# Properties

 Label 1520.2.q.c Level $1520$ Weight $2$ Character orbit 1520.q Analytic conductor $12.137$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1520,2,Mod(881,1520)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1520, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1520.881");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1520 = 2^{4} \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1520.q (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$12.1372611072$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 95) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (2 \zeta_{6} - 2) q^{3} + ( - \zeta_{6} + 1) q^{5} + 4 q^{7} - \zeta_{6} q^{9} +O(q^{10})$$ q + (2*z - 2) * q^3 + (-z + 1) * q^5 + 4 * q^7 - z * q^9 $$q + (2 \zeta_{6} - 2) q^{3} + ( - \zeta_{6} + 1) q^{5} + 4 q^{7} - \zeta_{6} q^{9} - 3 q^{11} - 2 \zeta_{6} q^{13} + 2 \zeta_{6} q^{15} + (6 \zeta_{6} - 6) q^{17} + (3 \zeta_{6} + 2) q^{19} + (8 \zeta_{6} - 8) q^{21} - \zeta_{6} q^{25} - 4 q^{27} + 3 \zeta_{6} q^{29} + 7 q^{31} + ( - 6 \zeta_{6} + 6) q^{33} + ( - 4 \zeta_{6} + 4) q^{35} + 8 q^{37} + 4 q^{39} + ( - 6 \zeta_{6} + 6) q^{41} + (4 \zeta_{6} - 4) q^{43} - q^{45} + 6 \zeta_{6} q^{47} + 9 q^{49} - 12 \zeta_{6} q^{51} + 6 \zeta_{6} q^{53} + (3 \zeta_{6} - 3) q^{55} + (4 \zeta_{6} - 10) q^{57} + (15 \zeta_{6} - 15) q^{59} - 5 \zeta_{6} q^{61} - 4 \zeta_{6} q^{63} - 2 q^{65} + 2 \zeta_{6} q^{67} + (3 \zeta_{6} - 3) q^{71} + (8 \zeta_{6} - 8) q^{73} + 2 q^{75} - 12 q^{77} + ( - 5 \zeta_{6} + 5) q^{79} + ( - 11 \zeta_{6} + 11) q^{81} - 12 q^{83} + 6 \zeta_{6} q^{85} - 6 q^{87} + 15 \zeta_{6} q^{89} - 8 \zeta_{6} q^{91} + (14 \zeta_{6} - 14) q^{93} + ( - 2 \zeta_{6} + 5) q^{95} + (8 \zeta_{6} - 8) q^{97} + 3 \zeta_{6} q^{99} +O(q^{100})$$ q + (2*z - 2) * q^3 + (-z + 1) * q^5 + 4 * q^7 - z * q^9 - 3 * q^11 - 2*z * q^13 + 2*z * q^15 + (6*z - 6) * q^17 + (3*z + 2) * q^19 + (8*z - 8) * q^21 - z * q^25 - 4 * q^27 + 3*z * q^29 + 7 * q^31 + (-6*z + 6) * q^33 + (-4*z + 4) * q^35 + 8 * q^37 + 4 * q^39 + (-6*z + 6) * q^41 + (4*z - 4) * q^43 - q^45 + 6*z * q^47 + 9 * q^49 - 12*z * q^51 + 6*z * q^53 + (3*z - 3) * q^55 + (4*z - 10) * q^57 + (15*z - 15) * q^59 - 5*z * q^61 - 4*z * q^63 - 2 * q^65 + 2*z * q^67 + (3*z - 3) * q^71 + (8*z - 8) * q^73 + 2 * q^75 - 12 * q^77 + (-5*z + 5) * q^79 + (-11*z + 11) * q^81 - 12 * q^83 + 6*z * q^85 - 6 * q^87 + 15*z * q^89 - 8*z * q^91 + (14*z - 14) * q^93 + (-2*z + 5) * q^95 + (8*z - 8) * q^97 + 3*z * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{3} + q^{5} + 8 q^{7} - q^{9}+O(q^{10})$$ 2 * q - 2 * q^3 + q^5 + 8 * q^7 - q^9 $$2 q - 2 q^{3} + q^{5} + 8 q^{7} - q^{9} - 6 q^{11} - 2 q^{13} + 2 q^{15} - 6 q^{17} + 7 q^{19} - 8 q^{21} - q^{25} - 8 q^{27} + 3 q^{29} + 14 q^{31} + 6 q^{33} + 4 q^{35} + 16 q^{37} + 8 q^{39} + 6 q^{41} - 4 q^{43} - 2 q^{45} + 6 q^{47} + 18 q^{49} - 12 q^{51} + 6 q^{53} - 3 q^{55} - 16 q^{57} - 15 q^{59} - 5 q^{61} - 4 q^{63} - 4 q^{65} + 2 q^{67} - 3 q^{71} - 8 q^{73} + 4 q^{75} - 24 q^{77} + 5 q^{79} + 11 q^{81} - 24 q^{83} + 6 q^{85} - 12 q^{87} + 15 q^{89} - 8 q^{91} - 14 q^{93} + 8 q^{95} - 8 q^{97} + 3 q^{99}+O(q^{100})$$ 2 * q - 2 * q^3 + q^5 + 8 * q^7 - q^9 - 6 * q^11 - 2 * q^13 + 2 * q^15 - 6 * q^17 + 7 * q^19 - 8 * q^21 - q^25 - 8 * q^27 + 3 * q^29 + 14 * q^31 + 6 * q^33 + 4 * q^35 + 16 * q^37 + 8 * q^39 + 6 * q^41 - 4 * q^43 - 2 * q^45 + 6 * q^47 + 18 * q^49 - 12 * q^51 + 6 * q^53 - 3 * q^55 - 16 * q^57 - 15 * q^59 - 5 * q^61 - 4 * q^63 - 4 * q^65 + 2 * q^67 - 3 * q^71 - 8 * q^73 + 4 * q^75 - 24 * q^77 + 5 * q^79 + 11 * q^81 - 24 * q^83 + 6 * q^85 - 12 * q^87 + 15 * q^89 - 8 * q^91 - 14 * q^93 + 8 * q^95 - 8 * q^97 + 3 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$401$$ $$1141$$ $$1217$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
881.1
 0.5 − 0.866025i 0.5 + 0.866025i
0 −1.00000 1.73205i 0 0.500000 + 0.866025i 0 4.00000 0 −0.500000 + 0.866025i 0
961.1 0 −1.00000 + 1.73205i 0 0.500000 0.866025i 0 4.00000 0 −0.500000 0.866025i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1520.2.q.c 2
4.b odd 2 1 95.2.e.a 2
12.b even 2 1 855.2.k.b 2
19.c even 3 1 inner 1520.2.q.c 2
20.d odd 2 1 475.2.e.b 2
20.e even 4 2 475.2.j.a 4
76.f even 6 1 1805.2.a.b 1
76.g odd 6 1 95.2.e.a 2
76.g odd 6 1 1805.2.a.a 1
228.m even 6 1 855.2.k.b 2
380.p odd 6 1 475.2.e.b 2
380.p odd 6 1 9025.2.a.g 1
380.s even 6 1 9025.2.a.e 1
380.v even 12 2 475.2.j.a 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.e.a 2 4.b odd 2 1
95.2.e.a 2 76.g odd 6 1
475.2.e.b 2 20.d odd 2 1
475.2.e.b 2 380.p odd 6 1
475.2.j.a 4 20.e even 4 2
475.2.j.a 4 380.v even 12 2
855.2.k.b 2 12.b even 2 1
855.2.k.b 2 228.m even 6 1
1520.2.q.c 2 1.a even 1 1 trivial
1520.2.q.c 2 19.c even 3 1 inner
1805.2.a.a 1 76.g odd 6 1
1805.2.a.b 1 76.f even 6 1
9025.2.a.e 1 380.s even 6 1
9025.2.a.g 1 380.p odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1520, [\chi])$$:

 $$T_{3}^{2} + 2T_{3} + 4$$ T3^2 + 2*T3 + 4 $$T_{7} - 4$$ T7 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} + 2T + 4$$
$5$ $$T^{2} - T + 1$$
$7$ $$(T - 4)^{2}$$
$11$ $$(T + 3)^{2}$$
$13$ $$T^{2} + 2T + 4$$
$17$ $$T^{2} + 6T + 36$$
$19$ $$T^{2} - 7T + 19$$
$23$ $$T^{2}$$
$29$ $$T^{2} - 3T + 9$$
$31$ $$(T - 7)^{2}$$
$37$ $$(T - 8)^{2}$$
$41$ $$T^{2} - 6T + 36$$
$43$ $$T^{2} + 4T + 16$$
$47$ $$T^{2} - 6T + 36$$
$53$ $$T^{2} - 6T + 36$$
$59$ $$T^{2} + 15T + 225$$
$61$ $$T^{2} + 5T + 25$$
$67$ $$T^{2} - 2T + 4$$
$71$ $$T^{2} + 3T + 9$$
$73$ $$T^{2} + 8T + 64$$
$79$ $$T^{2} - 5T + 25$$
$83$ $$(T + 12)^{2}$$
$89$ $$T^{2} - 15T + 225$$
$97$ $$T^{2} + 8T + 64$$