Properties

Label 1521.2.a.g
Level $1521$
Weight $2$
Character orbit 1521.a
Self dual yes
Analytic conductor $12.145$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,2,Mod(1,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1521.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.1452461474\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + (\beta + 2) q^{4} + ( - \beta + 2) q^{5} + ( - \beta - 1) q^{7} + ( - \beta - 4) q^{8} + ( - \beta + 4) q^{10} + 2 q^{11} + (2 \beta + 4) q^{14} + 3 \beta q^{16} - \beta q^{17} + ( - 2 \beta + 4) q^{19} + \cdots + ( - \beta - 12) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 5 q^{4} + 3 q^{5} - 3 q^{7} - 9 q^{8} + 7 q^{10} + 4 q^{11} + 10 q^{14} + 3 q^{16} - q^{17} + 6 q^{19} - q^{20} - 2 q^{22} - 4 q^{23} + 3 q^{25} - 16 q^{28} - q^{29} + q^{31} - 9 q^{32}+ \cdots - 25 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
−2.56155 0 4.56155 −0.561553 0 −3.56155 −6.56155 0 1.43845
1.2 1.56155 0 0.438447 3.56155 0 0.561553 −2.43845 0 5.56155
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1521.2.a.g 2
3.b odd 2 1 507.2.a.g 2
12.b even 2 1 8112.2.a.bk 2
13.b even 2 1 1521.2.a.m 2
13.c even 3 2 117.2.g.c 4
13.d odd 4 2 1521.2.b.h 4
39.d odd 2 1 507.2.a.d 2
39.f even 4 2 507.2.b.d 4
39.h odd 6 2 507.2.e.g 4
39.i odd 6 2 39.2.e.b 4
39.k even 12 4 507.2.j.g 8
52.j odd 6 2 1872.2.t.r 4
156.h even 2 1 8112.2.a.bo 2
156.p even 6 2 624.2.q.h 4
195.x odd 6 2 975.2.i.k 4
195.bl even 12 4 975.2.bb.i 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.2.e.b 4 39.i odd 6 2
117.2.g.c 4 13.c even 3 2
507.2.a.d 2 39.d odd 2 1
507.2.a.g 2 3.b odd 2 1
507.2.b.d 4 39.f even 4 2
507.2.e.g 4 39.h odd 6 2
507.2.j.g 8 39.k even 12 4
624.2.q.h 4 156.p even 6 2
975.2.i.k 4 195.x odd 6 2
975.2.bb.i 8 195.bl even 12 4
1521.2.a.g 2 1.a even 1 1 trivial
1521.2.a.m 2 13.b even 2 1
1521.2.b.h 4 13.d odd 4 2
1872.2.t.r 4 52.j odd 6 2
8112.2.a.bk 2 12.b even 2 1
8112.2.a.bo 2 156.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1521))\):

\( T_{2}^{2} + T_{2} - 4 \) Copy content Toggle raw display
\( T_{5}^{2} - 3T_{5} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} + 3T_{7} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$7$ \( T^{2} + 3T - 2 \) Copy content Toggle raw display
$11$ \( (T - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$19$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$23$ \( (T + 2)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + T - 38 \) Copy content Toggle raw display
$31$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$37$ \( T^{2} - 11T + 26 \) Copy content Toggle raw display
$41$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$43$ \( T^{2} - 5T + 2 \) Copy content Toggle raw display
$47$ \( T^{2} - 68 \) Copy content Toggle raw display
$53$ \( T^{2} + 11T - 8 \) Copy content Toggle raw display
$59$ \( T^{2} - 14T + 32 \) Copy content Toggle raw display
$61$ \( T^{2} - 16T + 47 \) Copy content Toggle raw display
$67$ \( T^{2} - 5T + 2 \) Copy content Toggle raw display
$71$ \( (T + 14)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 12T + 19 \) Copy content Toggle raw display
$79$ \( T^{2} - 15T + 52 \) Copy content Toggle raw display
$83$ \( T^{2} - 10T + 8 \) Copy content Toggle raw display
$89$ \( T^{2} + 18T + 64 \) Copy content Toggle raw display
$97$ \( T^{2} + 13T + 38 \) Copy content Toggle raw display
show more
show less