Properties

Label 1521.2.a.s
Level $1521$
Weight $2$
Character orbit 1521.a
Self dual yes
Analytic conductor $12.145$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1521.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(12.1452461474\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Defining polynomial: \(x^{3} - x^{2} - 2 x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 507)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \beta_{1} - \beta_{2} ) q^{2} + ( 4 - \beta_{1} ) q^{4} + ( 1 + 2 \beta_{1} - \beta_{2} ) q^{5} + ( -1 - \beta_{2} ) q^{7} + ( 5 - 3 \beta_{1} ) q^{8} +O(q^{10})\) \( q + ( 1 - \beta_{1} - \beta_{2} ) q^{2} + ( 4 - \beta_{1} ) q^{4} + ( 1 + 2 \beta_{1} - \beta_{2} ) q^{5} + ( -1 - \beta_{2} ) q^{7} + ( 5 - 3 \beta_{1} ) q^{8} + ( -3 + 2 \beta_{1} - 6 \beta_{2} ) q^{10} + ( 3 - \beta_{1} + 3 \beta_{2} ) q^{11} + ( 1 + 2 \beta_{1} ) q^{14} + ( 6 - 6 \beta_{1} + \beta_{2} ) q^{16} + ( 2 - 3 \beta_{1} + 2 \beta_{2} ) q^{17} + ( 2 + \beta_{1} ) q^{19} + ( 1 + 7 \beta_{1} - 5 \beta_{2} ) q^{20} + ( -7 \beta_{1} + 2 \beta_{2} ) q^{22} + ( -3 + 4 \beta_{1} - 5 \beta_{2} ) q^{23} + ( 1 + 5 \beta_{1} - 3 \beta_{2} ) q^{25} + ( -3 + \beta_{1} - 3 \beta_{2} ) q^{28} + ( 2 - \beta_{1} + 3 \beta_{2} ) q^{29} + ( 8 - 3 \beta_{1} + 5 \beta_{2} ) q^{31} + ( 12 - 7 \beta_{1} + 7 \beta_{2} ) q^{32} + ( 7 - 7 \beta_{1} + 6 \beta_{2} ) q^{34} + ( -2 - \beta_{1} - 3 \beta_{2} ) q^{35} + ( -7 - \beta_{1} ) q^{37} + ( -1 - \beta_{1} - 4 \beta_{2} ) q^{38} + ( -4 + 7 \beta_{1} - 8 \beta_{2} ) q^{40} + ( 5 - \beta_{1} + 3 \beta_{2} ) q^{41} + ( -7 + 4 \beta_{1} - 2 \beta_{2} ) q^{43} + ( 11 - 7 \beta_{1} + 10 \beta_{2} ) q^{44} + ( -5 + 12 \beta_{1} - 10 \beta_{2} ) q^{46} + ( 2 + \beta_{1} ) q^{47} + ( -5 + \beta_{1} + \beta_{2} ) q^{49} + ( -8 + 7 \beta_{1} - 14 \beta_{2} ) q^{50} + ( 5 - \beta_{1} - 3 \beta_{2} ) q^{53} + ( 3 + 2 \beta_{1} + 8 \beta_{2} ) q^{55} + ( -2 + 3 \beta_{1} - 2 \beta_{2} ) q^{56} + ( -1 - 6 \beta_{1} + 3 \beta_{2} ) q^{58} + ( -4 \beta_{1} + 2 \beta_{2} ) q^{59} + ( -2 - \beta_{1} + 6 \beta_{2} ) q^{61} + ( 7 - 16 \beta_{1} + 3 \beta_{2} ) q^{62} + ( 7 - 14 \beta_{1} + 7 \beta_{2} ) q^{64} + ( -4 \beta_{1} + 7 \beta_{2} ) q^{67} + ( 12 - 14 \beta_{1} + 9 \beta_{2} ) q^{68} + ( 7 + 4 \beta_{1} + \beta_{2} ) q^{70} + ( -4 + 7 \beta_{1} - 5 \beta_{2} ) q^{71} + ( -7 + 6 \beta_{1} - 9 \beta_{2} ) q^{73} + ( -4 + 6 \beta_{1} + 9 \beta_{2} ) q^{74} + ( 6 + 2 \beta_{1} - \beta_{2} ) q^{76} + ( -5 - 2 \beta_{1} - 2 \beta_{2} ) q^{77} -3 \beta_{2} q^{79} + ( -11 + 5 \beta_{1} - 8 \beta_{2} ) q^{80} + ( 2 - 9 \beta_{1} ) q^{82} + ( 3 + \beta_{1} - 2 \beta_{2} ) q^{83} + ( -5 - \beta_{1} + 3 \beta_{2} ) q^{85} + ( -15 + 13 \beta_{1} - 3 \beta_{2} ) q^{86} + ( 12 - 14 \beta_{1} + 9 \beta_{2} ) q^{88} + ( 2 - 6 \beta_{1} - \beta_{2} ) q^{89} + ( -15 + 19 \beta_{1} - 19 \beta_{2} ) q^{92} + ( -1 - \beta_{1} - 4 \beta_{2} ) q^{94} + ( 5 + 5 \beta_{1} - \beta_{2} ) q^{95} + ( -3 + 12 \beta_{1} - 2 \beta_{2} ) q^{97} + ( -10 + 5 \beta_{1} + 4 \beta_{2} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + 3q^{2} + 11q^{4} + 6q^{5} - 2q^{7} + 12q^{8} + O(q^{10}) \) \( 3q + 3q^{2} + 11q^{4} + 6q^{5} - 2q^{7} + 12q^{8} - q^{10} + 5q^{11} + 5q^{14} + 11q^{16} + q^{17} + 7q^{19} + 15q^{20} - 9q^{22} + 11q^{25} - 5q^{28} + 2q^{29} + 16q^{31} + 22q^{32} + 8q^{34} - 4q^{35} - 22q^{37} + 3q^{40} + 11q^{41} - 15q^{43} + 16q^{44} + 7q^{46} + 7q^{47} - 15q^{49} - 3q^{50} + 17q^{53} + 3q^{55} - q^{56} - 12q^{58} - 6q^{59} - 13q^{61} + 2q^{62} - 11q^{67} + 13q^{68} + 24q^{70} - 6q^{73} - 15q^{74} + 21q^{76} - 15q^{77} + 3q^{79} - 20q^{80} - 3q^{82} + 12q^{83} - 19q^{85} - 29q^{86} + 13q^{88} + q^{89} - 7q^{92} + 21q^{95} + 5q^{97} - 29q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
−2.04892 0 2.19806 3.35690 0 −2.24698 −0.405813 0 −6.87800
1.2 2.35690 0 3.55496 3.69202 0 0.801938 3.66487 0 8.70171
1.3 2.69202 0 5.24698 −1.04892 0 −0.554958 8.74094 0 −2.82371
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1521.2.a.s 3
3.b odd 2 1 507.2.a.i 3
12.b even 2 1 8112.2.a.cg 3
13.b even 2 1 1521.2.a.n 3
13.d odd 4 2 1521.2.b.k 6
39.d odd 2 1 507.2.a.l yes 3
39.f even 4 2 507.2.b.f 6
39.h odd 6 2 507.2.e.i 6
39.i odd 6 2 507.2.e.l 6
39.k even 12 4 507.2.j.i 12
156.h even 2 1 8112.2.a.cp 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
507.2.a.i 3 3.b odd 2 1
507.2.a.l yes 3 39.d odd 2 1
507.2.b.f 6 39.f even 4 2
507.2.e.i 6 39.h odd 6 2
507.2.e.l 6 39.i odd 6 2
507.2.j.i 12 39.k even 12 4
1521.2.a.n 3 13.b even 2 1
1521.2.a.s 3 1.a even 1 1 trivial
1521.2.b.k 6 13.d odd 4 2
8112.2.a.cg 3 12.b even 2 1
8112.2.a.cp 3 156.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1521))\):

\( T_{2}^{3} - 3 T_{2}^{2} - 4 T_{2} + 13 \)
\( T_{5}^{3} - 6 T_{5}^{2} + 5 T_{5} + 13 \)
\( T_{7}^{3} + 2 T_{7}^{2} - T_{7} - 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 13 - 4 T - 3 T^{2} + T^{3} \)
$3$ \( T^{3} \)
$5$ \( 13 + 5 T - 6 T^{2} + T^{3} \)
$7$ \( -1 - T + 2 T^{2} + T^{3} \)
$11$ \( 41 - 8 T - 5 T^{2} + T^{3} \)
$13$ \( T^{3} \)
$17$ \( -13 - 16 T - T^{2} + T^{3} \)
$19$ \( -7 + 14 T - 7 T^{2} + T^{3} \)
$23$ \( -91 - 49 T + T^{3} \)
$29$ \( 29 - 15 T - 2 T^{2} + T^{3} \)
$31$ \( 197 + 41 T - 16 T^{2} + T^{3} \)
$37$ \( 377 + 159 T + 22 T^{2} + T^{3} \)
$41$ \( 29 + 24 T - 11 T^{2} + T^{3} \)
$43$ \( 41 + 47 T + 15 T^{2} + T^{3} \)
$47$ \( -7 + 14 T - 7 T^{2} + T^{3} \)
$53$ \( 41 + 66 T - 17 T^{2} + T^{3} \)
$59$ \( -104 - 16 T + 6 T^{2} + T^{3} \)
$61$ \( -167 - 16 T + 13 T^{2} + T^{3} \)
$67$ \( 41 - 46 T + 11 T^{2} + T^{3} \)
$71$ \( 203 - 91 T + T^{3} \)
$73$ \( -923 - 135 T + 6 T^{2} + T^{3} \)
$79$ \( 27 - 18 T - 3 T^{2} + T^{3} \)
$83$ \( -43 + 41 T - 12 T^{2} + T^{3} \)
$89$ \( 113 - 100 T - T^{2} + T^{3} \)
$97$ \( 1637 - 281 T - 5 T^{2} + T^{3} \)
show more
show less