Properties

Label 1521.2
Level 1521
Weight 2
Dimension 65715
Nonzero newspaces 30
Sturm bound 340704
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 30 \)
Sturm bound: \(340704\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1521))\).

Total New Old
Modular forms 87000 67556 19444
Cusp forms 83353 65715 17638
Eisenstein series 3647 1841 1806

Trace form

\( 65715q - 198q^{2} - 264q^{3} - 198q^{4} - 198q^{5} - 264q^{6} - 194q^{7} - 180q^{8} - 264q^{9} + O(q^{10}) \) \( 65715q - 198q^{2} - 264q^{3} - 198q^{4} - 198q^{5} - 264q^{6} - 194q^{7} - 180q^{8} - 264q^{9} - 564q^{10} - 186q^{11} - 264q^{12} - 204q^{13} - 354q^{14} - 264q^{15} - 158q^{16} - 180q^{17} - 264q^{18} - 554q^{19} - 132q^{20} - 264q^{21} - 138q^{22} - 174q^{23} - 312q^{24} - 156q^{25} - 186q^{26} - 504q^{27} - 558q^{28} - 240q^{29} - 360q^{30} - 258q^{31} - 354q^{32} - 336q^{33} - 294q^{34} - 354q^{35} - 456q^{36} - 672q^{37} - 450q^{38} - 336q^{39} - 618q^{40} - 300q^{41} - 408q^{42} - 218q^{43} - 426q^{44} - 384q^{45} - 618q^{46} - 258q^{47} - 408q^{48} - 194q^{49} - 300q^{50} - 312q^{51} - 165q^{52} - 282q^{53} - 264q^{54} - 462q^{55} - 162q^{56} - 264q^{57} - 48q^{58} - 114q^{59} - 384q^{60} - 84q^{61} - 174q^{62} - 360q^{63} - 636q^{64} - 279q^{65} - 744q^{66} - 278q^{67} - 576q^{68} - 408q^{69} - 498q^{70} - 462q^{71} - 576q^{72} - 842q^{73} - 624q^{74} - 504q^{75} - 494q^{76} - 450q^{77} - 516q^{78} - 450q^{79} - 816q^{80} - 456q^{81} - 852q^{82} - 522q^{83} - 600q^{84} - 396q^{85} - 570q^{86} - 456q^{87} - 426q^{88} - 294q^{89} - 576q^{90} - 646q^{91} - 570q^{92} - 408q^{93} - 198q^{94} - 174q^{95} + 48q^{96} - 78q^{97} - 150q^{98} - 120q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1521))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1521.2.a \(\chi_{1521}(1, \cdot)\) 1521.2.a.a 1 1
1521.2.a.b 1
1521.2.a.c 1
1521.2.a.d 1
1521.2.a.e 1
1521.2.a.f 2
1521.2.a.g 2
1521.2.a.h 2
1521.2.a.i 2
1521.2.a.j 2
1521.2.a.k 2
1521.2.a.l 2
1521.2.a.m 2
1521.2.a.n 3
1521.2.a.o 3
1521.2.a.p 3
1521.2.a.q 3
1521.2.a.r 3
1521.2.a.s 3
1521.2.a.t 4
1521.2.a.u 4
1521.2.a.v 6
1521.2.a.w 6
1521.2.b \(\chi_{1521}(1351, \cdot)\) 1521.2.b.a 2 1
1521.2.b.b 2
1521.2.b.c 2
1521.2.b.d 2
1521.2.b.e 2
1521.2.b.f 2
1521.2.b.g 4
1521.2.b.h 4
1521.2.b.i 4
1521.2.b.j 4
1521.2.b.k 6
1521.2.b.l 6
1521.2.b.m 6
1521.2.b.n 12
1521.2.e \(\chi_{1521}(508, \cdot)\) n/a 288 2
1521.2.f \(\chi_{1521}(529, \cdot)\) n/a 288 2
1521.2.g \(\chi_{1521}(991, \cdot)\) n/a 120 2
1521.2.h \(\chi_{1521}(22, \cdot)\) n/a 288 2
1521.2.i \(\chi_{1521}(746, \cdot)\) 1521.2.i.a 4 2
1521.2.i.b 4
1521.2.i.c 8
1521.2.i.d 8
1521.2.i.e 8
1521.2.i.f 8
1521.2.i.g 12
1521.2.i.h 48
1521.2.l \(\chi_{1521}(823, \cdot)\) n/a 288 2
1521.2.q \(\chi_{1521}(316, \cdot)\) n/a 118 2
1521.2.r \(\chi_{1521}(868, \cdot)\) n/a 288 2
1521.2.t \(\chi_{1521}(337, \cdot)\) n/a 288 2
1521.2.x \(\chi_{1521}(587, \cdot)\) n/a 576 4
1521.2.z \(\chi_{1521}(239, \cdot)\) n/a 576 4
1521.2.ba \(\chi_{1521}(80, \cdot)\) n/a 208 4
1521.2.bc \(\chi_{1521}(488, \cdot)\) n/a 576 4
1521.2.be \(\chi_{1521}(118, \cdot)\) n/a 900 12
1521.2.bh \(\chi_{1521}(64, \cdot)\) n/a 912 12
1521.2.bi \(\chi_{1521}(16, \cdot)\) n/a 4320 24
1521.2.bj \(\chi_{1521}(55, \cdot)\) n/a 1776 24
1521.2.bk \(\chi_{1521}(61, \cdot)\) n/a 4320 24
1521.2.bl \(\chi_{1521}(40, \cdot)\) n/a 4320 24
1521.2.bn \(\chi_{1521}(8, \cdot)\) n/a 1488 24
1521.2.bq \(\chi_{1521}(25, \cdot)\) n/a 4320 24
1521.2.bs \(\chi_{1521}(43, \cdot)\) n/a 4320 24
1521.2.bt \(\chi_{1521}(10, \cdot)\) n/a 1800 24
1521.2.by \(\chi_{1521}(4, \cdot)\) n/a 4320 24
1521.2.cb \(\chi_{1521}(20, \cdot)\) n/a 8640 48
1521.2.cd \(\chi_{1521}(71, \cdot)\) n/a 2880 48
1521.2.ce \(\chi_{1521}(5, \cdot)\) n/a 8640 48
1521.2.cg \(\chi_{1521}(2, \cdot)\) n/a 8640 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1521))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1521)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(117))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(507))\)\(^{\oplus 2}\)