Properties

Label 1520.2.q.j
Level $1520$
Weight $2$
Character orbit 1520.q
Analytic conductor $12.137$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.1372611072\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.3518667.1
Defining polynomial: \( x^{6} - x^{5} + 7x^{4} - 8x^{3} + 43x^{2} - 42x + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} - \beta_{3} q^{5} + (\beta_{2} - 1) q^{7} + ( - \beta_{5} + \beta_{4} - \beta_{3} + \beta_{2} - 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} - \beta_{3} q^{5} + (\beta_{2} - 1) q^{7} + ( - \beta_{5} + \beta_{4} - \beta_{3} + \beta_{2} - 2) q^{9} + ( - \beta_{2} + 2) q^{11} + (5 \beta_{3} + 5) q^{13} + ( - \beta_{2} + \beta_1) q^{15} + ( - 3 \beta_{5} + 2 \beta_{3} + 2 \beta_1) q^{17} + ( - 2 \beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} + \beta_1) q^{19} + ( - \beta_{5} - 4 \beta_{3} - \beta_1) q^{21} + ( - 3 \beta_{5} + 3 \beta_{4} + 3 \beta_{3} + \beta_{2} + 2 \beta_1) q^{23} + ( - \beta_{3} - 1) q^{25} + (\beta_{4} + \beta_{2} + 2) q^{27} + (\beta_{3} - \beta_{2} + \beta_1 + 1) q^{29} + ( - \beta_{4} - \beta_{2} + 1) q^{31} + (\beta_{5} + 4 \beta_{3} + 2 \beta_1) q^{33} + (\beta_{3} + \beta_1) q^{35} + ( - 2 \beta_{4} + 3 \beta_{2} - 1) q^{37} + 5 \beta_{2} q^{39} + (2 \beta_{5} - \beta_{3} + \beta_1) q^{41} + (3 \beta_{5} - \beta_{3} - \beta_1) q^{43} + (\beta_{4} + \beta_{2} - 2) q^{45} + (2 \beta_{5} - 2 \beta_{4} + \beta_{3} - \beta_{2} - \beta_1 + 3) q^{47} + ( - \beta_{4} - 3 \beta_{2} - 1) q^{49} + ( - 5 \beta_{5} + 5 \beta_{4} + \beta_{3} + \beta_{2} + 4 \beta_1 - 4) q^{51} + ( - \beta_{5} + \beta_{4} - 2 \beta_{3} - 3 \beta_{2} + 4 \beta_1 - 3) q^{53} + ( - 2 \beta_{3} - \beta_1) q^{55} + (3 \beta_{4} + 7 \beta_{3} + 2 \beta_1 - 1) q^{57} + ( - 2 \beta_{5} - \beta_{3} + \beta_1) q^{59} + ( - 4 \beta_{5} + 4 \beta_{4} + 5 \beta_{3} + 2 \beta_{2} + 2 \beta_1 + 1) q^{61} + (4 \beta_{3} - 3 \beta_{2} + 3 \beta_1 + 4) q^{63} + 5 q^{65} + (2 \beta_{5} - 2 \beta_{4} - 8 \beta_{3} - 2 \beta_1 - 6) q^{67} + (5 \beta_{4} + 2 \beta_{2} - 4) q^{69} + ( - \beta_{5} + 11 \beta_{3} + 3 \beta_1) q^{71} + (3 \beta_{5} - 9 \beta_{3} - 2 \beta_1) q^{73} - \beta_{2} q^{75} + (\beta_{4} + 4 \beta_{2} - 7) q^{77} + (4 \beta_{5} + 6 \beta_{3} - 2 \beta_1) q^{79} + ( - 2 \beta_{5} - 6 \beta_{3} + \beta_1) q^{81} + (3 \beta_{4} + 3 \beta_{2} - 1) q^{83} + ( - 3 \beta_{5} + 3 \beta_{4} + 2 \beta_{3} + \beta_{2} + 2 \beta_1 - 1) q^{85} + (\beta_{4} + 2 \beta_{2} - 5) q^{87} + (4 \beta_{5} - 4 \beta_{4} + 2 \beta_{3} - 4 \beta_1 + 6) q^{89} + ( - 5 \beta_{3} + 5 \beta_{2} - 5 \beta_1 - 5) q^{91} + ( - \beta_{5} + 3 \beta_{3} + 2 \beta_1) q^{93} + ( - \beta_{5} + 2 \beta_{4} + \beta_{2} - \beta_1 - 1) q^{95} + (4 \beta_{5} - 3 \beta_1) q^{97} + ( - \beta_{5} + \beta_{4} - 5 \beta_{3} + 4 \beta_{2} - 3 \beta_1 - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{3} + 3 q^{5} - 4 q^{7} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + q^{3} + 3 q^{5} - 4 q^{7} - 4 q^{9} + 10 q^{11} + 15 q^{13} - q^{15} - q^{17} + 12 q^{21} + 4 q^{23} - 3 q^{25} + 16 q^{27} + 2 q^{29} + 2 q^{31} - 11 q^{33} - 2 q^{35} - 4 q^{37} + 10 q^{39} + 2 q^{41} - q^{43} - 8 q^{45} + 6 q^{47} - 14 q^{49} - 6 q^{51} - 11 q^{53} + 5 q^{55} - 19 q^{57} + 6 q^{59} + 9 q^{61} + 9 q^{63} + 30 q^{65} - 20 q^{67} - 10 q^{69} - 29 q^{71} + 22 q^{73} - 2 q^{75} - 32 q^{77} - 24 q^{79} + 21 q^{81} + 6 q^{83} + q^{85} - 24 q^{87} + 14 q^{89} - 10 q^{91} - 6 q^{93} - 7 q^{97} - 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 7x^{4} - 8x^{3} + 43x^{2} - 42x + 49 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} + 7\nu^{4} - 49\nu^{3} + 43\nu^{2} - 42\nu + 294 ) / 259 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -6\nu^{5} + 5\nu^{4} - 35\nu^{3} - \nu^{2} - 215\nu - 49 ) / 259 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -5\nu^{5} + 35\nu^{4} + 14\nu^{3} + 215\nu^{2} - 210\nu + 952 ) / 259 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 18\nu^{5} + 22\nu^{4} + 105\nu^{3} + 3\nu^{2} + 608\nu + 147 ) / 259 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{4} - 4\beta_{3} + \beta_{2} - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} - 5\beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 7\beta_{5} + 21\beta_{3} + \beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 6\beta_{5} - 6\beta_{4} - 25\beta_{3} + 29\beta_{2} - 35\beta _1 - 19 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(1\) \(-1 - \beta_{3}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
881.1
−1.25351 2.17114i
0.610938 + 1.05818i
1.14257 + 1.97899i
−1.25351 + 2.17114i
0.610938 1.05818i
1.14257 1.97899i
0 −1.25351 2.17114i 0 0.500000 + 0.866025i 0 −3.50702 0 −1.64257 + 2.84502i 0
881.2 0 0.610938 + 1.05818i 0 0.500000 + 0.866025i 0 0.221876 0 0.753509 1.30512i 0
881.3 0 1.14257 + 1.97899i 0 0.500000 + 0.866025i 0 1.28514 0 −1.11094 + 1.92420i 0
961.1 0 −1.25351 + 2.17114i 0 0.500000 0.866025i 0 −3.50702 0 −1.64257 2.84502i 0
961.2 0 0.610938 1.05818i 0 0.500000 0.866025i 0 0.221876 0 0.753509 + 1.30512i 0
961.3 0 1.14257 1.97899i 0 0.500000 0.866025i 0 1.28514 0 −1.11094 1.92420i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 961.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1520.2.q.j 6
4.b odd 2 1 95.2.e.b 6
12.b even 2 1 855.2.k.g 6
19.c even 3 1 inner 1520.2.q.j 6
20.d odd 2 1 475.2.e.d 6
20.e even 4 2 475.2.j.b 12
76.f even 6 1 1805.2.a.g 3
76.g odd 6 1 95.2.e.b 6
76.g odd 6 1 1805.2.a.h 3
228.m even 6 1 855.2.k.g 6
380.p odd 6 1 475.2.e.d 6
380.p odd 6 1 9025.2.a.z 3
380.s even 6 1 9025.2.a.ba 3
380.v even 12 2 475.2.j.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.e.b 6 4.b odd 2 1
95.2.e.b 6 76.g odd 6 1
475.2.e.d 6 20.d odd 2 1
475.2.e.d 6 380.p odd 6 1
475.2.j.b 12 20.e even 4 2
475.2.j.b 12 380.v even 12 2
855.2.k.g 6 12.b even 2 1
855.2.k.g 6 228.m even 6 1
1520.2.q.j 6 1.a even 1 1 trivial
1520.2.q.j 6 19.c even 3 1 inner
1805.2.a.g 3 76.f even 6 1
1805.2.a.h 3 76.g odd 6 1
9025.2.a.z 3 380.p odd 6 1
9025.2.a.ba 3 380.s even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1520, [\chi])\):

\( T_{3}^{6} - T_{3}^{5} + 7T_{3}^{4} - 8T_{3}^{3} + 43T_{3}^{2} - 42T_{3} + 49 \) Copy content Toggle raw display
\( T_{7}^{3} + 2T_{7}^{2} - 5T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - T^{5} + 7 T^{4} - 8 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$7$ \( (T^{3} + 2 T^{2} - 5 T + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T^{3} - 5 T^{2} + 2 T + 1)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 5 T + 25)^{3} \) Copy content Toggle raw display
$17$ \( T^{6} + T^{5} + 45 T^{4} - 30 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$19$ \( T^{6} - 133T^{3} + 6859 \) Copy content Toggle raw display
$23$ \( T^{6} - 4 T^{5} + 55 T^{4} + \cdots + 2401 \) Copy content Toggle raw display
$29$ \( T^{6} - 2 T^{5} + 9 T^{4} + 12 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( (T^{3} - T^{2} - 6 T + 7)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} + 2 T^{2} - 119 T - 227)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} - 2 T^{5} + 47 T^{4} + \cdots + 1369 \) Copy content Toggle raw display
$43$ \( T^{6} + T^{5} + 45 T^{4} + 198 T^{3} + \cdots + 14641 \) Copy content Toggle raw display
$47$ \( T^{6} - 6 T^{5} + 43 T^{4} + \cdots + 2401 \) Copy content Toggle raw display
$53$ \( T^{6} + 11 T^{5} + 163 T^{4} + \cdots + 96721 \) Copy content Toggle raw display
$59$ \( T^{6} - 6 T^{5} + 43 T^{4} + \cdots + 2401 \) Copy content Toggle raw display
$61$ \( T^{6} - 9 T^{5} + 130 T^{4} + \cdots + 2401 \) Copy content Toggle raw display
$67$ \( T^{6} + 20 T^{5} + 292 T^{4} + \cdots + 7744 \) Copy content Toggle raw display
$71$ \( T^{6} + 29 T^{5} + 605 T^{4} + \cdots + 218089 \) Copy content Toggle raw display
$73$ \( T^{6} - 22 T^{5} + 367 T^{4} + \cdots + 5929 \) Copy content Toggle raw display
$79$ \( T^{6} + 24 T^{5} + 460 T^{4} + \cdots + 61504 \) Copy content Toggle raw display
$83$ \( (T^{3} - 3 T^{2} - 54 T - 77)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} - 14 T^{5} + 232 T^{4} + \cdots + 3136 \) Copy content Toggle raw display
$97$ \( T^{6} + 7 T^{5} + 115 T^{4} + \cdots + 14641 \) Copy content Toggle raw display
show more
show less