Defining parameters
| Level: | \( N \) | \(=\) | \( 1520 = 2^{4} \cdot 5 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1520.q (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 16 \) | ||
| Sturm bound: | \(480\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1520, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 504 | 80 | 424 |
| Cusp forms | 456 | 80 | 376 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1520, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1520, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1520, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(190, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(304, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(380, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(760, [\chi])\)\(^{\oplus 2}\)