $$-0.258340\pi$$
$$822$$ 0 0
$$823$$ −4.00000 −0.139431 −0.0697156 0.997567i $$-0.522209\pi$$
−0.0697156 + 0.997567i $$0.522209\pi$$
$$824$$ 17.3205i 0.603388i
$$825$$ 0 0
$$826$$ 0 0
$$827$$ − 20.7846i − 0.722752i −0.932420 0.361376i $$-0.882307\pi$$
0.932420 0.361376i $$-0.117693\pi$$
$$828$$ 0 0
$$829$$ 25.0000 0.868286 0.434143 0.900844i $$-0.357051\pi$$
0.434143 + 0.900844i $$0.357051\pi$$
$$830$$ − 41.5692i − 1.44289i
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 21.0000 0.727607
$$834$$ 0 0
$$835$$ 24.0000 0.830554
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 31.1769i 1.07699i
$$839$$ − 45.0333i − 1.55472i −0.629054 0.777361i $$-0.716558\pi$$
0.629054 0.777361i $$-0.283442\pi$$
$$840$$ 0 0
$$841$$ −20.0000 −0.689655
$$842$$ 27.0000 0.930481
$$843$$ 0 0
$$844$$ −10.0000 −0.344214
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 0 0
$$848$$ −15.0000 −0.515102
$$849$$ 0 0
$$850$$ − 10.3923i − 0.356453i
$$851$$ − 51.9615i − 1.78122i
$$852$$ 0 0
$$853$$ 25.9808i 0.889564i 0.895639 + 0.444782i $$0.146719\pi$$
−0.895639 + 0.444782i $$0.853281\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 10.3923i 0.355202i
$$857$$ −3.00000 −0.102478 −0.0512390 0.998686i $$-0.516317\pi$$
−0.0512390 + 0.998686i $$0.516317\pi$$
$$858$$ 0 0
$$859$$ −14.0000 −0.477674 −0.238837 0.971060i $$-0.576766\pi$$
−0.238837 + 0.971060i $$0.576766\pi$$
$$860$$ − 13.8564i − 0.472500i
$$861$$ 0 0
$$862$$ −12.0000 −0.408722
$$863$$ 27.7128i 0.943355i 0.881771 + 0.471678i $$0.156351\pi$$
−0.881771 + 0.471678i $$0.843649\pi$$
$$864$$ 0 0
$$865$$ − 10.3923i − 0.353349i
$$866$$ 29.4449i 1.00058i
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ 0 0
$$872$$ −24.0000 −0.812743
$$873$$ 0 0
$$874$$ −36.0000 −1.21772
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 12.1244i 0.409410i 0.978824 + 0.204705i $$0.0656236\pi$$
−0.978824 + 0.204705i $$0.934376\pi$$
$$878$$ 48.4974i 1.63671i
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −27.0000 −0.909653 −0.454827 0.890580i $$-0.650299\pi$$
−0.454827 + 0.890580i $$0.650299\pi$$
$$882$$ 0 0
$$883$$ 10.0000 0.336527 0.168263 0.985742i $$-0.446184\pi$$
0.168263 + 0.985742i $$0.446184\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ − 20.7846i − 0.698273i
$$887$$ −36.0000 −1.20876 −0.604381 0.796696i $$-0.706579\pi$$
−0.604381 + 0.796696i $$0.706579\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ − 20.7846i − 0.696702i
$$891$$ 0 0
$$892$$ − 10.3923i − 0.347960i
$$893$$ 12.0000 0.401565
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 12.0000 0.400445
$$899$$ − 10.3923i − 0.346603i
$$900$$ 0 0
$$901$$ 9.00000 0.299833
$$902$$ 0 0
$$903$$ 0 0
$$904$$ − 25.9808i − 0.864107i
$$905$$ 19.0526i 0.633328i
$$906$$ 0 0
$$907$$ 28.0000 0.929725 0.464862 0.885383i $$-0.346104\pi$$
0.464862 + 0.885383i $$0.346104\pi$$
$$908$$ 24.2487i 0.804722i
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$912$$ 0 0
$$913$$ 0 0
$$914$$ −3.00000 −0.0992312
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 22.0000 0.725713 0.362857 0.931845i $$-0.381802\pi$$
0.362857 + 0.931845i $$0.381802\pi$$
$$920$$ 18.0000 0.593442
$$921$$ 0 0
$$922$$ −39.0000 −1.28440
$$923$$ 0 0
$$924$$ 0 0
$$925$$ − 17.3205i − 0.569495i
$$926$$ 24.0000 0.788689
$$927$$ 0 0
$$928$$ − 15.5885i − 0.511716i
$$929$$ 46.7654i 1.53432i 0.641455 + 0.767161i $$0.278331\pi$$
−0.641455 + 0.767161i $$0.721669\pi$$
$$930$$ 0 0
$$931$$ − 24.2487i − 0.794719i
$$932$$ 6.00000 0.196537
$$933$$ 0 0
$$934$$ 20.7846i 0.680093i
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 7.00000 0.228680 0.114340 0.993442i $$-0.463525\pi$$
0.114340 + 0.993442i $$0.463525\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 6.00000 0.195698
$$941$$ − 20.7846i − 0.677559i −0.940866 0.338779i $$-0.889986\pi$$
0.940866 0.338779i $$-0.110014\pi$$
$$942$$ 0 0
$$943$$ − 31.1769i − 1.01526i
$$944$$ 34.6410i 1.12747i
$$945$$ 0 0
$$946$$ 0 0
$$947$$ − 17.3205i − 0.562841i −0.959585 0.281420i $$-0.909194\pi$$
0.959585 0.281420i $$-0.0908056\pi$$
$$948$$ 0 0
$$949$$ 0 0
$$950$$ −12.0000 −0.389331
$$951$$ 0 0
$$952$$ 0 0
$$953$$ 6.00000 0.194359 0.0971795 0.995267i $$-0.469018\pi$$
0.0971795 + 0.995267i $$0.469018\pi$$
$$954$$ 0 0
$$955$$ − 31.1769i − 1.00886i
$$956$$ − 20.7846i − 0.672222i
$$957$$ 0 0
$$958$$ 42.0000 1.35696
$$959$$ 0 0
$$960$$ 0 0
$$961$$ 19.0000 0.612903
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 1.73205i 0.0557856i
$$965$$ −9.00000 −0.289720
$$966$$ 0 0
$$967$$ 58.8897i 1.89377i 0.321578 + 0.946883i $$0.395787\pi$$
−0.321578 + 0.946883i $$0.604213\pi$$
$$968$$ − 19.0526i − 0.612372i
$$969$$ 0 0
$$970$$ 20.7846i 0.667354i
$$971$$ −6.00000 −0.192549 −0.0962746 0.995355i $$-0.530693\pi$$
−0.0962746 + 0.995355i $$0.530693\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ −12.0000 −0.384505
$$975$$ 0 0
$$976$$ −5.00000 −0.160046
$$977$$ 43.3013i 1.38533i 0.721259 + 0.692665i $$0.243564\pi$$
−0.721259 + 0.692665i $$0.756436\pi$$
$$978$$ 0 0
$$979$$ 0 0
$$980$$ − 12.1244i − 0.387298i
$$981$$ 0 0
$$982$$ 20.7846i 0.663264i
$$983$$ − 51.9615i − 1.65732i −0.559756 0.828658i $$-0.689105\pi$$
0.559756 0.828658i $$-0.310895\pi$$
$$984$$ 0 0
$$985$$ −24.0000 −0.764704
$$986$$ 15.5885i 0.496438i
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 48.0000 1.52631
$$990$$ 0 0
$$991$$ 2.00000 0.0635321 0.0317660 0.999495i $$-0.489887\pi$$
0.0317660 + 0.999495i $$0.489887\pi$$
$$992$$ −18.0000 −0.571501
$$993$$ 0 0
$$994$$ 0 0
$$995$$ − 3.46410i − 0.109819i
$$996$$ 0 0
$$997$$ 17.0000 0.538395 0.269198 0.963085i $$-0.413241\pi$$
0.269198 + 0.963085i $$0.413241\pi$$
$$998$$ 54.0000 1.70934
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1521.2.b.a.1351.1 2
3.2 odd 2 169.2.b.a.168.2 2
12.11 even 2 2704.2.f.b.337.1 2
13.3 even 3 117.2.q.c.82.1 2
13.4 even 6 117.2.q.c.10.1 2
13.5 odd 4 1521.2.a.k.1.1 2
13.8 odd 4 1521.2.a.k.1.2 2
13.12 even 2 inner 1521.2.b.a.1351.2 2
39.2 even 12 169.2.c.a.22.1 4
39.5 even 4 169.2.a.a.1.2 2
39.8 even 4 169.2.a.a.1.1 2
39.11 even 12 169.2.c.a.22.2 4
39.17 odd 6 13.2.e.a.10.1 yes 2
39.20 even 12 169.2.c.a.146.2 4
39.23 odd 6 169.2.e.a.147.1 2
39.29 odd 6 13.2.e.a.4.1 2
39.32 even 12 169.2.c.a.146.1 4
39.35 odd 6 169.2.e.a.23.1 2
39.38 odd 2 169.2.b.a.168.1 2
52.3 odd 6 1872.2.by.d.433.1 2
52.43 odd 6 1872.2.by.d.1297.1 2
156.47 odd 4 2704.2.a.o.1.2 2
156.83 odd 4 2704.2.a.o.1.1 2
156.95 even 6 208.2.w.b.49.1 2
156.107 even 6 208.2.w.b.17.1 2
156.155 even 2 2704.2.f.b.337.2 2
195.17 even 12 325.2.m.a.49.1 4
195.29 odd 6 325.2.n.a.251.1 2
195.44 even 4 4225.2.a.v.1.1 2
195.68 even 12 325.2.m.a.199.1 4
195.107 even 12 325.2.m.a.199.2 4
195.134 odd 6 325.2.n.a.101.1 2
195.164 even 4 4225.2.a.v.1.2 2
195.173 even 12 325.2.m.a.49.2 4
273.17 even 6 637.2.k.c.569.1 2
273.68 even 6 637.2.k.c.459.1 2
273.83 odd 4 8281.2.a.q.1.2 2
273.95 odd 6 637.2.k.a.569.1 2
273.107 odd 6 637.2.k.a.459.1 2
273.125 odd 4 8281.2.a.q.1.1 2
273.146 even 6 637.2.q.a.589.1 2
273.173 even 6 637.2.u.b.361.1 2
273.185 even 6 637.2.u.b.30.1 2
273.212 odd 6 637.2.u.c.361.1 2
273.251 even 6 637.2.q.a.491.1 2
273.263 odd 6 637.2.u.c.30.1 2
312.29 odd 6 832.2.w.d.641.1 2
312.107 even 6 832.2.w.a.641.1 2
312.173 odd 6 832.2.w.d.257.1 2
312.251 even 6 832.2.w.a.257.1 2

By twisted newform
Twist Min Dim Char Parity Ord Type
13.2.e.a.4.1 2 39.29 odd 6
13.2.e.a.10.1 yes 2 39.17 odd 6
117.2.q.c.10.1 2 13.4 even 6
117.2.q.c.82.1 2 13.3 even 3
169.2.a.a.1.1 2 39.8 even 4
169.2.a.a.1.2 2 39.5 even 4
169.2.b.a.168.1 2 39.38 odd 2
169.2.b.a.168.2 2 3.2 odd 2
169.2.c.a.22.1 4 39.2 even 12
169.2.c.a.22.2 4 39.11 even 12
169.2.c.a.146.1 4 39.32 even 12
169.2.c.a.146.2 4 39.20 even 12
169.2.e.a.23.1 2 39.35 odd 6
169.2.e.a.147.1 2 39.23 odd 6
208.2.w.b.17.1 2 156.107 even 6
208.2.w.b.49.1 2 156.95 even 6
325.2.m.a.49.1 4 195.17 even 12
325.2.m.a.49.2 4 195.173 even 12
325.2.m.a.199.1 4 195.68 even 12
325.2.m.a.199.2 4 195.107 even 12
325.2.n.a.101.1 2 195.134 odd 6
325.2.n.a.251.1 2 195.29 odd 6
637.2.k.a.459.1 2 273.107 odd 6
637.2.k.a.569.1 2 273.95 odd 6
637.2.k.c.459.1 2 273.68 even 6
637.2.k.c.569.1 2 273.17 even 6
637.2.q.a.491.1 2 273.251 even 6
637.2.q.a.589.1 2 273.146 even 6
637.2.u.b.30.1 2 273.185 even 6
637.2.u.b.361.1 2 273.173 even 6
637.2.u.c.30.1 2 273.263 odd 6
637.2.u.c.361.1 2 273.212 odd 6
832.2.w.a.257.1 2 312.251 even 6
832.2.w.a.641.1 2 312.107 even 6
832.2.w.d.257.1 2 312.173 odd 6
832.2.w.d.641.1 2 312.29 odd 6
1521.2.a.k.1.1 2 13.5 odd 4
1521.2.a.k.1.2 2 13.8 odd 4
1521.2.b.a.1351.1 2 1.1 even 1 trivial
1521.2.b.a.1351.2 2 13.12 even 2 inner
1872.2.by.d.433.1 2 52.3 odd 6
1872.2.by.d.1297.1 2 52.43 odd 6
2704.2.a.o.1.1 2 156.83 odd 4
2704.2.a.o.1.2 2 156.47 odd 4
2704.2.f.b.337.1 2 12.11 even 2
2704.2.f.b.337.2 2 156.155 even 2
4225.2.a.v.1.1 2 195.44 even 4
4225.2.a.v.1.2 2 195.164 even 4
8281.2.a.q.1.1 2 273.125 odd 4
8281.2.a.q.1.2 2 273.83 odd 4