Properties

Label 1520.2.g.f.1519.10
Level $1520$
Weight $2$
Character 1520.1519
Analytic conductor $12.137$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.1372611072\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 32 x^{14} + 380 x^{12} - 1752 x^{10} + 1904 x^{8} + 7824 x^{6} + 7352 x^{4} + 2992 x^{2} + 484\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{15} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1519.10
Root \(0.213388 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1520.1519
Dual form 1520.2.g.f.1519.8

$q$-expansion

\(f(q)\) \(=\) \(q+1.80775i q^{3} +(1.73205 - 1.41421i) q^{5} +2.12976 q^{7} -0.267949 q^{9} +O(q^{10})\) \(q+1.80775i q^{3} +(1.73205 - 1.41421i) q^{5} +2.12976 q^{7} -0.267949 q^{9} -4.11439i q^{11} -2.72241 q^{13} +(2.55654 + 3.13111i) q^{15} -1.79315i q^{17} +(3.49230 + 2.60842i) q^{19} +3.85008i q^{21} +3.68886 q^{23} +(1.00000 - 4.89898i) q^{25} +4.93886i q^{27} -10.5186i q^{29} +4.42806 q^{31} +7.43778 q^{33} +(3.68886 - 3.01194i) q^{35} -10.1602 q^{37} -4.92144i q^{39} -3.85008i q^{41} +7.94839 q^{43} +(-0.464102 + 0.378937i) q^{45} -6.38929 q^{47} -2.46410 q^{49} +3.24156 q^{51} +4.71536 q^{53} +(-5.81863 - 7.12633i) q^{55} +(-4.71536 + 6.31319i) q^{57} -4.42806 q^{59} +8.19615 q^{61} -0.570669 q^{63} +(-4.71536 + 3.85008i) q^{65} +3.13111i q^{67} +6.66853i q^{69} +16.5257 q^{71} +13.3843i q^{73} +(8.85612 + 1.80775i) q^{75} -8.76268i q^{77} -6.29958 q^{79} -9.73205 q^{81} -13.7670 q^{83} +(-2.53590 - 3.10583i) q^{85} +19.0150 q^{87} +10.5186i q^{89} -5.79810 q^{91} +8.00481i q^{93} +(9.73770 - 0.420943i) q^{95} +10.1602 q^{97} +1.10245i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 32q^{9} + O(q^{10}) \) \( 16q - 32q^{9} + 16q^{25} + 48q^{45} + 16q^{49} + 48q^{61} - 128q^{81} - 96q^{85} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.80775i 1.04370i 0.853036 + 0.521852i \(0.174759\pi\)
−0.853036 + 0.521852i \(0.825241\pi\)
\(4\) 0 0
\(5\) 1.73205 1.41421i 0.774597 0.632456i
\(6\) 0 0
\(7\) 2.12976 0.804975 0.402488 0.915425i \(-0.368146\pi\)
0.402488 + 0.915425i \(0.368146\pi\)
\(8\) 0 0
\(9\) −0.267949 −0.0893164
\(10\) 0 0
\(11\) 4.11439i 1.24054i −0.784390 0.620268i \(-0.787024\pi\)
0.784390 0.620268i \(-0.212976\pi\)
\(12\) 0 0
\(13\) −2.72241 −0.755062 −0.377531 0.925997i \(-0.623227\pi\)
−0.377531 + 0.925997i \(0.623227\pi\)
\(14\) 0 0
\(15\) 2.55654 + 3.13111i 0.660096 + 0.808449i
\(16\) 0 0
\(17\) 1.79315i 0.434903i −0.976071 0.217451i \(-0.930226\pi\)
0.976071 0.217451i \(-0.0697744\pi\)
\(18\) 0 0
\(19\) 3.49230 + 2.60842i 0.801188 + 0.598412i
\(20\) 0 0
\(21\) 3.85008i 0.840155i
\(22\) 0 0
\(23\) 3.68886 0.769181 0.384590 0.923087i \(-0.374343\pi\)
0.384590 + 0.923087i \(0.374343\pi\)
\(24\) 0 0
\(25\) 1.00000 4.89898i 0.200000 0.979796i
\(26\) 0 0
\(27\) 4.93886i 0.950483i
\(28\) 0 0
\(29\) 10.5186i 1.95326i −0.214938 0.976628i \(-0.568955\pi\)
0.214938 0.976628i \(-0.431045\pi\)
\(30\) 0 0
\(31\) 4.42806 0.795303 0.397651 0.917537i \(-0.369825\pi\)
0.397651 + 0.917537i \(0.369825\pi\)
\(32\) 0 0
\(33\) 7.43778 1.29475
\(34\) 0 0
\(35\) 3.68886 3.01194i 0.623531 0.509111i
\(36\) 0 0
\(37\) −10.1602 −1.67033 −0.835163 0.550003i \(-0.814626\pi\)
−0.835163 + 0.550003i \(0.814626\pi\)
\(38\) 0 0
\(39\) 4.92144i 0.788061i
\(40\) 0 0
\(41\) 3.85008i 0.601281i −0.953738 0.300640i \(-0.902800\pi\)
0.953738 0.300640i \(-0.0972004\pi\)
\(42\) 0 0
\(43\) 7.94839 1.21212 0.606059 0.795420i \(-0.292749\pi\)
0.606059 + 0.795420i \(0.292749\pi\)
\(44\) 0 0
\(45\) −0.464102 + 0.378937i −0.0691842 + 0.0564886i
\(46\) 0 0
\(47\) −6.38929 −0.931974 −0.465987 0.884791i \(-0.654301\pi\)
−0.465987 + 0.884791i \(0.654301\pi\)
\(48\) 0 0
\(49\) −2.46410 −0.352015
\(50\) 0 0
\(51\) 3.24156 0.453910
\(52\) 0 0
\(53\) 4.71536 0.647705 0.323852 0.946108i \(-0.395022\pi\)
0.323852 + 0.946108i \(0.395022\pi\)
\(54\) 0 0
\(55\) −5.81863 7.12633i −0.784583 0.960914i
\(56\) 0 0
\(57\) −4.71536 + 6.31319i −0.624565 + 0.836203i
\(58\) 0 0
\(59\) −4.42806 −0.576484 −0.288242 0.957558i \(-0.593071\pi\)
−0.288242 + 0.957558i \(0.593071\pi\)
\(60\) 0 0
\(61\) 8.19615 1.04941 0.524705 0.851284i \(-0.324176\pi\)
0.524705 + 0.851284i \(0.324176\pi\)
\(62\) 0 0
\(63\) −0.570669 −0.0718975
\(64\) 0 0
\(65\) −4.71536 + 3.85008i −0.584869 + 0.477543i
\(66\) 0 0
\(67\) 3.13111i 0.382526i 0.981539 + 0.191263i \(0.0612583\pi\)
−0.981539 + 0.191263i \(0.938742\pi\)
\(68\) 0 0
\(69\) 6.66853i 0.802796i
\(70\) 0 0
\(71\) 16.5257 1.96124 0.980622 0.195909i \(-0.0627658\pi\)
0.980622 + 0.195909i \(0.0627658\pi\)
\(72\) 0 0
\(73\) 13.3843i 1.56651i 0.621701 + 0.783255i \(0.286442\pi\)
−0.621701 + 0.783255i \(0.713558\pi\)
\(74\) 0 0
\(75\) 8.85612 + 1.80775i 1.02262 + 0.208741i
\(76\) 0 0
\(77\) 8.76268i 0.998600i
\(78\) 0 0
\(79\) −6.29958 −0.708758 −0.354379 0.935102i \(-0.615308\pi\)
−0.354379 + 0.935102i \(0.615308\pi\)
\(80\) 0 0
\(81\) −9.73205 −1.08134
\(82\) 0 0
\(83\) −13.7670 −1.51113 −0.755563 0.655076i \(-0.772637\pi\)
−0.755563 + 0.655076i \(0.772637\pi\)
\(84\) 0 0
\(85\) −2.53590 3.10583i −0.275057 0.336874i
\(86\) 0 0
\(87\) 19.0150 2.03862
\(88\) 0 0
\(89\) 10.5186i 1.11497i 0.830187 + 0.557485i \(0.188234\pi\)
−0.830187 + 0.557485i \(0.811766\pi\)
\(90\) 0 0
\(91\) −5.79810 −0.607806
\(92\) 0 0
\(93\) 8.00481i 0.830060i
\(94\) 0 0
\(95\) 9.73770 0.420943i 0.999067 0.0431879i
\(96\) 0 0
\(97\) 10.1602 1.03161 0.515806 0.856706i \(-0.327493\pi\)
0.515806 + 0.856706i \(0.327493\pi\)
\(98\) 0 0
\(99\) 1.10245i 0.110800i
\(100\) 0 0
\(101\) −2.19615 −0.218525 −0.109263 0.994013i \(-0.534849\pi\)
−0.109263 + 0.994013i \(0.534849\pi\)
\(102\) 0 0
\(103\) 9.39333i 0.925552i 0.886475 + 0.462776i \(0.153147\pi\)
−0.886475 + 0.462776i \(0.846853\pi\)
\(104\) 0 0
\(105\) 5.44483 + 6.66853i 0.531361 + 0.650782i
\(106\) 0 0
\(107\) 0.484384i 0.0468272i −0.999726 0.0234136i \(-0.992547\pi\)
0.999726 0.0234136i \(-0.00745346\pi\)
\(108\) 0 0
\(109\) 6.66853i 0.638729i −0.947632 0.319365i \(-0.896531\pi\)
0.947632 0.319365i \(-0.103469\pi\)
\(110\) 0 0
\(111\) 18.3671i 1.74332i
\(112\) 0 0
\(113\) 17.5980 1.65548 0.827739 0.561114i \(-0.189627\pi\)
0.827739 + 0.561114i \(0.189627\pi\)
\(114\) 0 0
\(115\) 6.38929 5.21684i 0.595805 0.486473i
\(116\) 0 0
\(117\) 0.729469 0.0674394
\(118\) 0 0
\(119\) 3.81899i 0.350086i
\(120\) 0 0
\(121\) −5.92820 −0.538928
\(122\) 0 0
\(123\) 6.95996 0.627559
\(124\) 0 0
\(125\) −5.19615 9.89949i −0.464758 0.885438i
\(126\) 0 0
\(127\) 0.838978i 0.0744473i −0.999307 0.0372236i \(-0.988149\pi\)
0.999307 0.0372236i \(-0.0118514\pi\)
\(128\) 0 0
\(129\) 14.3687i 1.26509i
\(130\) 0 0
\(131\) 2.20489i 0.192643i 0.995350 + 0.0963213i \(0.0307076\pi\)
−0.995350 + 0.0963213i \(0.969292\pi\)
\(132\) 0 0
\(133\) 7.43778 + 5.55532i 0.644937 + 0.481707i
\(134\) 0 0
\(135\) 6.98460 + 8.55435i 0.601138 + 0.736241i
\(136\) 0 0
\(137\) 14.4195i 1.23194i 0.787768 + 0.615972i \(0.211237\pi\)
−0.787768 + 0.615972i \(0.788763\pi\)
\(138\) 0 0
\(139\) 16.1622i 1.37086i 0.728140 + 0.685428i \(0.240385\pi\)
−0.728140 + 0.685428i \(0.759615\pi\)
\(140\) 0 0
\(141\) 11.5502i 0.972705i
\(142\) 0 0
\(143\) 11.2011i 0.936681i
\(144\) 0 0
\(145\) −14.8756 18.2188i −1.23535 1.51299i
\(146\) 0 0
\(147\) 4.45447i 0.367399i
\(148\) 0 0
\(149\) 5.66025 0.463706 0.231853 0.972751i \(-0.425521\pi\)
0.231853 + 0.972751i \(0.425521\pi\)
\(150\) 0 0
\(151\) 3.24156 0.263795 0.131897 0.991263i \(-0.457893\pi\)
0.131897 + 0.991263i \(0.457893\pi\)
\(152\) 0 0
\(153\) 0.480473i 0.0388440i
\(154\) 0 0
\(155\) 7.66962 6.26222i 0.616039 0.502994i
\(156\) 0 0
\(157\) 6.69213i 0.534090i −0.963684 0.267045i \(-0.913953\pi\)
0.963684 0.267045i \(-0.0860473\pi\)
\(158\) 0 0
\(159\) 8.52418i 0.676011i
\(160\) 0 0
\(161\) 7.85641 0.619172
\(162\) 0 0
\(163\) −0.570669 −0.0446982 −0.0223491 0.999750i \(-0.507115\pi\)
−0.0223491 + 0.999750i \(0.507115\pi\)
\(164\) 0 0
\(165\) 12.8826 10.5186i 1.00291 0.818872i
\(166\) 0 0
\(167\) 17.9477i 1.38883i 0.719573 + 0.694417i \(0.244337\pi\)
−0.719573 + 0.694417i \(0.755663\pi\)
\(168\) 0 0
\(169\) −5.58846 −0.429881
\(170\) 0 0
\(171\) −0.935759 0.698924i −0.0715593 0.0534480i
\(172\) 0 0
\(173\) −8.16724 −0.620944 −0.310472 0.950583i \(-0.600487\pi\)
−0.310472 + 0.950583i \(0.600487\pi\)
\(174\) 0 0
\(175\) 2.12976 10.4337i 0.160995 0.788712i
\(176\) 0 0
\(177\) 8.00481i 0.601678i
\(178\) 0 0
\(179\) −19.7673 −1.47748 −0.738739 0.673992i \(-0.764578\pi\)
−0.738739 + 0.673992i \(0.764578\pi\)
\(180\) 0 0
\(181\) 18.2188i 1.35419i 0.735896 + 0.677095i \(0.236761\pi\)
−0.735896 + 0.677095i \(0.763239\pi\)
\(182\) 0 0
\(183\) 14.8166i 1.09527i
\(184\) 0 0
\(185\) −17.5980 + 14.3687i −1.29383 + 1.05641i
\(186\) 0 0
\(187\) −7.37772 −0.539512
\(188\) 0 0
\(189\) 10.5186i 0.765116i
\(190\) 0 0
\(191\) 11.2407i 0.813350i −0.913573 0.406675i \(-0.866688\pi\)
0.913573 0.406675i \(-0.133312\pi\)
\(192\) 0 0
\(193\) −15.6050 −1.12327 −0.561637 0.827384i \(-0.689828\pi\)
−0.561637 + 0.827384i \(0.689828\pi\)
\(194\) 0 0
\(195\) −6.95996 8.52418i −0.498413 0.610429i
\(196\) 0 0
\(197\) 6.69213i 0.476795i −0.971168 0.238397i \(-0.923378\pi\)
0.971168 0.238397i \(-0.0766220\pi\)
\(198\) 0 0
\(199\) 19.4695i 1.38016i 0.723735 + 0.690078i \(0.242424\pi\)
−0.723735 + 0.690078i \(0.757576\pi\)
\(200\) 0 0
\(201\) −5.66025 −0.399244
\(202\) 0 0
\(203\) 22.4022i 1.57232i
\(204\) 0 0
\(205\) −5.44483 6.66853i −0.380283 0.465750i
\(206\) 0 0
\(207\) −0.988427 −0.0687004
\(208\) 0 0
\(209\) 10.7321 14.3687i 0.742351 0.993902i
\(210\) 0 0
\(211\) −6.98460 −0.480840 −0.240420 0.970669i \(-0.577285\pi\)
−0.240420 + 0.970669i \(0.577285\pi\)
\(212\) 0 0
\(213\) 29.8744i 2.04696i
\(214\) 0 0
\(215\) 13.7670 11.2407i 0.938903 0.766611i
\(216\) 0 0
\(217\) 9.43072 0.640199
\(218\) 0 0
\(219\) −24.1954 −1.63497
\(220\) 0 0
\(221\) 4.88170i 0.328379i
\(222\) 0 0
\(223\) 24.2099i 1.62121i −0.585590 0.810607i \(-0.699137\pi\)
0.585590 0.810607i \(-0.300863\pi\)
\(224\) 0 0
\(225\) −0.267949 + 1.31268i −0.0178633 + 0.0875118i
\(226\) 0 0
\(227\) 13.9776i 0.927725i −0.885907 0.463863i \(-0.846463\pi\)
0.885907 0.463863i \(-0.153537\pi\)
\(228\) 0 0
\(229\) 9.12436 0.602954 0.301477 0.953473i \(-0.402520\pi\)
0.301477 + 0.953473i \(0.402520\pi\)
\(230\) 0 0
\(231\) 15.8407 1.04224
\(232\) 0 0
\(233\) 5.93426i 0.388766i −0.980926 0.194383i \(-0.937730\pi\)
0.980926 0.194383i \(-0.0622705\pi\)
\(234\) 0 0
\(235\) −11.0666 + 9.03583i −0.721904 + 0.589432i
\(236\) 0 0
\(237\) 11.3880i 0.739733i
\(238\) 0 0
\(239\) 16.4576i 1.06455i 0.846571 + 0.532276i \(0.178663\pi\)
−0.846571 + 0.532276i \(0.821337\pi\)
\(240\) 0 0
\(241\) 6.66853i 0.429558i −0.976663 0.214779i \(-0.931097\pi\)
0.976663 0.214779i \(-0.0689031\pi\)
\(242\) 0 0
\(243\) 2.77652i 0.178114i
\(244\) 0 0
\(245\) −4.26795 + 3.48477i −0.272669 + 0.222634i
\(246\) 0 0
\(247\) −9.50749 7.10120i −0.604947 0.451838i
\(248\) 0 0
\(249\) 24.8873i 1.57717i
\(250\) 0 0
\(251\) 25.4934i 1.60913i 0.593866 + 0.804564i \(0.297601\pi\)
−0.593866 + 0.804564i \(0.702399\pi\)
\(252\) 0 0
\(253\) 15.1774i 0.954196i
\(254\) 0 0
\(255\) 5.61455 4.58426i 0.351597 0.287078i
\(256\) 0 0
\(257\) −21.0499 −1.31305 −0.656527 0.754303i \(-0.727975\pi\)
−0.656527 + 0.754303i \(0.727975\pi\)
\(258\) 0 0
\(259\) −21.6388 −1.34457
\(260\) 0 0
\(261\) 2.81845i 0.174458i
\(262\) 0 0
\(263\) 16.4675 1.01543 0.507713 0.861526i \(-0.330491\pi\)
0.507713 + 0.861526i \(0.330491\pi\)
\(264\) 0 0
\(265\) 8.16724 6.66853i 0.501710 0.409644i
\(266\) 0 0
\(267\) −19.0150 −1.16370
\(268\) 0 0
\(269\) 3.85008i 0.234743i 0.993088 + 0.117372i \(0.0374469\pi\)
−0.993088 + 0.117372i \(0.962553\pi\)
\(270\) 0 0
\(271\) 16.1622i 0.981781i 0.871221 + 0.490891i \(0.163329\pi\)
−0.871221 + 0.490891i \(0.836671\pi\)
\(272\) 0 0
\(273\) 10.4815i 0.634369i
\(274\) 0 0
\(275\) −20.1563 4.11439i −1.21547 0.248107i
\(276\) 0 0
\(277\) 23.6627i 1.42175i −0.703317 0.710877i \(-0.748298\pi\)
0.703317 0.710877i \(-0.251702\pi\)
\(278\) 0 0
\(279\) −1.18649 −0.0710336
\(280\) 0 0
\(281\) 14.3687i 0.857164i −0.903503 0.428582i \(-0.859013\pi\)
0.903503 0.428582i \(-0.140987\pi\)
\(282\) 0 0
\(283\) −25.4043 −1.51013 −0.755063 0.655652i \(-0.772394\pi\)
−0.755063 + 0.655652i \(0.772394\pi\)
\(284\) 0 0
\(285\) 0.760959 + 17.6033i 0.0450753 + 1.04273i
\(286\) 0 0
\(287\) 8.19976i 0.484016i
\(288\) 0 0
\(289\) 13.7846 0.810859
\(290\) 0 0
\(291\) 18.3671i 1.07670i
\(292\) 0 0
\(293\) −4.71536 −0.275474 −0.137737 0.990469i \(-0.543983\pi\)
−0.137737 + 0.990469i \(0.543983\pi\)
\(294\) 0 0
\(295\) −7.66962 + 6.26222i −0.446543 + 0.364601i
\(296\) 0 0
\(297\) 20.3204 1.17911
\(298\) 0 0
\(299\) −10.0426 −0.580779
\(300\) 0 0
\(301\) 16.9282 0.975725
\(302\) 0 0
\(303\) 3.97009i 0.228076i
\(304\) 0 0
\(305\) 14.1962 11.5911i 0.812869 0.663705i
\(306\) 0 0
\(307\) 32.7642i 1.86995i −0.354708 0.934977i \(-0.615420\pi\)
0.354708 0.934977i \(-0.384580\pi\)
\(308\) 0 0
\(309\) −16.9808 −0.966002
\(310\) 0 0
\(311\) 31.0056i 1.75817i −0.476667 0.879084i \(-0.658155\pi\)
0.476667 0.879084i \(-0.341845\pi\)
\(312\) 0 0
\(313\) 16.4901i 0.932075i −0.884765 0.466037i \(-0.845681\pi\)
0.884765 0.466037i \(-0.154319\pi\)
\(314\) 0 0
\(315\) −0.988427 + 0.807048i −0.0556916 + 0.0454720i
\(316\) 0 0
\(317\) −8.16724 −0.458718 −0.229359 0.973342i \(-0.573663\pi\)
−0.229359 + 0.973342i \(0.573663\pi\)
\(318\) 0 0
\(319\) −43.2776 −2.42308
\(320\) 0 0
\(321\) 0.875644 0.0488737
\(322\) 0 0
\(323\) 4.67729 6.26222i 0.260251 0.348439i
\(324\) 0 0
\(325\) −2.72241 + 13.3371i −0.151012 + 0.739807i
\(326\) 0 0
\(327\) 12.0550 0.666644
\(328\) 0 0
\(329\) −13.6077 −0.750217
\(330\) 0 0
\(331\) −24.1954 −1.32990 −0.664949 0.746889i \(-0.731547\pi\)
−0.664949 + 0.746889i \(0.731547\pi\)
\(332\) 0 0
\(333\) 2.72241 0.149187
\(334\) 0 0
\(335\) 4.42806 + 5.42324i 0.241931 + 0.296303i
\(336\) 0 0
\(337\) 12.1531 0.662024 0.331012 0.943627i \(-0.392610\pi\)
0.331012 + 0.943627i \(0.392610\pi\)
\(338\) 0 0
\(339\) 31.8127i 1.72783i
\(340\) 0 0
\(341\) 18.2188i 0.986601i
\(342\) 0 0
\(343\) −20.1563 −1.08834
\(344\) 0 0
\(345\) 9.43072 + 11.5502i 0.507733 + 0.621843i
\(346\) 0 0
\(347\) −3.68886 −0.198028 −0.0990142 0.995086i \(-0.531569\pi\)
−0.0990142 + 0.995086i \(0.531569\pi\)
\(348\) 0 0
\(349\) −20.0000 −1.07058 −0.535288 0.844670i \(-0.679797\pi\)
−0.535288 + 0.844670i \(0.679797\pi\)
\(350\) 0 0
\(351\) 13.4456i 0.717674i
\(352\) 0 0
\(353\) 12.1459i 0.646462i −0.946320 0.323231i \(-0.895231\pi\)
0.946320 0.323231i \(-0.104769\pi\)
\(354\) 0 0
\(355\) 28.6234 23.3709i 1.51917 1.24040i
\(356\) 0 0
\(357\) 6.90377 0.365386
\(358\) 0 0
\(359\) 6.31928i 0.333519i 0.985998 + 0.166760i \(0.0533304\pi\)
−0.985998 + 0.166760i \(0.946670\pi\)
\(360\) 0 0
\(361\) 5.39230 + 18.2188i 0.283806 + 0.958882i
\(362\) 0 0
\(363\) 10.7167i 0.562480i
\(364\) 0 0
\(365\) 18.9282 + 23.1822i 0.990747 + 1.21341i
\(366\) 0 0
\(367\) −6.80705 −0.355325 −0.177663 0.984091i \(-0.556854\pi\)
−0.177663 + 0.984091i \(0.556854\pi\)
\(368\) 0 0
\(369\) 1.03162i 0.0537042i
\(370\) 0 0
\(371\) 10.0426 0.521386
\(372\) 0 0
\(373\) 10.1602 0.526075 0.263037 0.964786i \(-0.415276\pi\)
0.263037 + 0.964786i \(0.415276\pi\)
\(374\) 0 0
\(375\) 17.8958 9.39333i 0.924134 0.485069i
\(376\) 0 0
\(377\) 28.6360i 1.47483i
\(378\) 0 0
\(379\) −20.9538 −1.07632 −0.538162 0.842841i \(-0.680881\pi\)
−0.538162 + 0.842841i \(0.680881\pi\)
\(380\) 0 0
\(381\) 1.51666 0.0777009
\(382\) 0 0
\(383\) 0.484384i 0.0247509i 0.999923 + 0.0123754i \(0.00393933\pi\)
−0.999923 + 0.0123754i \(0.996061\pi\)
\(384\) 0 0
\(385\) −12.3923 15.1774i −0.631570 0.773513i
\(386\) 0 0
\(387\) −2.12976 −0.108262
\(388\) 0 0
\(389\) 14.5359 0.736999 0.368500 0.929628i \(-0.379872\pi\)
0.368500 + 0.929628i \(0.379872\pi\)
\(390\) 0 0
\(391\) 6.61468i 0.334519i
\(392\) 0 0
\(393\) −3.98589 −0.201062
\(394\) 0 0
\(395\) −10.9112 + 8.90894i −0.549001 + 0.448258i
\(396\) 0 0
\(397\) 18.2832i 0.917610i 0.888537 + 0.458805i \(0.151722\pi\)
−0.888537 + 0.458805i \(0.848278\pi\)
\(398\) 0 0
\(399\) −10.0426 + 13.4456i −0.502759 + 0.673123i
\(400\) 0 0
\(401\) 21.0372i 1.05055i 0.850933 + 0.525274i \(0.176037\pi\)
−0.850933 + 0.525274i \(0.823963\pi\)
\(402\) 0 0
\(403\) −12.0550 −0.600503
\(404\) 0 0
\(405\) −16.8564 + 13.7632i −0.837602 + 0.683899i
\(406\) 0 0
\(407\) 41.8030i 2.07210i
\(408\) 0 0
\(409\) 11.5502i 0.571122i −0.958361 0.285561i \(-0.907820\pi\)
0.958361 0.285561i \(-0.0921799\pi\)
\(410\) 0 0
\(411\) −26.0669 −1.28578
\(412\) 0 0
\(413\) −9.43072 −0.464055
\(414\) 0 0
\(415\) −23.8452 + 19.4695i −1.17051 + 0.955720i
\(416\) 0 0
\(417\) −29.2171 −1.43077
\(418\) 0 0
\(419\) 18.6625i 0.911721i 0.890051 + 0.455860i \(0.150668\pi\)
−0.890051 + 0.455860i \(0.849332\pi\)
\(420\) 0 0
\(421\) 11.5502i 0.562924i −0.959572 0.281462i \(-0.909181\pi\)
0.959572 0.281462i \(-0.0908193\pi\)
\(422\) 0 0
\(423\) 1.71201 0.0832406
\(424\) 0 0
\(425\) −8.78461 1.79315i −0.426116 0.0869806i
\(426\) 0 0
\(427\) 17.4559 0.844749
\(428\) 0 0
\(429\) −20.2487 −0.977617
\(430\) 0 0
\(431\) 29.8099 1.43589 0.717946 0.696098i \(-0.245082\pi\)
0.717946 + 0.696098i \(0.245082\pi\)
\(432\) 0 0
\(433\) −12.1531 −0.584042 −0.292021 0.956412i \(-0.594328\pi\)
−0.292021 + 0.956412i \(0.594328\pi\)
\(434\) 0 0
\(435\) 32.9349 26.8912i 1.57911 1.28934i
\(436\) 0 0
\(437\) 12.8826 + 9.62209i 0.616259 + 0.460287i
\(438\) 0 0
\(439\) −9.03967 −0.431440 −0.215720 0.976455i \(-0.569210\pi\)
−0.215720 + 0.976455i \(0.569210\pi\)
\(440\) 0 0
\(441\) 0.660254 0.0314407
\(442\) 0 0
\(443\) 3.68886 0.175263 0.0876315 0.996153i \(-0.472070\pi\)
0.0876315 + 0.996153i \(0.472070\pi\)
\(444\) 0 0
\(445\) 14.8756 + 18.2188i 0.705169 + 0.863652i
\(446\) 0 0
\(447\) 10.2323i 0.483972i
\(448\) 0 0
\(449\) 14.3687i 0.678100i 0.940768 + 0.339050i \(0.110106\pi\)
−0.940768 + 0.339050i \(0.889894\pi\)
\(450\) 0 0
\(451\) −15.8407 −0.745910
\(452\) 0 0
\(453\) 5.85993i 0.275323i
\(454\) 0 0
\(455\) −10.0426 + 8.19976i −0.470805 + 0.384411i
\(456\) 0 0
\(457\) 25.4558i 1.19077i 0.803439 + 0.595387i \(0.203001\pi\)
−0.803439 + 0.595387i \(0.796999\pi\)
\(458\) 0 0
\(459\) 8.85612 0.413368
\(460\) 0 0
\(461\) −24.2487 −1.12938 −0.564688 0.825305i \(-0.691003\pi\)
−0.564688 + 0.825305i \(0.691003\pi\)
\(462\) 0 0
\(463\) 28.1047 1.30614 0.653068 0.757299i \(-0.273482\pi\)
0.653068 + 0.757299i \(0.273482\pi\)
\(464\) 0 0
\(465\) 11.3205 + 13.8647i 0.524976 + 0.642962i
\(466\) 0 0
\(467\) −11.0666 −0.512100 −0.256050 0.966663i \(-0.582421\pi\)
−0.256050 + 0.966663i \(0.582421\pi\)
\(468\) 0 0
\(469\) 6.66853i 0.307924i
\(470\) 0 0
\(471\) 12.0977 0.557432
\(472\) 0 0
\(473\) 32.7028i 1.50368i
\(474\) 0 0
\(475\) 16.2709 14.5003i 0.746560 0.665319i
\(476\) 0 0
\(477\) −1.26348 −0.0578506
\(478\) 0 0
\(479\) 4.11439i 0.187991i 0.995573 + 0.0939956i \(0.0299640\pi\)
−0.995573 + 0.0939956i \(0.970036\pi\)
\(480\) 0 0
\(481\) 27.6603 1.26120
\(482\) 0 0
\(483\) 14.2024i 0.646231i
\(484\) 0 0
\(485\) 17.5980 14.3687i 0.799082 0.652448i
\(486\) 0 0
\(487\) 24.8241i 1.12489i −0.826836 0.562443i \(-0.809862\pi\)
0.826836 0.562443i \(-0.190138\pi\)
\(488\) 0 0
\(489\) 1.03162i 0.0466517i
\(490\) 0 0
\(491\) 17.8554i 0.805803i −0.915243 0.402902i \(-0.868002\pi\)
0.915243 0.402902i \(-0.131998\pi\)
\(492\) 0 0
\(493\) −18.8614 −0.849477
\(494\) 0 0
\(495\) 1.55910 + 1.90949i 0.0700762 + 0.0858254i
\(496\) 0 0
\(497\) 35.1959 1.57875
\(498\) 0 0
\(499\) 16.1622i 0.723518i 0.932272 + 0.361759i \(0.117824\pi\)
−0.932272 + 0.361759i \(0.882176\pi\)
\(500\) 0 0
\(501\) −32.4449 −1.44953
\(502\) 0 0
\(503\) 16.4675 0.734247 0.367124 0.930172i \(-0.380343\pi\)
0.367124 + 0.930172i \(0.380343\pi\)
\(504\) 0 0
\(505\) −3.80385 + 3.10583i −0.169269 + 0.138208i
\(506\) 0 0
\(507\) 10.1025i 0.448669i
\(508\) 0 0
\(509\) 15.4003i 0.682606i −0.939953 0.341303i \(-0.889132\pi\)
0.939953 0.341303i \(-0.110868\pi\)
\(510\) 0 0
\(511\) 28.5053i 1.26100i
\(512\) 0 0
\(513\) −12.8826 + 17.2480i −0.568781 + 0.761516i
\(514\) 0 0
\(515\) 13.2842 + 16.2697i 0.585371 + 0.716930i
\(516\) 0 0
\(517\) 26.2880i 1.15615i
\(518\) 0 0
\(519\) 14.7643i 0.648081i
\(520\) 0 0
\(521\) 10.5186i 0.460828i 0.973093 + 0.230414i \(0.0740081\pi\)
−0.973093 + 0.230414i \(0.925992\pi\)
\(522\) 0 0
\(523\) 0.838978i 0.0366860i 0.999832 + 0.0183430i \(0.00583908\pi\)
−0.999832 + 0.0183430i \(0.994161\pi\)
\(524\) 0 0
\(525\) 18.8614 + 3.85008i 0.823181 + 0.168031i
\(526\) 0 0
\(527\) 7.94018i 0.345879i
\(528\) 0 0
\(529\) −9.39230 −0.408361
\(530\) 0 0
\(531\) 1.18649 0.0514895
\(532\) 0 0
\(533\) 10.4815i 0.454004i
\(534\) 0 0
\(535\) −0.685023 0.838978i −0.0296161 0.0362722i
\(536\) 0 0
\(537\) 35.7343i 1.54205i
\(538\) 0 0
\(539\) 10.1383i 0.436686i
\(540\) 0 0
\(541\) 1.80385 0.0775535 0.0387767 0.999248i \(-0.487654\pi\)
0.0387767 + 0.999248i \(0.487654\pi\)
\(542\) 0 0
\(543\) −32.9349 −1.41337
\(544\) 0 0
\(545\) −9.43072 11.5502i −0.403968 0.494757i
\(546\) 0 0
\(547\) 35.0564i 1.49890i 0.662059 + 0.749451i \(0.269683\pi\)
−0.662059 + 0.749451i \(0.730317\pi\)
\(548\) 0 0
\(549\) −2.19615 −0.0937295
\(550\) 0 0
\(551\) 27.4369 36.7341i 1.16885 1.56493i
\(552\) 0 0
\(553\) −13.4166 −0.570532
\(554\) 0 0
\(555\) −25.9749 31.8127i −1.10257 1.35037i
\(556\) 0 0
\(557\) 11.0363i 0.467623i −0.972282 0.233812i \(-0.924880\pi\)
0.972282 0.233812i \(-0.0751199\pi\)
\(558\) 0 0
\(559\) −21.6388 −0.915224
\(560\) 0 0
\(561\) 13.3371i 0.563091i
\(562\) 0 0
\(563\) 17.9477i 0.756405i 0.925723 + 0.378202i \(0.123458\pi\)
−0.925723 + 0.378202i \(0.876542\pi\)
\(564\) 0 0
\(565\) 30.4806 24.8873i 1.28233 1.04702i
\(566\) 0 0
\(567\) −20.7270 −0.870451
\(568\) 0 0
\(569\) 1.03162i 0.0432480i 0.999766 + 0.0216240i \(0.00688366\pi\)
−0.999766 + 0.0216240i \(0.993116\pi\)
\(570\) 0 0
\(571\) 30.4148i 1.27282i 0.771351 + 0.636410i \(0.219581\pi\)
−0.771351 + 0.636410i \(0.780419\pi\)
\(572\) 0 0
\(573\) 20.3204 0.848896
\(574\) 0 0
\(575\) 3.68886 18.0717i 0.153836 0.753640i
\(576\) 0 0
\(577\) 8.00481i 0.333245i 0.986021 + 0.166622i \(0.0532860\pi\)
−0.986021 + 0.166622i \(0.946714\pi\)
\(578\) 0 0
\(579\) 28.2099i 1.17236i
\(580\) 0 0
\(581\) −29.3205 −1.21642
\(582\) 0 0
\(583\) 19.4008i 0.803500i
\(584\) 0 0
\(585\) 1.26348 1.03162i 0.0522384 0.0426524i
\(586\) 0 0
\(587\) 8.36615 0.345308 0.172654 0.984983i \(-0.444766\pi\)
0.172654 + 0.984983i \(0.444766\pi\)
\(588\) 0 0
\(589\) 15.4641 + 11.5502i 0.637187 + 0.475919i
\(590\) 0 0
\(591\) 12.0977 0.497632
\(592\) 0 0
\(593\) 11.8685i 0.487381i −0.969853 0.243691i \(-0.921642\pi\)
0.969853 0.243691i \(-0.0783582\pi\)
\(594\) 0 0
\(595\) −5.40087 6.61468i −0.221414 0.271176i
\(596\) 0 0
\(597\) −35.1959 −1.44047
\(598\) 0 0
\(599\) −16.5257 −0.675223 −0.337612 0.941285i \(-0.609619\pi\)
−0.337612 + 0.941285i \(0.609619\pi\)
\(600\) 0 0
\(601\) 6.66853i 0.272015i 0.990708 + 0.136007i \(0.0434271\pi\)
−0.990708 + 0.136007i \(0.956573\pi\)
\(602\) 0 0
\(603\) 0.838978i 0.0341658i
\(604\) 0 0
\(605\) −10.2679 + 8.38375i −0.417451 + 0.340848i
\(606\) 0 0
\(607\) 31.0863i 1.26175i −0.775883 0.630877i \(-0.782695\pi\)
0.775883 0.630877i \(-0.217305\pi\)
\(608\) 0 0
\(609\) 40.4974 1.64104
\(610\) 0 0
\(611\) 17.3943 0.703698
\(612\) 0 0
\(613\) 29.0421i 1.17300i −0.809949 0.586501i \(-0.800505\pi\)
0.809949 0.586501i \(-0.199495\pi\)
\(614\) 0 0
\(615\) 12.0550 9.84287i 0.486105 0.396903i
\(616\) 0 0
\(617\) 37.8792i 1.52496i 0.647013 + 0.762479i \(0.276018\pi\)
−0.647013 + 0.762479i \(0.723982\pi\)
\(618\) 0 0
\(619\) 22.7768i 0.915479i 0.889086 + 0.457739i \(0.151341\pi\)
−0.889086 + 0.457739i \(0.848659\pi\)
\(620\) 0 0
\(621\) 18.2188i 0.731093i
\(622\) 0 0
\(623\) 22.4022i 0.897523i
\(624\) 0 0
\(625\) −23.0000 9.79796i −0.920000 0.391918i
\(626\) 0 0
\(627\) 25.9749 + 19.4008i 1.03734 + 0.774795i
\(628\) 0 0
\(629\) 18.2188i 0.726429i
\(630\) 0 0
\(631\) 8.52418i 0.339342i 0.985501 + 0.169671i \(0.0542705\pi\)
−0.985501 + 0.169671i \(0.945729\pi\)
\(632\) 0 0
\(633\) 12.6264i 0.501854i
\(634\) 0 0
\(635\) −1.18649 1.45315i −0.0470846 0.0576666i
\(636\) 0 0
\(637\) 6.70831 0.265793
\(638\) 0 0
\(639\) −4.42806 −0.175171
\(640\) 0 0
\(641\) 27.7057i 1.09431i −0.837031 0.547155i \(-0.815711\pi\)
0.837031 0.547155i \(-0.184289\pi\)
\(642\) 0 0
\(643\) −6.80705 −0.268444 −0.134222 0.990951i \(-0.542854\pi\)
−0.134222 + 0.990951i \(0.542854\pi\)
\(644\) 0 0
\(645\) 20.3204 + 24.8873i 0.800114 + 0.979936i
\(646\) 0 0
\(647\) 46.7019 1.83604 0.918021 0.396532i \(-0.129786\pi\)
0.918021 + 0.396532i \(0.129786\pi\)
\(648\) 0 0
\(649\) 18.2188i 0.715149i
\(650\) 0 0
\(651\) 17.0484i 0.668178i
\(652\) 0 0
\(653\) 45.0518i 1.76301i −0.472173 0.881506i \(-0.656530\pi\)
0.472173 0.881506i \(-0.343470\pi\)
\(654\) 0 0
\(655\) 3.11819 + 3.81899i 0.121838 + 0.149220i
\(656\) 0 0
\(657\) 3.58630i 0.139915i
\(658\) 0 0
\(659\) 23.0089 0.896298 0.448149 0.893959i \(-0.352083\pi\)
0.448149 + 0.893959i \(0.352083\pi\)
\(660\) 0 0
\(661\) 24.8873i 0.968003i 0.875067 + 0.484002i \(0.160817\pi\)
−0.875067 + 0.484002i \(0.839183\pi\)
\(662\) 0 0
\(663\) −8.82488 −0.342730
\(664\) 0 0
\(665\) 20.7390 0.896510i 0.804224 0.0347652i
\(666\) 0 0
\(667\) 38.8017i 1.50241i
\(668\) 0 0
\(669\) 43.7654 1.69207
\(670\) 0 0
\(671\) 33.7222i 1.30183i
\(672\) 0 0
\(673\) 12.1531 0.468469 0.234234 0.972180i \(-0.424742\pi\)
0.234234 + 0.972180i \(0.424742\pi\)
\(674\) 0 0
\(675\) 24.1954 + 4.93886i 0.931280 + 0.190097i
\(676\) 0 0
\(677\) −30.4806 −1.17146 −0.585732 0.810505i \(-0.699193\pi\)
−0.585732 + 0.810505i \(0.699193\pi\)
\(678\) 0 0
\(679\) 21.6388 0.830422
\(680\) 0 0
\(681\) 25.2679 0.968270
\(682\) 0 0
\(683\) 25.1787i 0.963435i 0.876327 + 0.481717i \(0.159987\pi\)
−0.876327 + 0.481717i \(0.840013\pi\)
\(684\) 0 0
\(685\) 20.3923 + 24.9754i 0.779150 + 0.954260i
\(686\) 0 0
\(687\) 16.4945i 0.629305i
\(688\) 0 0
\(689\) −12.8372 −0.489057
\(690\) 0 0
\(691\) 19.9811i 0.760119i −0.924962 0.380059i \(-0.875904\pi\)
0.924962 0.380059i \(-0.124096\pi\)
\(692\) 0 0
\(693\) 2.34795i 0.0891914i
\(694\) 0 0
\(695\) 22.8567 + 27.9937i 0.867006 + 1.06186i
\(696\) 0 0
\(697\) −6.90377 −0.261499
\(698\) 0 0
\(699\) 10.7276 0.405756
\(700\) 0 0
\(701\) 7.51666 0.283900 0.141950 0.989874i \(-0.454663\pi\)
0.141950 + 0.989874i \(0.454663\pi\)
\(702\) 0 0
\(703\) −35.4824 26.5020i −1.33824 0.999543i
\(704\) 0 0
\(705\) −16.3345 20.0056i −0.615192 0.753454i
\(706\) 0 0
\(707\) −4.67729 −0.175908
\(708\) 0 0
\(709\) −7.60770 −0.285713 −0.142856 0.989743i \(-0.545629\pi\)
−0.142856 + 0.989743i \(0.545629\pi\)
\(710\) 0 0
\(711\) 1.68797 0.0633037
\(712\) 0 0
\(713\) 16.3345 0.611731
\(714\) 0 0
\(715\) 15.8407 + 19.4008i 0.592409 + 0.725550i
\(716\) 0 0
\(717\) −29.7511 −1.11108
\(718\) 0 0
\(719\) 3.52359i 0.131408i −0.997839 0.0657039i \(-0.979071\pi\)
0.997839 0.0657039i \(-0.0209293\pi\)
\(720\) 0 0
\(721\) 20.0056i 0.745047i
\(722\) 0 0
\(723\) 12.0550 0.448331
\(724\) 0 0
\(725\) −51.5304 10.5186i −1.91379 0.390651i
\(726\) 0 0
\(727\) −48.2610 −1.78990 −0.894951 0.446165i \(-0.852790\pi\)
−0.894951 + 0.446165i \(0.852790\pi\)
\(728\) 0 0
\(729\) −24.1769 −0.895441
\(730\) 0 0
\(731\) 14.2527i 0.527154i
\(732\) 0 0
\(733\) 20.0764i 0.741538i −0.928725 0.370769i \(-0.879094\pi\)
0.928725 0.370769i \(-0.120906\pi\)
\(734\) 0 0
\(735\) −6.29958 7.71537i −0.232363 0.284586i
\(736\) 0 0
\(737\) 12.8826 0.474537
\(738\) 0 0
\(739\) 33.7222i 1.24049i −0.784408 0.620245i \(-0.787033\pi\)
0.784408 0.620245i \(-0.212967\pi\)
\(740\) 0 0
\(741\) 12.8372 17.1871i 0.471585 0.631385i
\(742\) 0 0
\(743\) 44.9341i 1.64847i 0.566246 + 0.824236i \(0.308395\pi\)
−0.566246 + 0.824236i \(0.691605\pi\)
\(744\) 0 0
\(745\) 9.80385 8.00481i 0.359185 0.293273i
\(746\) 0 0
\(747\) 3.68886 0.134968
\(748\) 0 0
\(749\) 1.03162i 0.0376947i
\(750\) 0 0
\(751\) −27.4369 −1.00119 −0.500594 0.865682i \(-0.666885\pi\)
−0.500594 + 0.865682i \(0.666885\pi\)
\(752\) 0 0
\(753\) −46.0856 −1.67945
\(754\) 0 0
\(755\) 5.61455 4.58426i 0.204334 0.166838i
\(756\) 0 0
\(757\) 24.0144i 0.872819i −0.899748 0.436410i \(-0.856250\pi\)
0.899748 0.436410i \(-0.143750\pi\)
\(758\) 0 0
\(759\) 27.4369 0.995897
\(760\) 0 0
\(761\) 32.4449 1.17613 0.588063 0.808815i \(-0.299891\pi\)
0.588063 + 0.808815i \(0.299891\pi\)
\(762\) 0 0
\(763\) 14.2024i 0.514161i
\(764\) 0 0
\(765\) 0.679492 + 0.832204i 0.0245671 + 0.0300884i
\(766\) 0 0
\(767\) 12.0550 0.435281
\(768\) 0 0
\(769\) 13.8038 0.497779 0.248890 0.968532i \(-0.419934\pi\)
0.248890 + 0.968532i \(0.419934\pi\)
\(770\) 0 0
\(771\) 38.0528i 1.37044i
\(772\) 0 0
\(773\) 17.5980 0.632955 0.316477 0.948600i \(-0.397500\pi\)
0.316477 + 0.948600i \(0.397500\pi\)
\(774\) 0 0
\(775\) 4.42806 21.6930i 0.159061 0.779234i
\(776\) 0 0
\(777\) 39.1175i 1.40333i
\(778\) 0 0
\(779\) 10.0426 13.4456i 0.359814 0.481739i
\(780\) 0 0
\(781\) 67.9933i 2.43299i
\(782\) 0 0
\(783\) 51.9499 1.85654
\(784\) 0 0
\(785\) −9.46410 11.5911i −0.337788 0.413704i
\(786\) 0 0
\(787\) 44.2249i 1.57645i 0.615389 + 0.788224i \(0.288999\pi\)
−0.615389 + 0.788224i \(0.711001\pi\)
\(788\) 0 0
\(789\) 29.7690i 1.05980i
\(790\) 0 0
\(791\) 37.4795 1.33262
\(792\) 0 0
\(793\) −22.3133 −0.792369
\(794\) 0 0
\(795\) 12.0550 + 14.7643i 0.427547 + 0.523636i
\(796\) 0 0
\(797\) 49.3420 1.74778 0.873892 0.486120i \(-0.161588\pi\)
0.873892 + 0.486120i \(0.161588\pi\)
\(798\) 0 0
\(799\) 11.4570i 0.405318i
\(800\) 0 0
\(801\) 2.81845i 0.0995851i