Properties

Label 1520.2.q.n.961.2
Level $1520$
Weight $2$
Character 1520.961
Analytic conductor $12.137$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1520,2,Mod(881,1520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1520.881");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1372611072\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.1500534351369.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 13x^{6} - 18x^{5} + 147x^{4} - 156x^{3} + 369x^{2} + 180x + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 760)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.2
Root \(-0.282064 + 0.488549i\) of defining polynomial
Character \(\chi\) \(=\) 1520.961
Dual form 1520.2.q.n.881.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.282064 + 0.488549i) q^{3} +(-0.500000 + 0.866025i) q^{5} +1.56413 q^{7} +(1.34088 + 2.32247i) q^{9} +O(q^{10})\) \(q+(-0.282064 + 0.488549i) q^{3} +(-0.500000 + 0.866025i) q^{5} +1.56413 q^{7} +(1.34088 + 2.32247i) q^{9} +4.21586 q^{11} +(-1.32587 - 2.29647i) q^{13} +(-0.282064 - 0.488549i) q^{15} +(-3.84088 + 6.65260i) q^{17} +(2.78206 + 3.35561i) q^{19} +(-0.441184 + 0.764153i) q^{21} +(-2.34088 - 4.05452i) q^{23} +(-0.500000 - 0.866025i) q^{25} -3.20524 q^{27} +(-1.60793 - 2.78502i) q^{29} +8.81002 q^{31} +(-1.18914 + 2.05966i) q^{33} +(-0.782064 + 1.35457i) q^{35} +3.56413 q^{37} +1.49592 q^{39} +(-1.21794 + 2.10953i) q^{41} +(2.23295 - 3.86758i) q^{43} -2.68176 q^{45} +(-1.17206 - 2.03007i) q^{47} -4.55350 q^{49} +(-2.16675 - 3.75292i) q^{51} +(2.57914 + 4.46720i) q^{53} +(-2.10793 + 3.65105i) q^{55} +(-2.42410 + 0.412678i) q^{57} +(0.607932 - 1.05297i) q^{59} +(6.57176 + 11.3826i) q^{61} +(2.09731 + 3.63264i) q^{63} +2.65174 q^{65} +(4.24589 + 7.35409i) q^{67} +2.64111 q^{69} +(-6.01294 + 10.4147i) q^{71} +(-6.19677 + 10.7331i) q^{73} +0.564128 q^{75} +6.59415 q^{77} +(-3.56413 + 6.17325i) q^{79} +(-3.11856 + 5.40150i) q^{81} -4.37829 q^{83} +(-3.84088 - 6.65260i) q^{85} +1.81416 q^{87} +(-7.63588 - 13.2257i) q^{89} +(-2.07383 - 3.59197i) q^{91} +(-2.48499 + 4.30413i) q^{93} +(-4.29708 + 0.731533i) q^{95} +(-4.71794 + 8.17170i) q^{97} +(5.65297 + 9.79123i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{3} - 4 q^{5} + 6 q^{7} - 13 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + q^{3} - 4 q^{5} + 6 q^{7} - 13 q^{9} + 8 q^{11} - q^{13} + q^{15} - 7 q^{17} + 19 q^{19} - 24 q^{21} + 5 q^{23} - 4 q^{25} + 28 q^{27} + 10 q^{31} - 5 q^{33} - 3 q^{35} + 22 q^{37} - 38 q^{39} - 13 q^{41} + 7 q^{43} + 26 q^{45} + 10 q^{47} - 2 q^{49} + 16 q^{51} - 4 q^{55} - 25 q^{57} - 8 q^{59} - 11 q^{61} - 24 q^{63} + 2 q^{65} - 20 q^{67} - 26 q^{69} - 5 q^{71} + 12 q^{73} - 2 q^{75} + 18 q^{77} - 22 q^{79} - 40 q^{81} - 26 q^{83} - 7 q^{85} + 12 q^{87} + 9 q^{89} + 18 q^{91} - 34 q^{93} - 17 q^{95} - 41 q^{97} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.282064 + 0.488549i −0.162850 + 0.282064i −0.935890 0.352293i \(-0.885402\pi\)
0.773040 + 0.634357i \(0.218735\pi\)
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 1.56413 0.591185 0.295592 0.955314i \(-0.404483\pi\)
0.295592 + 0.955314i \(0.404483\pi\)
\(8\) 0 0
\(9\) 1.34088 + 2.32247i 0.446960 + 0.774157i
\(10\) 0 0
\(11\) 4.21586 1.27113 0.635565 0.772047i \(-0.280767\pi\)
0.635565 + 0.772047i \(0.280767\pi\)
\(12\) 0 0
\(13\) −1.32587 2.29647i −0.367730 0.636926i 0.621481 0.783430i \(-0.286531\pi\)
−0.989210 + 0.146503i \(0.953198\pi\)
\(14\) 0 0
\(15\) −0.282064 0.488549i −0.0728286 0.126143i
\(16\) 0 0
\(17\) −3.84088 + 6.65260i −0.931550 + 1.61349i −0.150877 + 0.988553i \(0.548210\pi\)
−0.780673 + 0.624940i \(0.785124\pi\)
\(18\) 0 0
\(19\) 2.78206 + 3.35561i 0.638249 + 0.769830i
\(20\) 0 0
\(21\) −0.441184 + 0.764153i −0.0962743 + 0.166752i
\(22\) 0 0
\(23\) −2.34088 4.05452i −0.488107 0.845426i 0.511799 0.859105i \(-0.328979\pi\)
−0.999906 + 0.0136786i \(0.995646\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) −3.20524 −0.616849
\(28\) 0 0
\(29\) −1.60793 2.78502i −0.298585 0.517165i 0.677227 0.735774i \(-0.263181\pi\)
−0.975813 + 0.218609i \(0.929848\pi\)
\(30\) 0 0
\(31\) 8.81002 1.58233 0.791163 0.611606i \(-0.209476\pi\)
0.791163 + 0.611606i \(0.209476\pi\)
\(32\) 0 0
\(33\) −1.18914 + 2.05966i −0.207003 + 0.358540i
\(34\) 0 0
\(35\) −0.782064 + 1.35457i −0.132193 + 0.228965i
\(36\) 0 0
\(37\) 3.56413 0.585939 0.292970 0.956122i \(-0.405357\pi\)
0.292970 + 0.956122i \(0.405357\pi\)
\(38\) 0 0
\(39\) 1.49592 0.239539
\(40\) 0 0
\(41\) −1.21794 + 2.10953i −0.190210 + 0.329453i −0.945320 0.326145i \(-0.894250\pi\)
0.755110 + 0.655598i \(0.227583\pi\)
\(42\) 0 0
\(43\) 2.23295 3.86758i 0.340521 0.589800i −0.644008 0.765019i \(-0.722730\pi\)
0.984530 + 0.175218i \(0.0560631\pi\)
\(44\) 0 0
\(45\) −2.68176 −0.399773
\(46\) 0 0
\(47\) −1.17206 2.03007i −0.170963 0.296116i 0.767794 0.640697i \(-0.221354\pi\)
−0.938757 + 0.344581i \(0.888021\pi\)
\(48\) 0 0
\(49\) −4.55350 −0.650501
\(50\) 0 0
\(51\) −2.16675 3.75292i −0.303405 0.525514i
\(52\) 0 0
\(53\) 2.57914 + 4.46720i 0.354272 + 0.613617i 0.986993 0.160763i \(-0.0513953\pi\)
−0.632721 + 0.774380i \(0.718062\pi\)
\(54\) 0 0
\(55\) −2.10793 + 3.65105i −0.284234 + 0.492307i
\(56\) 0 0
\(57\) −2.42410 + 0.412678i −0.321080 + 0.0546606i
\(58\) 0 0
\(59\) 0.607932 1.05297i 0.0791460 0.137085i −0.823736 0.566974i \(-0.808114\pi\)
0.902882 + 0.429889i \(0.141447\pi\)
\(60\) 0 0
\(61\) 6.57176 + 11.3826i 0.841427 + 1.45739i 0.888688 + 0.458512i \(0.151617\pi\)
−0.0472612 + 0.998883i \(0.515049\pi\)
\(62\) 0 0
\(63\) 2.09731 + 3.63264i 0.264236 + 0.457670i
\(64\) 0 0
\(65\) 2.65174 0.328907
\(66\) 0 0
\(67\) 4.24589 + 7.35409i 0.518718 + 0.898445i 0.999763 + 0.0217499i \(0.00692377\pi\)
−0.481046 + 0.876696i \(0.659743\pi\)
\(68\) 0 0
\(69\) 2.64111 0.317952
\(70\) 0 0
\(71\) −6.01294 + 10.4147i −0.713605 + 1.23600i 0.249891 + 0.968274i \(0.419605\pi\)
−0.963495 + 0.267725i \(0.913728\pi\)
\(72\) 0 0
\(73\) −6.19677 + 10.7331i −0.725277 + 1.25622i 0.233583 + 0.972337i \(0.424955\pi\)
−0.958860 + 0.283880i \(0.908378\pi\)
\(74\) 0 0
\(75\) 0.564128 0.0651399
\(76\) 0 0
\(77\) 6.59415 0.751473
\(78\) 0 0
\(79\) −3.56413 + 6.17325i −0.400996 + 0.694545i −0.993846 0.110767i \(-0.964669\pi\)
0.592851 + 0.805312i \(0.298002\pi\)
\(80\) 0 0
\(81\) −3.11856 + 5.40150i −0.346506 + 0.600166i
\(82\) 0 0
\(83\) −4.37829 −0.480579 −0.240290 0.970701i \(-0.577242\pi\)
−0.240290 + 0.970701i \(0.577242\pi\)
\(84\) 0 0
\(85\) −3.84088 6.65260i −0.416602 0.721576i
\(86\) 0 0
\(87\) 1.81416 0.194498
\(88\) 0 0
\(89\) −7.63588 13.2257i −0.809402 1.40193i −0.913279 0.407335i \(-0.866458\pi\)
0.103877 0.994590i \(-0.466875\pi\)
\(90\) 0 0
\(91\) −2.07383 3.59197i −0.217396 0.376541i
\(92\) 0 0
\(93\) −2.48499 + 4.30413i −0.257681 + 0.446317i
\(94\) 0 0
\(95\) −4.29708 + 0.731533i −0.440871 + 0.0750537i
\(96\) 0 0
\(97\) −4.71794 + 8.17170i −0.479034 + 0.829711i −0.999711 0.0240428i \(-0.992346\pi\)
0.520677 + 0.853754i \(0.325680\pi\)
\(98\) 0 0
\(99\) 5.65297 + 9.79123i 0.568145 + 0.984055i
\(100\) 0 0
\(101\) 7.49262 + 12.9776i 0.745543 + 1.29132i 0.949941 + 0.312431i \(0.101143\pi\)
−0.204397 + 0.978888i \(0.565523\pi\)
\(102\) 0 0
\(103\) −6.68176 −0.658373 −0.329187 0.944265i \(-0.606775\pi\)
−0.329187 + 0.944265i \(0.606775\pi\)
\(104\) 0 0
\(105\) −0.441184 0.764153i −0.0430552 0.0745737i
\(106\) 0 0
\(107\) 14.7652 1.42741 0.713704 0.700447i \(-0.247016\pi\)
0.713704 + 0.700447i \(0.247016\pi\)
\(108\) 0 0
\(109\) 5.79708 10.0408i 0.555259 0.961737i −0.442624 0.896707i \(-0.645952\pi\)
0.997883 0.0650298i \(-0.0207143\pi\)
\(110\) 0 0
\(111\) −1.00531 + 1.74125i −0.0954200 + 0.165272i
\(112\) 0 0
\(113\) 11.9276 1.12206 0.561029 0.827796i \(-0.310405\pi\)
0.561029 + 0.827796i \(0.310405\pi\)
\(114\) 0 0
\(115\) 4.68176 0.436576
\(116\) 0 0
\(117\) 3.55566 6.15858i 0.328721 0.569361i
\(118\) 0 0
\(119\) −6.00763 + 10.4055i −0.550718 + 0.953872i
\(120\) 0 0
\(121\) 6.77351 0.615774
\(122\) 0 0
\(123\) −0.687072 1.19004i −0.0619512 0.107303i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −0.825868 1.43045i −0.0732839 0.126932i 0.827055 0.562121i \(-0.190015\pi\)
−0.900339 + 0.435190i \(0.856681\pi\)
\(128\) 0 0
\(129\) 1.25967 + 2.18181i 0.110908 + 0.192098i
\(130\) 0 0
\(131\) −2.34619 + 4.06372i −0.204988 + 0.355049i −0.950129 0.311858i \(-0.899049\pi\)
0.745141 + 0.666907i \(0.232382\pi\)
\(132\) 0 0
\(133\) 4.35150 + 5.24860i 0.377323 + 0.455112i
\(134\) 0 0
\(135\) 1.60262 2.77582i 0.137932 0.238904i
\(136\) 0 0
\(137\) −3.41879 5.92152i −0.292087 0.505909i 0.682216 0.731151i \(-0.261016\pi\)
−0.974303 + 0.225241i \(0.927683\pi\)
\(138\) 0 0
\(139\) −3.13588 5.43151i −0.265982 0.460695i 0.701838 0.712336i \(-0.252363\pi\)
−0.967820 + 0.251642i \(0.919030\pi\)
\(140\) 0 0
\(141\) 1.32238 0.111365
\(142\) 0 0
\(143\) −5.58968 9.68161i −0.467433 0.809617i
\(144\) 0 0
\(145\) 3.21586 0.267063
\(146\) 0 0
\(147\) 1.28438 2.22461i 0.105934 0.183483i
\(148\) 0 0
\(149\) 0.299147 0.518139i 0.0245071 0.0424476i −0.853512 0.521074i \(-0.825532\pi\)
0.878019 + 0.478626i \(0.158865\pi\)
\(150\) 0 0
\(151\) 21.7800 1.77243 0.886215 0.463274i \(-0.153325\pi\)
0.886215 + 0.463274i \(0.153325\pi\)
\(152\) 0 0
\(153\) −20.6006 −1.66546
\(154\) 0 0
\(155\) −4.40501 + 7.62970i −0.353819 + 0.612832i
\(156\) 0 0
\(157\) 6.82056 11.8135i 0.544340 0.942824i −0.454309 0.890844i \(-0.650114\pi\)
0.998648 0.0519795i \(-0.0165530\pi\)
\(158\) 0 0
\(159\) −2.90993 −0.230772
\(160\) 0 0
\(161\) −3.66144 6.34179i −0.288562 0.499803i
\(162\) 0 0
\(163\) −12.8701 −1.00806 −0.504031 0.863686i \(-0.668150\pi\)
−0.504031 + 0.863686i \(0.668150\pi\)
\(164\) 0 0
\(165\) −1.18914 2.05966i −0.0925747 0.160344i
\(166\) 0 0
\(167\) −8.12618 14.0750i −0.628823 1.08915i −0.987788 0.155802i \(-0.950204\pi\)
0.358965 0.933351i \(-0.383130\pi\)
\(168\) 0 0
\(169\) 2.98415 5.16870i 0.229550 0.397592i
\(170\) 0 0
\(171\) −4.06290 + 10.9607i −0.310698 + 0.838188i
\(172\) 0 0
\(173\) 1.02795 1.78046i 0.0781537 0.135366i −0.824300 0.566154i \(-0.808431\pi\)
0.902453 + 0.430788i \(0.141764\pi\)
\(174\) 0 0
\(175\) −0.782064 1.35457i −0.0591185 0.102396i
\(176\) 0 0
\(177\) 0.342952 + 0.594009i 0.0257778 + 0.0446485i
\(178\) 0 0
\(179\) −0.250031 −0.0186882 −0.00934410 0.999956i \(-0.502974\pi\)
−0.00934410 + 0.999956i \(0.502974\pi\)
\(180\) 0 0
\(181\) −9.57176 16.5788i −0.711463 1.23229i −0.964308 0.264783i \(-0.914700\pi\)
0.252845 0.967507i \(-0.418634\pi\)
\(182\) 0 0
\(183\) −7.41462 −0.548105
\(184\) 0 0
\(185\) −1.78206 + 3.08663i −0.131020 + 0.226933i
\(186\) 0 0
\(187\) −16.1926 + 28.0465i −1.18412 + 2.05096i
\(188\) 0 0
\(189\) −5.01341 −0.364672
\(190\) 0 0
\(191\) −18.3166 −1.32534 −0.662670 0.748912i \(-0.730577\pi\)
−0.662670 + 0.748912i \(0.730577\pi\)
\(192\) 0 0
\(193\) 9.62087 16.6638i 0.692526 1.19949i −0.278482 0.960441i \(-0.589831\pi\)
0.971008 0.239048i \(-0.0768353\pi\)
\(194\) 0 0
\(195\) −0.747959 + 1.29550i −0.0535625 + 0.0927729i
\(196\) 0 0
\(197\) 8.61109 0.613515 0.306757 0.951788i \(-0.400756\pi\)
0.306757 + 0.951788i \(0.400756\pi\)
\(198\) 0 0
\(199\) 12.4488 + 21.5620i 0.882473 + 1.52849i 0.848583 + 0.529062i \(0.177456\pi\)
0.0338899 + 0.999426i \(0.489210\pi\)
\(200\) 0 0
\(201\) −4.79045 −0.337892
\(202\) 0 0
\(203\) −2.51501 4.35613i −0.176519 0.305740i
\(204\) 0 0
\(205\) −1.21794 2.10953i −0.0850643 0.147336i
\(206\) 0 0
\(207\) 6.27768 10.8733i 0.436329 0.755743i
\(208\) 0 0
\(209\) 11.7288 + 14.1468i 0.811298 + 0.978554i
\(210\) 0 0
\(211\) 11.8559 20.5350i 0.816193 1.41369i −0.0922747 0.995734i \(-0.529414\pi\)
0.908468 0.417955i \(-0.137253\pi\)
\(212\) 0 0
\(213\) −3.39207 5.87523i −0.232421 0.402564i
\(214\) 0 0
\(215\) 2.23295 + 3.86758i 0.152286 + 0.263767i
\(216\) 0 0
\(217\) 13.7800 0.935447
\(218\) 0 0
\(219\) −3.49577 6.05486i −0.236222 0.409149i
\(220\) 0 0
\(221\) 20.3700 1.37023
\(222\) 0 0
\(223\) 6.75967 11.7081i 0.452661 0.784032i −0.545889 0.837857i \(-0.683808\pi\)
0.998550 + 0.0538256i \(0.0171415\pi\)
\(224\) 0 0
\(225\) 1.34088 2.32247i 0.0893920 0.154831i
\(226\) 0 0
\(227\) −15.3035 −1.01573 −0.507864 0.861438i \(-0.669565\pi\)
−0.507864 + 0.861438i \(0.669565\pi\)
\(228\) 0 0
\(229\) 6.73934 0.445348 0.222674 0.974893i \(-0.428521\pi\)
0.222674 + 0.974893i \(0.428521\pi\)
\(230\) 0 0
\(231\) −1.85997 + 3.22157i −0.122377 + 0.211964i
\(232\) 0 0
\(233\) −14.2665 + 24.7102i −0.934627 + 1.61882i −0.159328 + 0.987226i \(0.550933\pi\)
−0.775299 + 0.631595i \(0.782401\pi\)
\(234\) 0 0
\(235\) 2.34412 0.152914
\(236\) 0 0
\(237\) −2.01062 3.48250i −0.130604 0.226213i
\(238\) 0 0
\(239\) −0.810016 −0.0523956 −0.0261978 0.999657i \(-0.508340\pi\)
−0.0261978 + 0.999657i \(0.508340\pi\)
\(240\) 0 0
\(241\) 9.89762 + 17.1432i 0.637562 + 1.10429i 0.985966 + 0.166945i \(0.0533904\pi\)
−0.348404 + 0.937344i \(0.613276\pi\)
\(242\) 0 0
\(243\) −6.56712 11.3746i −0.421281 0.729681i
\(244\) 0 0
\(245\) 2.27675 3.94345i 0.145456 0.251938i
\(246\) 0 0
\(247\) 4.01741 10.8380i 0.255622 0.689607i
\(248\) 0 0
\(249\) 1.23496 2.13901i 0.0782622 0.135554i
\(250\) 0 0
\(251\) 4.61556 + 7.99438i 0.291332 + 0.504601i 0.974125 0.226011i \(-0.0725684\pi\)
−0.682793 + 0.730612i \(0.739235\pi\)
\(252\) 0 0
\(253\) −9.86883 17.0933i −0.620448 1.07465i
\(254\) 0 0
\(255\) 4.33350 0.271374
\(256\) 0 0
\(257\) 11.2203 + 19.4342i 0.699905 + 1.21227i 0.968499 + 0.249018i \(0.0801078\pi\)
−0.268594 + 0.963254i \(0.586559\pi\)
\(258\) 0 0
\(259\) 5.57475 0.346398
\(260\) 0 0
\(261\) 4.31209 7.46875i 0.266912 0.462304i
\(262\) 0 0
\(263\) 6.13997 10.6347i 0.378606 0.655766i −0.612253 0.790662i \(-0.709737\pi\)
0.990860 + 0.134896i \(0.0430701\pi\)
\(264\) 0 0
\(265\) −5.15828 −0.316871
\(266\) 0 0
\(267\) 8.61523 0.527244
\(268\) 0 0
\(269\) 4.89000 8.46972i 0.298148 0.516408i −0.677564 0.735464i \(-0.736964\pi\)
0.975712 + 0.219056i \(0.0702977\pi\)
\(270\) 0 0
\(271\) 11.9768 20.7444i 0.727537 1.26013i −0.230385 0.973100i \(-0.573998\pi\)
0.957921 0.287031i \(-0.0926682\pi\)
\(272\) 0 0
\(273\) 2.33981 0.141612
\(274\) 0 0
\(275\) −2.10793 3.65105i −0.127113 0.220166i
\(276\) 0 0
\(277\) −0.500062 −0.0300458 −0.0150229 0.999887i \(-0.504782\pi\)
−0.0150229 + 0.999887i \(0.504782\pi\)
\(278\) 0 0
\(279\) 11.8132 + 20.4610i 0.707236 + 1.22497i
\(280\) 0 0
\(281\) −2.16468 3.74933i −0.129134 0.223666i 0.794207 0.607647i \(-0.207886\pi\)
−0.923341 + 0.383980i \(0.874553\pi\)
\(282\) 0 0
\(283\) 13.0506 22.6043i 0.775777 1.34369i −0.158580 0.987346i \(-0.550691\pi\)
0.934357 0.356339i \(-0.115975\pi\)
\(284\) 0 0
\(285\) 0.854661 2.30567i 0.0506257 0.136576i
\(286\) 0 0
\(287\) −1.90501 + 3.29957i −0.112449 + 0.194767i
\(288\) 0 0
\(289\) −21.0047 36.3812i −1.23557 2.14007i
\(290\) 0 0
\(291\) −2.66152 4.60989i −0.156021 0.270236i
\(292\) 0 0
\(293\) −9.11349 −0.532416 −0.266208 0.963916i \(-0.585771\pi\)
−0.266208 + 0.963916i \(0.585771\pi\)
\(294\) 0 0
\(295\) 0.607932 + 1.05297i 0.0353952 + 0.0613062i
\(296\) 0 0
\(297\) −13.5129 −0.784095
\(298\) 0 0
\(299\) −6.20740 + 10.7515i −0.358983 + 0.621777i
\(300\) 0 0
\(301\) 3.49262 6.04939i 0.201311 0.348681i
\(302\) 0 0
\(303\) −8.45359 −0.485646
\(304\) 0 0
\(305\) −13.1435 −0.752595
\(306\) 0 0
\(307\) 10.8656 18.8198i 0.620132 1.07410i −0.369329 0.929299i \(-0.620412\pi\)
0.989461 0.144801i \(-0.0462543\pi\)
\(308\) 0 0
\(309\) 1.88468 3.26437i 0.107216 0.185703i
\(310\) 0 0
\(311\) −12.0876 −0.685425 −0.342713 0.939440i \(-0.611346\pi\)
−0.342713 + 0.939440i \(0.611346\pi\)
\(312\) 0 0
\(313\) −6.16675 10.6811i −0.348565 0.603733i 0.637430 0.770509i \(-0.279998\pi\)
−0.985995 + 0.166776i \(0.946664\pi\)
\(314\) 0 0
\(315\) −4.19462 −0.236340
\(316\) 0 0
\(317\) −5.71055 9.89097i −0.320737 0.555532i 0.659904 0.751350i \(-0.270597\pi\)
−0.980640 + 0.195818i \(0.937264\pi\)
\(318\) 0 0
\(319\) −6.77882 11.7413i −0.379541 0.657385i
\(320\) 0 0
\(321\) −4.16474 + 7.21354i −0.232453 + 0.402620i
\(322\) 0 0
\(323\) −33.0091 + 5.61946i −1.83668 + 0.312675i
\(324\) 0 0
\(325\) −1.32587 + 2.29647i −0.0735459 + 0.127385i
\(326\) 0 0
\(327\) 3.27029 + 5.66431i 0.180848 + 0.313237i
\(328\) 0 0
\(329\) −1.83325 3.17529i −0.101070 0.175059i
\(330\) 0 0
\(331\) 17.4042 0.956620 0.478310 0.878191i \(-0.341250\pi\)
0.478310 + 0.878191i \(0.341250\pi\)
\(332\) 0 0
\(333\) 4.77907 + 8.27759i 0.261891 + 0.453609i
\(334\) 0 0
\(335\) −8.49178 −0.463955
\(336\) 0 0
\(337\) −4.31410 + 7.47224i −0.235004 + 0.407039i −0.959274 0.282478i \(-0.908844\pi\)
0.724270 + 0.689517i \(0.242177\pi\)
\(338\) 0 0
\(339\) −3.36436 + 5.82724i −0.182727 + 0.316492i
\(340\) 0 0
\(341\) 37.1418 2.01134
\(342\) 0 0
\(343\) −18.0712 −0.975751
\(344\) 0 0
\(345\) −1.32056 + 2.28727i −0.0710963 + 0.123142i
\(346\) 0 0
\(347\) 11.0430 19.1270i 0.592817 1.02679i −0.401034 0.916063i \(-0.631349\pi\)
0.993851 0.110726i \(-0.0353177\pi\)
\(348\) 0 0
\(349\) 0.489438 0.0261990 0.0130995 0.999914i \(-0.495830\pi\)
0.0130995 + 0.999914i \(0.495830\pi\)
\(350\) 0 0
\(351\) 4.24973 + 7.36074i 0.226834 + 0.392887i
\(352\) 0 0
\(353\) −29.7418 −1.58300 −0.791498 0.611171i \(-0.790699\pi\)
−0.791498 + 0.611171i \(0.790699\pi\)
\(354\) 0 0
\(355\) −6.01294 10.4147i −0.319134 0.552756i
\(356\) 0 0
\(357\) −3.38907 5.87004i −0.179369 0.310676i
\(358\) 0 0
\(359\) 7.14850 12.3816i 0.377283 0.653474i −0.613383 0.789786i \(-0.710192\pi\)
0.990666 + 0.136312i \(0.0435250\pi\)
\(360\) 0 0
\(361\) −3.52024 + 18.6710i −0.185276 + 0.982687i
\(362\) 0 0
\(363\) −1.91056 + 3.30919i −0.100279 + 0.173688i
\(364\) 0 0
\(365\) −6.19677 10.7331i −0.324354 0.561797i
\(366\) 0 0
\(367\) 6.10586 + 10.5757i 0.318723 + 0.552045i 0.980222 0.197901i \(-0.0634126\pi\)
−0.661499 + 0.749946i \(0.730079\pi\)
\(368\) 0 0
\(369\) −6.53242 −0.340064
\(370\) 0 0
\(371\) 4.03410 + 6.98727i 0.209440 + 0.362761i
\(372\) 0 0
\(373\) −33.5329 −1.73627 −0.868134 0.496330i \(-0.834681\pi\)
−0.868134 + 0.496330i \(0.834681\pi\)
\(374\) 0 0
\(375\) −0.282064 + 0.488549i −0.0145657 + 0.0252286i
\(376\) 0 0
\(377\) −4.26381 + 7.38514i −0.219597 + 0.380354i
\(378\) 0 0
\(379\) 1.82941 0.0939707 0.0469854 0.998896i \(-0.485039\pi\)
0.0469854 + 0.998896i \(0.485039\pi\)
\(380\) 0 0
\(381\) 0.931791 0.0477371
\(382\) 0 0
\(383\) 7.76291 13.4458i 0.396666 0.687046i −0.596646 0.802504i \(-0.703500\pi\)
0.993312 + 0.115459i \(0.0368337\pi\)
\(384\) 0 0
\(385\) −3.29708 + 5.71070i −0.168035 + 0.291044i
\(386\) 0 0
\(387\) 11.9765 0.608798
\(388\) 0 0
\(389\) 2.81617 + 4.87775i 0.142785 + 0.247312i 0.928545 0.371221i \(-0.121061\pi\)
−0.785759 + 0.618533i \(0.787727\pi\)
\(390\) 0 0
\(391\) 35.9642 1.81879
\(392\) 0 0
\(393\) −1.32355 2.29246i −0.0667644 0.115639i
\(394\) 0 0
\(395\) −3.56413 6.17325i −0.179331 0.310610i
\(396\) 0 0
\(397\) −7.33142 + 12.6984i −0.367954 + 0.637314i −0.989245 0.146265i \(-0.953275\pi\)
0.621292 + 0.783579i \(0.286608\pi\)
\(398\) 0 0
\(399\) −3.79160 + 0.645482i −0.189818 + 0.0323145i
\(400\) 0 0
\(401\) −5.54704 + 9.60776i −0.277006 + 0.479789i −0.970639 0.240540i \(-0.922676\pi\)
0.693633 + 0.720328i \(0.256009\pi\)
\(402\) 0 0
\(403\) −11.6809 20.2319i −0.581868 1.00782i
\(404\) 0 0
\(405\) −3.11856 5.40150i −0.154962 0.268403i
\(406\) 0 0
\(407\) 15.0259 0.744805
\(408\) 0 0
\(409\) 4.09085 + 7.08556i 0.202279 + 0.350358i 0.949263 0.314485i \(-0.101832\pi\)
−0.746983 + 0.664843i \(0.768498\pi\)
\(410\) 0 0
\(411\) 3.85727 0.190265
\(412\) 0 0
\(413\) 0.950884 1.64698i 0.0467899 0.0810425i
\(414\) 0 0
\(415\) 2.18914 3.79171i 0.107461 0.186128i
\(416\) 0 0
\(417\) 3.53808 0.173261
\(418\) 0 0
\(419\) 15.0687 0.736154 0.368077 0.929795i \(-0.380016\pi\)
0.368077 + 0.929795i \(0.380016\pi\)
\(420\) 0 0
\(421\) 4.93380 8.54559i 0.240459 0.416487i −0.720386 0.693573i \(-0.756035\pi\)
0.960845 + 0.277086i \(0.0893688\pi\)
\(422\) 0 0
\(423\) 3.14318 5.44415i 0.152827 0.264704i
\(424\) 0 0
\(425\) 7.68176 0.372620
\(426\) 0 0
\(427\) 10.2791 + 17.8039i 0.497439 + 0.861589i
\(428\) 0 0
\(429\) 6.30659 0.304485
\(430\) 0 0
\(431\) −9.25967 16.0382i −0.446023 0.772534i 0.552100 0.833778i \(-0.313827\pi\)
−0.998123 + 0.0612440i \(0.980493\pi\)
\(432\) 0 0
\(433\) 1.45728 + 2.52408i 0.0700324 + 0.121300i 0.898915 0.438122i \(-0.144356\pi\)
−0.828883 + 0.559422i \(0.811023\pi\)
\(434\) 0 0
\(435\) −0.907080 + 1.57111i −0.0434911 + 0.0753289i
\(436\) 0 0
\(437\) 7.09292 19.1350i 0.339300 0.915352i
\(438\) 0 0
\(439\) 15.8039 27.3731i 0.754277 1.30645i −0.191456 0.981501i \(-0.561321\pi\)
0.945733 0.324945i \(-0.105346\pi\)
\(440\) 0 0
\(441\) −6.10570 10.5754i −0.290748 0.503590i
\(442\) 0 0
\(443\) 4.05443 + 7.02248i 0.192632 + 0.333648i 0.946122 0.323812i \(-0.104964\pi\)
−0.753490 + 0.657460i \(0.771631\pi\)
\(444\) 0 0
\(445\) 15.2718 0.723951
\(446\) 0 0
\(447\) 0.168757 + 0.292296i 0.00798195 + 0.0138251i
\(448\) 0 0
\(449\) −26.4382 −1.24770 −0.623848 0.781546i \(-0.714432\pi\)
−0.623848 + 0.781546i \(0.714432\pi\)
\(450\) 0 0
\(451\) −5.13465 + 8.89348i −0.241781 + 0.418778i
\(452\) 0 0
\(453\) −6.14335 + 10.6406i −0.288640 + 0.499939i
\(454\) 0 0
\(455\) 4.14765 0.194445
\(456\) 0 0
\(457\) 30.4300 1.42346 0.711729 0.702454i \(-0.247913\pi\)
0.711729 + 0.702454i \(0.247913\pi\)
\(458\) 0 0
\(459\) 12.3109 21.3232i 0.574626 0.995281i
\(460\) 0 0
\(461\) −11.0697 + 19.1733i −0.515567 + 0.892988i 0.484270 + 0.874919i \(0.339085\pi\)
−0.999837 + 0.0180690i \(0.994248\pi\)
\(462\) 0 0
\(463\) −13.5535 −0.629885 −0.314942 0.949111i \(-0.601985\pi\)
−0.314942 + 0.949111i \(0.601985\pi\)
\(464\) 0 0
\(465\) −2.48499 4.30413i −0.115239 0.199599i
\(466\) 0 0
\(467\) −24.6222 −1.13938 −0.569690 0.821860i \(-0.692937\pi\)
−0.569690 + 0.821860i \(0.692937\pi\)
\(468\) 0 0
\(469\) 6.64111 + 11.5027i 0.306658 + 0.531147i
\(470\) 0 0
\(471\) 3.84767 + 6.66435i 0.177291 + 0.307077i
\(472\) 0 0
\(473\) 9.41380 16.3052i 0.432847 0.749713i
\(474\) 0 0
\(475\) 1.51501 4.08714i 0.0695135 0.187531i
\(476\) 0 0
\(477\) −6.91663 + 11.9800i −0.316691 + 0.548525i
\(478\) 0 0
\(479\) −19.9330 34.5249i −0.910760 1.57748i −0.812993 0.582274i \(-0.802163\pi\)
−0.0977672 0.995209i \(-0.531170\pi\)
\(480\) 0 0
\(481\) −4.72556 8.18492i −0.215467 0.373200i
\(482\) 0 0
\(483\) 4.13104 0.187969
\(484\) 0 0
\(485\) −4.71794 8.17170i −0.214230 0.371058i
\(486\) 0 0
\(487\) −1.59001 −0.0720501 −0.0360251 0.999351i \(-0.511470\pi\)
−0.0360251 + 0.999351i \(0.511470\pi\)
\(488\) 0 0
\(489\) 3.63018 6.28766i 0.164162 0.284338i
\(490\) 0 0
\(491\) 11.2085 19.4137i 0.505832 0.876126i −0.494146 0.869379i \(-0.664519\pi\)
0.999977 0.00674693i \(-0.00214763\pi\)
\(492\) 0 0
\(493\) 24.7035 1.11259
\(494\) 0 0
\(495\) −11.3059 −0.508164
\(496\) 0 0
\(497\) −9.40501 + 16.2900i −0.421872 + 0.730704i
\(498\) 0 0
\(499\) 3.25942 5.64549i 0.145912 0.252727i −0.783801 0.621012i \(-0.786722\pi\)
0.929713 + 0.368285i \(0.120055\pi\)
\(500\) 0 0
\(501\) 9.16842 0.409615
\(502\) 0 0
\(503\) 9.74904 + 16.8858i 0.434688 + 0.752902i 0.997270 0.0738393i \(-0.0235252\pi\)
−0.562582 + 0.826742i \(0.690192\pi\)
\(504\) 0 0
\(505\) −14.9852 −0.666834
\(506\) 0 0
\(507\) 1.68344 + 2.91581i 0.0747642 + 0.129495i
\(508\) 0 0
\(509\) 1.06089 + 1.83751i 0.0470230 + 0.0814462i 0.888579 0.458724i \(-0.151693\pi\)
−0.841556 + 0.540170i \(0.818360\pi\)
\(510\) 0 0
\(511\) −9.69254 + 16.7880i −0.428773 + 0.742656i
\(512\) 0 0
\(513\) −8.91718 10.7555i −0.393703 0.474868i
\(514\) 0 0
\(515\) 3.34088 5.78657i 0.147217 0.254987i
\(516\) 0 0
\(517\) −4.94125 8.55849i −0.217316 0.376402i
\(518\) 0 0
\(519\) 0.579896 + 1.00441i 0.0254546 + 0.0440887i
\(520\) 0 0
\(521\) 30.9129 1.35432 0.677159 0.735837i \(-0.263211\pi\)
0.677159 + 0.735837i \(0.263211\pi\)
\(522\) 0 0
\(523\) 16.8915 + 29.2569i 0.738612 + 1.27931i 0.953120 + 0.302592i \(0.0978520\pi\)
−0.214508 + 0.976722i \(0.568815\pi\)
\(524\) 0 0
\(525\) 0.882368 0.0385097
\(526\) 0 0
\(527\) −33.8382 + 58.6095i −1.47402 + 2.55307i
\(528\) 0 0
\(529\) 0.540564 0.936284i 0.0235028 0.0407080i
\(530\) 0 0
\(531\) 3.26066 0.141500
\(532\) 0 0
\(533\) 6.45929 0.279783
\(534\) 0 0
\(535\) −7.38261 + 12.7871i −0.319178 + 0.552833i
\(536\) 0 0
\(537\) 0.0705248 0.122152i 0.00304337 0.00527127i
\(538\) 0 0
\(539\) −19.1970 −0.826871
\(540\) 0 0
\(541\) −18.1412 31.4215i −0.779951 1.35091i −0.931969 0.362537i \(-0.881911\pi\)
0.152018 0.988378i \(-0.451423\pi\)
\(542\) 0 0
\(543\) 10.7994 0.463446
\(544\) 0 0
\(545\) 5.79708 + 10.0408i 0.248319 + 0.430102i
\(546\) 0 0
\(547\) −11.4309 19.7989i −0.488749 0.846539i 0.511167 0.859482i \(-0.329213\pi\)
−0.999916 + 0.0129426i \(0.995880\pi\)
\(548\) 0 0
\(549\) −17.6239 + 30.5254i −0.752168 + 1.30279i
\(550\) 0 0
\(551\) 4.87207 13.1437i 0.207557 0.559940i
\(552\) 0 0
\(553\) −5.57475 + 9.65575i −0.237063 + 0.410604i
\(554\) 0 0
\(555\) −1.00531 1.74125i −0.0426731 0.0739120i
\(556\) 0 0
\(557\) −17.4695 30.2580i −0.740205 1.28207i −0.952402 0.304846i \(-0.901395\pi\)
0.212197 0.977227i \(-0.431938\pi\)
\(558\) 0 0
\(559\) −11.8424 −0.500879
\(560\) 0 0
\(561\) −9.13471 15.8218i −0.385668 0.667997i
\(562\) 0 0
\(563\) 3.34826 0.141112 0.0705562 0.997508i \(-0.477523\pi\)
0.0705562 + 0.997508i \(0.477523\pi\)
\(564\) 0 0
\(565\) −5.96382 + 10.3296i −0.250900 + 0.434571i
\(566\) 0 0
\(567\) −4.87782 + 8.44864i −0.204849 + 0.354809i
\(568\) 0 0
\(569\) 20.3270 0.852153 0.426076 0.904687i \(-0.359895\pi\)
0.426076 + 0.904687i \(0.359895\pi\)
\(570\) 0 0
\(571\) −9.53644 −0.399088 −0.199544 0.979889i \(-0.563946\pi\)
−0.199544 + 0.979889i \(0.563946\pi\)
\(572\) 0 0
\(573\) 5.16644 8.94854i 0.215831 0.373831i
\(574\) 0 0
\(575\) −2.34088 + 4.05452i −0.0976214 + 0.169085i
\(576\) 0 0
\(577\) 8.51471 0.354472 0.177236 0.984168i \(-0.443284\pi\)
0.177236 + 0.984168i \(0.443284\pi\)
\(578\) 0 0
\(579\) 5.42740 + 9.40054i 0.225555 + 0.390673i
\(580\) 0 0
\(581\) −6.84820 −0.284111
\(582\) 0 0
\(583\) 10.8733 + 18.8331i 0.450326 + 0.779988i
\(584\) 0 0
\(585\) 3.55566 + 6.15858i 0.147008 + 0.254626i
\(586\) 0 0
\(587\) 17.5847 30.4576i 0.725798 1.25712i −0.232847 0.972513i \(-0.574804\pi\)
0.958645 0.284606i \(-0.0918627\pi\)
\(588\) 0 0
\(589\) 24.5100 + 29.5630i 1.00992 + 1.21812i
\(590\) 0 0
\(591\) −2.42888 + 4.20694i −0.0999107 + 0.173050i
\(592\) 0 0
\(593\) −9.24589 16.0143i −0.379683 0.657630i 0.611333 0.791374i \(-0.290634\pi\)
−0.991016 + 0.133743i \(0.957300\pi\)
\(594\) 0 0
\(595\) −6.00763 10.4055i −0.246289 0.426585i
\(596\) 0 0
\(597\) −14.0454 −0.574842
\(598\) 0 0
\(599\) −1.66351 2.88128i −0.0679691 0.117726i 0.830038 0.557707i \(-0.188319\pi\)
−0.898007 + 0.439981i \(0.854985\pi\)
\(600\) 0 0
\(601\) 2.03663 0.0830758 0.0415379 0.999137i \(-0.486774\pi\)
0.0415379 + 0.999137i \(0.486774\pi\)
\(602\) 0 0
\(603\) −11.3864 + 19.7219i −0.463692 + 0.803138i
\(604\) 0 0
\(605\) −3.38676 + 5.86603i −0.137691 + 0.238488i
\(606\) 0 0
\(607\) 13.1948 0.535560 0.267780 0.963480i \(-0.413710\pi\)
0.267780 + 0.963480i \(0.413710\pi\)
\(608\) 0 0
\(609\) 2.83758 0.114984
\(610\) 0 0
\(611\) −3.10799 + 5.38320i −0.125736 + 0.217781i
\(612\) 0 0
\(613\) 20.7726 35.9792i 0.838998 1.45319i −0.0517358 0.998661i \(-0.516475\pi\)
0.890734 0.454526i \(-0.150191\pi\)
\(614\) 0 0
\(615\) 1.37414 0.0554108
\(616\) 0 0
\(617\) 20.1926 + 34.9747i 0.812925 + 1.40803i 0.910809 + 0.412829i \(0.135459\pi\)
−0.0978840 + 0.995198i \(0.531207\pi\)
\(618\) 0 0
\(619\) 26.9346 1.08259 0.541297 0.840832i \(-0.317934\pi\)
0.541297 + 0.840832i \(0.317934\pi\)
\(620\) 0 0
\(621\) 7.50308 + 12.9957i 0.301088 + 0.521500i
\(622\) 0 0
\(623\) −11.9435 20.6867i −0.478506 0.828797i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) −10.2197 + 1.73980i −0.408135 + 0.0694807i
\(628\) 0 0
\(629\) −13.6894 + 23.7107i −0.545832 + 0.945408i
\(630\) 0 0
\(631\) −2.48931 4.31162i −0.0990980 0.171643i 0.812214 0.583360i \(-0.198262\pi\)
−0.911312 + 0.411717i \(0.864929\pi\)
\(632\) 0 0
\(633\) 6.68824 + 11.5844i 0.265834 + 0.460437i
\(634\) 0 0
\(635\) 1.65174 0.0655472
\(636\) 0 0
\(637\) 6.03735 + 10.4570i 0.239208 + 0.414321i
\(638\) 0 0
\(639\) −32.2505 −1.27581
\(640\) 0 0
\(641\) −10.6809 + 18.4999i −0.421871 + 0.730702i −0.996123 0.0879770i \(-0.971960\pi\)
0.574252 + 0.818679i \(0.305293\pi\)
\(642\) 0 0
\(643\) −12.6955 + 21.9893i −0.500663 + 0.867174i 0.499336 + 0.866408i \(0.333577\pi\)
−1.00000 0.000766009i \(0.999756\pi\)
\(644\) 0 0
\(645\) −2.51934 −0.0991988
\(646\) 0 0
\(647\) 23.7459 0.933550 0.466775 0.884376i \(-0.345416\pi\)
0.466775 + 0.884376i \(0.345416\pi\)
\(648\) 0 0
\(649\) 2.56296 4.43918i 0.100605 0.174253i
\(650\) 0 0
\(651\) −3.88684 + 6.73220i −0.152337 + 0.263856i
\(652\) 0 0
\(653\) 2.48066 0.0970759 0.0485379 0.998821i \(-0.484544\pi\)
0.0485379 + 0.998821i \(0.484544\pi\)
\(654\) 0 0
\(655\) −2.34619 4.06372i −0.0916733 0.158783i
\(656\) 0 0
\(657\) −33.2365 −1.29668
\(658\) 0 0
\(659\) 1.96259 + 3.39931i 0.0764518 + 0.132418i 0.901717 0.432327i \(-0.142308\pi\)
−0.825265 + 0.564746i \(0.808974\pi\)
\(660\) 0 0
\(661\) −0.776836 1.34552i −0.0302154 0.0523346i 0.850522 0.525939i \(-0.176286\pi\)
−0.880738 + 0.473604i \(0.842953\pi\)
\(662\) 0 0
\(663\) −5.74564 + 9.95175i −0.223142 + 0.386494i
\(664\) 0 0
\(665\) −6.72118 + 1.14421i −0.260636 + 0.0443706i
\(666\) 0 0
\(667\) −7.52795 + 13.0388i −0.291483 + 0.504864i
\(668\) 0 0
\(669\) 3.81332 + 6.60486i 0.147431 + 0.255359i
\(670\) 0 0
\(671\) 27.7056 + 47.9876i 1.06956 + 1.85254i
\(672\) 0 0
\(673\) 28.0007 1.07935 0.539673 0.841875i \(-0.318548\pi\)
0.539673 + 0.841875i \(0.318548\pi\)
\(674\) 0 0
\(675\) 1.60262 + 2.77582i 0.0616849 + 0.106841i
\(676\) 0 0
\(677\) 37.9859 1.45992 0.729958 0.683492i \(-0.239540\pi\)
0.729958 + 0.683492i \(0.239540\pi\)
\(678\) 0 0
\(679\) −7.37946 + 12.7816i −0.283198 + 0.490513i
\(680\) 0 0
\(681\) 4.31656 7.47650i 0.165411 0.286500i
\(682\) 0 0
\(683\) −3.45712 −0.132283 −0.0661415 0.997810i \(-0.521069\pi\)
−0.0661415 + 0.997810i \(0.521069\pi\)
\(684\) 0 0
\(685\) 6.83758 0.261250
\(686\) 0 0
\(687\) −1.90093 + 3.29250i −0.0725249 + 0.125617i
\(688\) 0 0
\(689\) 6.83920 11.8458i 0.260553 0.451291i
\(690\) 0 0
\(691\) −18.9877 −0.722326 −0.361163 0.932503i \(-0.617620\pi\)
−0.361163 + 0.932503i \(0.617620\pi\)
\(692\) 0 0
\(693\) 8.84196 + 15.3147i 0.335878 + 0.581759i
\(694\) 0 0
\(695\) 6.27177 0.237902
\(696\) 0 0
\(697\) −9.35589 16.2049i −0.354380 0.613804i
\(698\) 0 0
\(699\) −8.04811 13.9397i −0.304407 0.527249i
\(700\) 0 0
\(701\) 3.00861 5.21107i 0.113634 0.196820i −0.803599 0.595171i \(-0.797084\pi\)
0.917233 + 0.398352i \(0.130418\pi\)
\(702\) 0 0
\(703\) 9.91563 + 11.9598i 0.373975 + 0.451073i
\(704\) 0 0
\(705\) −0.661192 + 1.14522i −0.0249019 + 0.0431314i
\(706\) 0 0
\(707\) 11.7194 + 20.2986i 0.440754 + 0.763408i
\(708\) 0 0
\(709\) 5.85796 + 10.1463i 0.220000 + 0.381052i 0.954808 0.297224i \(-0.0960608\pi\)
−0.734807 + 0.678276i \(0.762727\pi\)
\(710\) 0 0
\(711\) −19.1163 −0.716916
\(712\) 0 0
\(713\) −20.6232 35.7204i −0.772344 1.33774i
\(714\) 0 0
\(715\) 11.1794 0.418084
\(716\) 0 0
\(717\) 0.228476 0.395732i 0.00853260 0.0147789i
\(718\) 0 0
\(719\) −16.7811 + 29.0658i −0.625831 + 1.08397i 0.362549 + 0.931965i \(0.381907\pi\)
−0.988380 + 0.152006i \(0.951427\pi\)
\(720\) 0 0
\(721\) −10.4511 −0.389220
\(722\) 0 0
\(723\) −11.1671 −0.415307
\(724\) 0 0
\(725\) −1.60793 + 2.78502i −0.0597171 + 0.103433i
\(726\) 0 0
\(727\) 11.1988 19.3969i 0.415340 0.719390i −0.580124 0.814528i \(-0.696996\pi\)
0.995464 + 0.0951384i \(0.0303294\pi\)
\(728\) 0 0
\(729\) −11.3019 −0.418590
\(730\) 0 0
\(731\) 17.1530 + 29.7098i 0.634425 + 1.09886i
\(732\) 0 0
\(733\) −24.6476 −0.910380 −0.455190 0.890394i \(-0.650429\pi\)
−0.455190 + 0.890394i \(0.650429\pi\)
\(734\) 0 0
\(735\) 1.28438 + 2.22461i 0.0473751 + 0.0820560i
\(736\) 0 0
\(737\) 17.9001 + 31.0039i 0.659358 + 1.14204i
\(738\) 0 0
\(739\) −23.2868 + 40.3339i −0.856618 + 1.48371i 0.0185178 + 0.999829i \(0.494105\pi\)
−0.875136 + 0.483877i \(0.839228\pi\)
\(740\) 0 0
\(741\) 4.16174 + 5.01972i 0.152885 + 0.184404i
\(742\) 0 0
\(743\) 1.64882 2.85585i 0.0604895 0.104771i −0.834195 0.551470i \(-0.814067\pi\)
0.894684 + 0.446699i \(0.147401\pi\)
\(744\) 0 0
\(745\) 0.299147 + 0.518139i 0.0109599 + 0.0189831i
\(746\) 0 0
\(747\) −5.87076 10.1684i −0.214800 0.372044i
\(748\) 0 0
\(749\) 23.0947 0.843862
\(750\) 0 0
\(751\) −13.1873 22.8411i −0.481212 0.833484i 0.518556 0.855044i \(-0.326470\pi\)
−0.999768 + 0.0215603i \(0.993137\pi\)
\(752\) 0 0
\(753\) −5.20753 −0.189773
\(754\) 0 0
\(755\) −10.8900 + 18.8620i −0.396328 + 0.686459i
\(756\) 0 0
\(757\) 19.3100 33.4459i 0.701834 1.21561i −0.265987 0.963977i \(-0.585698\pi\)
0.967822 0.251636i \(-0.0809687\pi\)
\(758\) 0 0
\(759\) 11.1346 0.404159
\(760\) 0 0
\(761\) 3.60461 0.130667 0.0653335 0.997863i \(-0.479189\pi\)
0.0653335 + 0.997863i \(0.479189\pi\)
\(762\) 0 0
\(763\) 9.06737 15.7051i 0.328261 0.568564i
\(764\) 0 0
\(765\) 10.3003 17.8407i 0.372409 0.645031i
\(766\) 0 0
\(767\) −3.22415 −0.116417
\(768\) 0 0
\(769\) 5.61439 + 9.72441i 0.202460 + 0.350671i 0.949321 0.314310i \(-0.101773\pi\)
−0.746860 + 0.664981i \(0.768440\pi\)
\(770\) 0 0
\(771\) −12.6594 −0.455918
\(772\) 0 0
\(773\) 9.91711 + 17.1769i 0.356694 + 0.617811i 0.987406 0.158205i \(-0.0505707\pi\)
−0.630713 + 0.776016i \(0.717237\pi\)
\(774\) 0 0
\(775\) −4.40501 7.62970i −0.158233 0.274067i
\(776\) 0 0
\(777\) −1.57244 + 2.72354i −0.0564109 + 0.0977065i
\(778\) 0 0
\(779\) −10.4671 + 1.78192i −0.375024 + 0.0638439i
\(780\) 0 0
\(781\) −25.3497 + 43.9070i −0.907085 + 1.57112i
\(782\) 0 0
\(783\) 5.15381 + 8.92666i 0.184182 + 0.319013i
\(784\) 0 0
\(785\) 6.82056 + 11.8135i 0.243436 + 0.421644i
\(786\) 0 0
\(787\) −31.8148 −1.13408 −0.567038 0.823692i \(-0.691911\pi\)
−0.567038 + 0.823692i \(0.691911\pi\)
\(788\) 0 0
\(789\) 3.46373 + 5.99935i 0.123312 + 0.213583i
\(790\) 0 0
\(791\) 18.6564 0.663344