Properties

Label 1520.2.d.h.609.6
Level $1520$
Weight $2$
Character 1520.609
Analytic conductor $12.137$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.1372611072\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.16516096.1
Defining polynomial: \(x^{6} + 9 x^{4} + 13 x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 609.6
Root \(-0.285442i\) of defining polynomial
Character \(\chi\) \(=\) 1520.609
Dual form 1520.2.d.h.609.1

$q$-expansion

\(f(q)\) \(=\) \(q+3.21789i q^{3} +(-0.370556 + 2.20515i) q^{5} -2.59637i q^{7} -7.35482 q^{9} +O(q^{10})\) \(q+3.21789i q^{3} +(-0.370556 + 2.20515i) q^{5} -2.59637i q^{7} -7.35482 q^{9} -0.741113 q^{11} +3.78878i q^{13} +(-7.09593 - 1.19241i) q^{15} -3.16725i q^{17} -1.00000 q^{19} +8.35482 q^{21} +0.570885i q^{23} +(-4.72538 - 1.63427i) q^{25} -14.0133i q^{27} -6.00000 q^{29} -5.83705 q^{31} -2.38482i q^{33} +(5.72538 + 0.962100i) q^{35} -1.40396i q^{37} -12.1919 q^{39} -3.83705 q^{41} -2.59637i q^{43} +(2.72538 - 16.2185i) q^{45} -5.08247i q^{47} +0.258887 q^{49} +10.1919 q^{51} +0.160905i q^{53} +(0.274624 - 1.63427i) q^{55} -3.21789i q^{57} +8.35482 q^{59} -8.57816 q^{61} +19.0958i q^{63} +(-8.35482 - 1.40396i) q^{65} +14.8464i q^{67} -1.83705 q^{69} -3.64518 q^{71} +10.8461i q^{73} +(5.25889 - 15.2057i) q^{75} +1.92420i q^{77} +1.83705 q^{79} +23.0289 q^{81} -4.19876i q^{83} +(6.98426 + 1.17365i) q^{85} -19.3073i q^{87} +16.9015 q^{89} +9.83705 q^{91} -18.7830i q^{93} +(0.370556 - 2.20515i) q^{95} -3.78878i q^{97} +5.45075 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - q^{5} - 14q^{9} + O(q^{10}) \) \( 6q - q^{5} - 14q^{9} - 2q^{11} - 10q^{15} - 6q^{19} + 20q^{21} + 3q^{25} - 36q^{29} + 3q^{35} - 8q^{39} + 12q^{41} - 15q^{45} + 4q^{49} - 4q^{51} + 33q^{55} + 20q^{59} - 14q^{61} - 20q^{65} + 24q^{69} - 52q^{71} + 34q^{75} - 24q^{79} + 38q^{81} + 13q^{85} - 24q^{89} + 24q^{91} + q^{95} - 30q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.21789i 1.85785i 0.370268 + 0.928925i \(0.379266\pi\)
−0.370268 + 0.928925i \(0.620734\pi\)
\(4\) 0 0
\(5\) −0.370556 + 2.20515i −0.165718 + 0.986173i
\(6\) 0 0
\(7\) 2.59637i 0.981334i −0.871347 0.490667i \(-0.836753\pi\)
0.871347 0.490667i \(-0.163247\pi\)
\(8\) 0 0
\(9\) −7.35482 −2.45161
\(10\) 0 0
\(11\) −0.741113 −0.223454 −0.111727 0.993739i \(-0.535638\pi\)
−0.111727 + 0.993739i \(0.535638\pi\)
\(12\) 0 0
\(13\) 3.78878i 1.05082i 0.850850 + 0.525409i \(0.176088\pi\)
−0.850850 + 0.525409i \(0.823912\pi\)
\(14\) 0 0
\(15\) −7.09593 1.19241i −1.83216 0.307879i
\(16\) 0 0
\(17\) 3.16725i 0.768171i −0.923298 0.384086i \(-0.874517\pi\)
0.923298 0.384086i \(-0.125483\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 8.35482 1.82317
\(22\) 0 0
\(23\) 0.570885i 0.119038i 0.998227 + 0.0595189i \(0.0189566\pi\)
−0.998227 + 0.0595189i \(0.981043\pi\)
\(24\) 0 0
\(25\) −4.72538 1.63427i −0.945075 0.326853i
\(26\) 0 0
\(27\) 14.0133i 2.69687i
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −5.83705 −1.04836 −0.524182 0.851606i \(-0.675629\pi\)
−0.524182 + 0.851606i \(0.675629\pi\)
\(32\) 0 0
\(33\) 2.38482i 0.415144i
\(34\) 0 0
\(35\) 5.72538 + 0.962100i 0.967765 + 0.162625i
\(36\) 0 0
\(37\) 1.40396i 0.230809i −0.993319 0.115404i \(-0.963184\pi\)
0.993319 0.115404i \(-0.0368164\pi\)
\(38\) 0 0
\(39\) −12.1919 −1.95226
\(40\) 0 0
\(41\) −3.83705 −0.599246 −0.299623 0.954058i \(-0.596861\pi\)
−0.299623 + 0.954058i \(0.596861\pi\)
\(42\) 0 0
\(43\) 2.59637i 0.395942i −0.980208 0.197971i \(-0.936565\pi\)
0.980208 0.197971i \(-0.0634352\pi\)
\(44\) 0 0
\(45\) 2.72538 16.2185i 0.406275 2.41771i
\(46\) 0 0
\(47\) 5.08247i 0.741354i −0.928762 0.370677i \(-0.879126\pi\)
0.928762 0.370677i \(-0.120874\pi\)
\(48\) 0 0
\(49\) 0.258887 0.0369839
\(50\) 0 0
\(51\) 10.1919 1.42715
\(52\) 0 0
\(53\) 0.160905i 0.0221020i 0.999939 + 0.0110510i \(0.00351771\pi\)
−0.999939 + 0.0110510i \(0.996482\pi\)
\(54\) 0 0
\(55\) 0.274624 1.63427i 0.0370303 0.220364i
\(56\) 0 0
\(57\) 3.21789i 0.426220i
\(58\) 0 0
\(59\) 8.35482 1.08770 0.543852 0.839181i \(-0.316965\pi\)
0.543852 + 0.839181i \(0.316965\pi\)
\(60\) 0 0
\(61\) −8.57816 −1.09832 −0.549160 0.835717i \(-0.685052\pi\)
−0.549160 + 0.835717i \(0.685052\pi\)
\(62\) 0 0
\(63\) 19.0958i 2.40584i
\(64\) 0 0
\(65\) −8.35482 1.40396i −1.03629 0.174139i
\(66\) 0 0
\(67\) 14.8464i 1.81378i 0.421371 + 0.906888i \(0.361549\pi\)
−0.421371 + 0.906888i \(0.638451\pi\)
\(68\) 0 0
\(69\) −1.83705 −0.221154
\(70\) 0 0
\(71\) −3.64518 −0.432603 −0.216302 0.976327i \(-0.569399\pi\)
−0.216302 + 0.976327i \(0.569399\pi\)
\(72\) 0 0
\(73\) 10.8461i 1.26944i 0.772743 + 0.634719i \(0.218884\pi\)
−0.772743 + 0.634719i \(0.781116\pi\)
\(74\) 0 0
\(75\) 5.25889 15.2057i 0.607244 1.75581i
\(76\) 0 0
\(77\) 1.92420i 0.219283i
\(78\) 0 0
\(79\) 1.83705 0.206684 0.103342 0.994646i \(-0.467046\pi\)
0.103342 + 0.994646i \(0.467046\pi\)
\(80\) 0 0
\(81\) 23.0289 2.55877
\(82\) 0 0
\(83\) 4.19876i 0.460873i −0.973087 0.230437i \(-0.925985\pi\)
0.973087 0.230437i \(-0.0740154\pi\)
\(84\) 0 0
\(85\) 6.98426 + 1.17365i 0.757550 + 0.127300i
\(86\) 0 0
\(87\) 19.3073i 2.06996i
\(88\) 0 0
\(89\) 16.9015 1.79156 0.895778 0.444502i \(-0.146619\pi\)
0.895778 + 0.444502i \(0.146619\pi\)
\(90\) 0 0
\(91\) 9.83705 1.03120
\(92\) 0 0
\(93\) 18.7830i 1.94770i
\(94\) 0 0
\(95\) 0.370556 2.20515i 0.0380183 0.226244i
\(96\) 0 0
\(97\) 3.78878i 0.384692i −0.981327 0.192346i \(-0.938390\pi\)
0.981327 0.192346i \(-0.0616096\pi\)
\(98\) 0 0
\(99\) 5.45075 0.547821
\(100\) 0 0
\(101\) 8.35482 0.831336 0.415668 0.909517i \(-0.363548\pi\)
0.415668 + 0.909517i \(0.363548\pi\)
\(102\) 0 0
\(103\) 2.07612i 0.204566i 0.994755 + 0.102283i \(0.0326148\pi\)
−0.994755 + 0.102283i \(0.967385\pi\)
\(104\) 0 0
\(105\) −3.09593 + 18.4236i −0.302132 + 1.79796i
\(106\) 0 0
\(107\) 5.70399i 0.551426i 0.961240 + 0.275713i \(0.0889139\pi\)
−0.961240 + 0.275713i \(0.911086\pi\)
\(108\) 0 0
\(109\) −1.64518 −0.157580 −0.0787899 0.996891i \(-0.525106\pi\)
−0.0787899 + 0.996891i \(0.525106\pi\)
\(110\) 0 0
\(111\) 4.51777 0.428808
\(112\) 0 0
\(113\) 3.89006i 0.365946i 0.983118 + 0.182973i \(0.0585720\pi\)
−0.983118 + 0.182973i \(0.941428\pi\)
\(114\) 0 0
\(115\) −1.25889 0.211545i −0.117392 0.0197267i
\(116\) 0 0
\(117\) 27.8658i 2.57619i
\(118\) 0 0
\(119\) −8.22334 −0.753832
\(120\) 0 0
\(121\) −10.4508 −0.950068
\(122\) 0 0
\(123\) 12.3472i 1.11331i
\(124\) 0 0
\(125\) 5.35482 9.81458i 0.478950 0.877842i
\(126\) 0 0
\(127\) 14.4233i 1.27986i 0.768432 + 0.639931i \(0.221037\pi\)
−0.768432 + 0.639931i \(0.778963\pi\)
\(128\) 0 0
\(129\) 8.35482 0.735601
\(130\) 0 0
\(131\) −9.96853 −0.870954 −0.435477 0.900200i \(-0.643420\pi\)
−0.435477 + 0.900200i \(0.643420\pi\)
\(132\) 0 0
\(133\) 2.59637i 0.225133i
\(134\) 0 0
\(135\) 30.9015 + 5.19273i 2.65958 + 0.446919i
\(136\) 0 0
\(137\) 9.70431i 0.829095i −0.910028 0.414548i \(-0.863940\pi\)
0.910028 0.414548i \(-0.136060\pi\)
\(138\) 0 0
\(139\) −13.4508 −1.14088 −0.570439 0.821340i \(-0.693227\pi\)
−0.570439 + 0.821340i \(0.693227\pi\)
\(140\) 0 0
\(141\) 16.3548 1.37732
\(142\) 0 0
\(143\) 2.80791i 0.234809i
\(144\) 0 0
\(145\) 2.22334 13.2309i 0.184638 1.09877i
\(146\) 0 0
\(147\) 0.833070i 0.0687105i
\(148\) 0 0
\(149\) −15.0959 −1.23671 −0.618353 0.785900i \(-0.712200\pi\)
−0.618353 + 0.785900i \(0.712200\pi\)
\(150\) 0 0
\(151\) −14.1919 −1.15492 −0.577459 0.816420i \(-0.695956\pi\)
−0.577459 + 0.816420i \(0.695956\pi\)
\(152\) 0 0
\(153\) 23.2946i 1.88325i
\(154\) 0 0
\(155\) 2.16295 12.8716i 0.173733 1.03387i
\(156\) 0 0
\(157\) 7.57755i 0.604754i −0.953188 0.302377i \(-0.902220\pi\)
0.953188 0.302377i \(-0.0977802\pi\)
\(158\) 0 0
\(159\) −0.517774 −0.0410622
\(160\) 0 0
\(161\) 1.48223 0.116816
\(162\) 0 0
\(163\) 19.6757i 1.54112i 0.637369 + 0.770559i \(0.280023\pi\)
−0.637369 + 0.770559i \(0.719977\pi\)
\(164\) 0 0
\(165\) 5.25889 + 0.883711i 0.409404 + 0.0687968i
\(166\) 0 0
\(167\) 10.7954i 0.835376i −0.908590 0.417688i \(-0.862840\pi\)
0.908590 0.417688i \(-0.137160\pi\)
\(168\) 0 0
\(169\) −1.35482 −0.104217
\(170\) 0 0
\(171\) 7.35482 0.562437
\(172\) 0 0
\(173\) 20.3895i 1.55018i 0.631848 + 0.775092i \(0.282297\pi\)
−0.631848 + 0.775092i \(0.717703\pi\)
\(174\) 0 0
\(175\) −4.24315 + 12.2688i −0.320752 + 0.927434i
\(176\) 0 0
\(177\) 26.8849i 2.02079i
\(178\) 0 0
\(179\) 25.0645 1.87341 0.936703 0.350126i \(-0.113861\pi\)
0.936703 + 0.350126i \(0.113861\pi\)
\(180\) 0 0
\(181\) −19.4193 −1.44342 −0.721712 0.692194i \(-0.756644\pi\)
−0.721712 + 0.692194i \(0.756644\pi\)
\(182\) 0 0
\(183\) 27.6036i 2.04051i
\(184\) 0 0
\(185\) 3.09593 + 0.520245i 0.227617 + 0.0382491i
\(186\) 0 0
\(187\) 2.34729i 0.171651i
\(188\) 0 0
\(189\) −36.3837 −2.64653
\(190\) 0 0
\(191\) −11.4508 −0.828547 −0.414274 0.910152i \(-0.635964\pi\)
−0.414274 + 0.910152i \(0.635964\pi\)
\(192\) 0 0
\(193\) 3.78878i 0.272722i 0.990659 + 0.136361i \(0.0435407\pi\)
−0.990659 + 0.136361i \(0.956459\pi\)
\(194\) 0 0
\(195\) 4.51777 26.8849i 0.323525 1.92527i
\(196\) 0 0
\(197\) 2.28354i 0.162695i −0.996686 0.0813477i \(-0.974078\pi\)
0.996686 0.0813477i \(-0.0259224\pi\)
\(198\) 0 0
\(199\) −19.4508 −1.37883 −0.689414 0.724368i \(-0.742132\pi\)
−0.689414 + 0.724368i \(0.742132\pi\)
\(200\) 0 0
\(201\) −47.7741 −3.36972
\(202\) 0 0
\(203\) 15.5782i 1.09337i
\(204\) 0 0
\(205\) 1.42184 8.46126i 0.0993057 0.590960i
\(206\) 0 0
\(207\) 4.19876i 0.291834i
\(208\) 0 0
\(209\) 0.741113 0.0512639
\(210\) 0 0
\(211\) −11.2274 −0.772927 −0.386463 0.922305i \(-0.626303\pi\)
−0.386463 + 0.922305i \(0.626303\pi\)
\(212\) 0 0
\(213\) 11.7298i 0.803712i
\(214\) 0 0
\(215\) 5.72538 + 0.962100i 0.390467 + 0.0656147i
\(216\) 0 0
\(217\) 15.1551i 1.02880i
\(218\) 0 0
\(219\) −34.9015 −2.35843
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) 4.03785i 0.270394i 0.990819 + 0.135197i \(0.0431668\pi\)
−0.990819 + 0.135197i \(0.956833\pi\)
\(224\) 0 0
\(225\) 34.7543 + 12.0197i 2.31695 + 0.801315i
\(226\) 0 0
\(227\) 11.2185i 0.744600i −0.928112 0.372300i \(-0.878569\pi\)
0.928112 0.372300i \(-0.121431\pi\)
\(228\) 0 0
\(229\) −16.1315 −1.06600 −0.532999 0.846116i \(-0.678935\pi\)
−0.532999 + 0.846116i \(0.678935\pi\)
\(230\) 0 0
\(231\) −6.19186 −0.407395
\(232\) 0 0
\(233\) 2.12676i 0.139329i −0.997570 0.0696644i \(-0.977807\pi\)
0.997570 0.0696644i \(-0.0221928\pi\)
\(234\) 0 0
\(235\) 11.2076 + 1.88334i 0.731103 + 0.122856i
\(236\) 0 0
\(237\) 5.91141i 0.383987i
\(238\) 0 0
\(239\) −14.4152 −0.932442 −0.466221 0.884668i \(-0.654385\pi\)
−0.466221 + 0.884668i \(0.654385\pi\)
\(240\) 0 0
\(241\) −0.162955 −0.0104968 −0.00524842 0.999986i \(-0.501671\pi\)
−0.00524842 + 0.999986i \(0.501671\pi\)
\(242\) 0 0
\(243\) 32.0645i 2.05694i
\(244\) 0 0
\(245\) −0.0959323 + 0.570885i −0.00612889 + 0.0364725i
\(246\) 0 0
\(247\) 3.78878i 0.241074i
\(248\) 0 0
\(249\) 13.5111 0.856233
\(250\) 0 0
\(251\) −12.9330 −0.816322 −0.408161 0.912910i \(-0.633830\pi\)
−0.408161 + 0.912910i \(0.633830\pi\)
\(252\) 0 0
\(253\) 0.423090i 0.0265995i
\(254\) 0 0
\(255\) −3.77666 + 22.4746i −0.236504 + 1.40741i
\(256\) 0 0
\(257\) 11.0445i 0.688938i 0.938798 + 0.344469i \(0.111941\pi\)
−0.938798 + 0.344469i \(0.888059\pi\)
\(258\) 0 0
\(259\) −3.64518 −0.226501
\(260\) 0 0
\(261\) 44.1289 2.73151
\(262\) 0 0
\(263\) 17.8527i 1.10085i −0.834885 0.550424i \(-0.814466\pi\)
0.834885 0.550424i \(-0.185534\pi\)
\(264\) 0 0
\(265\) −0.354819 0.0596243i −0.0217964 0.00366269i
\(266\) 0 0
\(267\) 54.3872i 3.32844i
\(268\) 0 0
\(269\) −24.9934 −1.52387 −0.761936 0.647652i \(-0.775751\pi\)
−0.761936 + 0.647652i \(0.775751\pi\)
\(270\) 0 0
\(271\) 23.8660 1.44975 0.724877 0.688879i \(-0.241897\pi\)
0.724877 + 0.688879i \(0.241897\pi\)
\(272\) 0 0
\(273\) 31.6545i 1.91582i
\(274\) 0 0
\(275\) 3.50204 + 1.21118i 0.211181 + 0.0730366i
\(276\) 0 0
\(277\) 21.2315i 1.27568i 0.770169 + 0.637840i \(0.220172\pi\)
−0.770169 + 0.637840i \(0.779828\pi\)
\(278\) 0 0
\(279\) 42.9304 2.57018
\(280\) 0 0
\(281\) 3.83705 0.228899 0.114449 0.993429i \(-0.463490\pi\)
0.114449 + 0.993429i \(0.463490\pi\)
\(282\) 0 0
\(283\) 0.211545i 0.0125751i −0.999980 0.00628753i \(-0.997999\pi\)
0.999980 0.00628753i \(-0.00200139\pi\)
\(284\) 0 0
\(285\) 7.09593 + 1.19241i 0.420327 + 0.0706323i
\(286\) 0 0
\(287\) 9.96237i 0.588060i
\(288\) 0 0
\(289\) 6.96853 0.409913
\(290\) 0 0
\(291\) 12.1919 0.714700
\(292\) 0 0
\(293\) 14.9942i 0.875970i −0.898982 0.437985i \(-0.855692\pi\)
0.898982 0.437985i \(-0.144308\pi\)
\(294\) 0 0
\(295\) −3.09593 + 18.4236i −0.180252 + 1.07267i
\(296\) 0 0
\(297\) 10.3855i 0.602626i
\(298\) 0 0
\(299\) −2.16295 −0.125087
\(300\) 0 0
\(301\) −6.74111 −0.388551
\(302\) 0 0
\(303\) 26.8849i 1.54450i
\(304\) 0 0
\(305\) 3.17869 18.9161i 0.182011 1.08313i
\(306\) 0 0
\(307\) 1.65303i 0.0943434i 0.998887 + 0.0471717i \(0.0150208\pi\)
−0.998887 + 0.0471717i \(0.984979\pi\)
\(308\) 0 0
\(309\) −6.68073 −0.380053
\(310\) 0 0
\(311\) 0.741113 0.0420247 0.0210123 0.999779i \(-0.493311\pi\)
0.0210123 + 0.999779i \(0.493311\pi\)
\(312\) 0 0
\(313\) 26.8849i 1.51962i −0.650143 0.759812i \(-0.725291\pi\)
0.650143 0.759812i \(-0.274709\pi\)
\(314\) 0 0
\(315\) −42.1091 7.07607i −2.37258 0.398691i
\(316\) 0 0
\(317\) 8.16155i 0.458398i 0.973380 + 0.229199i \(0.0736107\pi\)
−0.973380 + 0.229199i \(0.926389\pi\)
\(318\) 0 0
\(319\) 4.44668 0.248966
\(320\) 0 0
\(321\) −18.3548 −1.02447
\(322\) 0 0
\(323\) 3.16725i 0.176231i
\(324\) 0 0
\(325\) 6.19186 17.9034i 0.343463 0.993101i
\(326\) 0 0
\(327\) 5.29401i 0.292759i
\(328\) 0 0
\(329\) −13.1959 −0.727516
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 0 0
\(333\) 10.3258i 0.565852i
\(334\) 0 0
\(335\) −32.7385 5.50143i −1.78870 0.300575i
\(336\) 0 0
\(337\) 9.90275i 0.539437i 0.962939 + 0.269718i \(0.0869306\pi\)
−0.962939 + 0.269718i \(0.913069\pi\)
\(338\) 0 0
\(339\) −12.5178 −0.679872
\(340\) 0 0
\(341\) 4.32591 0.234261
\(342\) 0 0
\(343\) 18.8467i 1.01763i
\(344\) 0 0
\(345\) 0.680729 4.05096i 0.0366492 0.218096i
\(346\) 0 0
\(347\) 21.2781i 1.14227i −0.820858 0.571133i \(-0.806504\pi\)
0.820858 0.571133i \(-0.193496\pi\)
\(348\) 0 0
\(349\) 16.4152 0.878686 0.439343 0.898319i \(-0.355211\pi\)
0.439343 + 0.898319i \(0.355211\pi\)
\(350\) 0 0
\(351\) 53.0934 2.83391
\(352\) 0 0
\(353\) 23.8744i 1.27071i 0.772221 + 0.635354i \(0.219146\pi\)
−0.772221 + 0.635354i \(0.780854\pi\)
\(354\) 0 0
\(355\) 1.35075 8.03817i 0.0716901 0.426622i
\(356\) 0 0
\(357\) 26.4618i 1.40051i
\(358\) 0 0
\(359\) 2.22334 0.117343 0.0586717 0.998277i \(-0.481313\pi\)
0.0586717 + 0.998277i \(0.481313\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 33.6294i 1.76508i
\(364\) 0 0
\(365\) −23.9172 4.01909i −1.25189 0.210369i
\(366\) 0 0
\(367\) 4.52057i 0.235972i −0.993015 0.117986i \(-0.962356\pi\)
0.993015 0.117986i \(-0.0376437\pi\)
\(368\) 0 0
\(369\) 28.2208 1.46911
\(370\) 0 0
\(371\) 0.417768 0.0216894
\(372\) 0 0
\(373\) 15.5186i 0.803521i 0.915745 + 0.401760i \(0.131602\pi\)
−0.915745 + 0.401760i \(0.868398\pi\)
\(374\) 0 0
\(375\) 31.5822 + 17.2312i 1.63090 + 0.889817i
\(376\) 0 0
\(377\) 22.7327i 1.17079i
\(378\) 0 0
\(379\) −18.9015 −0.970905 −0.485453 0.874263i \(-0.661345\pi\)
−0.485453 + 0.874263i \(0.661345\pi\)
\(380\) 0 0
\(381\) −46.4126 −2.37779
\(382\) 0 0
\(383\) 13.7046i 0.700274i 0.936699 + 0.350137i \(0.113865\pi\)
−0.936699 + 0.350137i \(0.886135\pi\)
\(384\) 0 0
\(385\) −4.24315 0.713025i −0.216251 0.0363391i
\(386\) 0 0
\(387\) 19.0958i 0.970694i
\(388\) 0 0
\(389\) −12.7411 −0.646000 −0.323000 0.946399i \(-0.604691\pi\)
−0.323000 + 0.946399i \(0.604691\pi\)
\(390\) 0 0
\(391\) 1.80814 0.0914413
\(392\) 0 0
\(393\) 32.0776i 1.61810i
\(394\) 0 0
\(395\) −0.680729 + 4.05096i −0.0342512 + 0.203826i
\(396\) 0 0
\(397\) 38.6522i 1.93990i 0.243306 + 0.969950i \(0.421768\pi\)
−0.243306 + 0.969950i \(0.578232\pi\)
\(398\) 0 0
\(399\) −8.35482 −0.418264
\(400\) 0 0
\(401\) 31.8660 1.59131 0.795655 0.605750i \(-0.207127\pi\)
0.795655 + 0.605750i \(0.207127\pi\)
\(402\) 0 0
\(403\) 22.1153i 1.10164i
\(404\) 0 0
\(405\) −8.53351 + 50.7822i −0.424034 + 2.52339i
\(406\) 0 0
\(407\) 1.04049i 0.0515751i
\(408\) 0 0
\(409\) −11.0645 −0.547102 −0.273551 0.961857i \(-0.588198\pi\)
−0.273551 + 0.961857i \(0.588198\pi\)
\(410\) 0 0
\(411\) 31.2274 1.54033
\(412\) 0 0
\(413\) 21.6922i 1.06740i
\(414\) 0 0
\(415\) 9.25889 + 1.55588i 0.454501 + 0.0763749i
\(416\) 0 0
\(417\) 43.2830i 2.11958i
\(418\) 0 0
\(419\) −25.7452 −1.25773 −0.628867 0.777513i \(-0.716481\pi\)
−0.628867 + 0.777513i \(0.716481\pi\)
\(420\) 0 0
\(421\) 27.4482 1.33774 0.668871 0.743378i \(-0.266778\pi\)
0.668871 + 0.743378i \(0.266778\pi\)
\(422\) 0 0
\(423\) 37.3806i 1.81751i
\(424\) 0 0
\(425\) −5.17613 + 14.9664i −0.251079 + 0.725979i
\(426\) 0 0
\(427\) 22.2720i 1.07782i
\(428\) 0 0
\(429\) 9.03555 0.436240
\(430\) 0 0
\(431\) −1.74519 −0.0840627 −0.0420314 0.999116i \(-0.513383\pi\)
−0.0420314 + 0.999116i \(0.513383\pi\)
\(432\) 0 0
\(433\) 18.5208i 0.890052i −0.895518 0.445026i \(-0.853194\pi\)
0.895518 0.445026i \(-0.146806\pi\)
\(434\) 0 0
\(435\) 42.5756 + 7.15446i 2.04134 + 0.343030i
\(436\) 0 0
\(437\) 0.570885i 0.0273091i
\(438\) 0 0
\(439\) 29.4482 1.40549 0.702743 0.711444i \(-0.251959\pi\)
0.702743 + 0.711444i \(0.251959\pi\)
\(440\) 0 0
\(441\) −1.90407 −0.0906699
\(442\) 0 0
\(443\) 11.7388i 0.557726i −0.960331 0.278863i \(-0.910042\pi\)
0.960331 0.278863i \(-0.0899576\pi\)
\(444\) 0 0
\(445\) −6.26296 + 37.2704i −0.296893 + 1.76678i
\(446\) 0 0
\(447\) 48.5771i 2.29762i
\(448\) 0 0
\(449\) 7.06446 0.333392 0.166696 0.986008i \(-0.446690\pi\)
0.166696 + 0.986008i \(0.446690\pi\)
\(450\) 0 0
\(451\) 2.84368 0.133904
\(452\) 0 0
\(453\) 45.6679i 2.14566i
\(454\) 0 0
\(455\) −3.64518 + 21.6922i −0.170889 + 1.01694i
\(456\) 0 0
\(457\) 34.5000i 1.61384i 0.590660 + 0.806920i \(0.298867\pi\)
−0.590660 + 0.806920i \(0.701133\pi\)
\(458\) 0 0
\(459\) −44.3837 −2.07166
\(460\) 0 0
\(461\) 8.03147 0.374063 0.187032 0.982354i \(-0.440113\pi\)
0.187032 + 0.982354i \(0.440113\pi\)
\(462\) 0 0
\(463\) 25.3290i 1.17714i 0.808447 + 0.588570i \(0.200309\pi\)
−0.808447 + 0.588570i \(0.799691\pi\)
\(464\) 0 0
\(465\) 41.4193 + 6.96015i 1.92077 + 0.322769i
\(466\) 0 0
\(467\) 26.8759i 1.24367i 0.783149 + 0.621834i \(0.213612\pi\)
−0.783149 + 0.621834i \(0.786388\pi\)
\(468\) 0 0
\(469\) 38.5467 1.77992
\(470\) 0 0
\(471\) 24.3837 1.12354
\(472\) 0 0
\(473\) 1.92420i 0.0884748i
\(474\) 0 0
\(475\) 4.72538 + 1.63427i 0.216815 + 0.0749852i
\(476\) 0 0
\(477\) 1.18343i 0.0541854i
\(478\) 0 0
\(479\) −28.9015 −1.32054 −0.660272 0.751027i \(-0.729559\pi\)
−0.660272 + 0.751027i \(0.729559\pi\)
\(480\) 0 0
\(481\) 5.31927 0.242538
\(482\) 0 0
\(483\) 4.76964i 0.217026i
\(484\) 0 0
\(485\) 8.35482 + 1.40396i 0.379373 + 0.0637503i
\(486\) 0 0
\(487\) 17.7294i 0.803395i −0.915773 0.401697i \(-0.868420\pi\)
0.915773 0.401697i \(-0.131580\pi\)
\(488\) 0 0
\(489\) −63.3141 −2.86316
\(490\) 0 0
\(491\) 35.1645 1.58695 0.793475 0.608603i \(-0.208270\pi\)
0.793475 + 0.608603i \(0.208270\pi\)
\(492\) 0 0
\(493\) 19.0035i 0.855875i
\(494\) 0 0
\(495\) −2.01981 + 12.0197i −0.0907838 + 0.540247i
\(496\) 0 0
\(497\) 9.46422i 0.424528i
\(498\) 0 0
\(499\) 21.4508 0.960268 0.480134 0.877195i \(-0.340588\pi\)
0.480134 + 0.877195i \(0.340588\pi\)
\(500\) 0 0
\(501\) 34.7385 1.55200
\(502\) 0 0
\(503\) 5.34053i 0.238122i 0.992887 + 0.119061i \(0.0379884\pi\)
−0.992887 + 0.119061i \(0.962012\pi\)
\(504\) 0 0
\(505\) −3.09593 + 18.4236i −0.137767 + 0.819841i
\(506\) 0 0
\(507\) 4.35966i 0.193619i
\(508\) 0 0
\(509\) −36.1919 −1.60418 −0.802088 0.597206i \(-0.796278\pi\)
−0.802088 + 0.597206i \(0.796278\pi\)
\(510\) 0 0
\(511\) 28.1604 1.24574
\(512\) 0 0
\(513\) 14.0133i 0.618704i
\(514\) 0 0
\(515\) −4.57816 0.769320i −0.201738 0.0339003i
\(516\) 0 0
\(517\) 3.76668i 0.165658i
\(518\) 0 0
\(519\) −65.6111 −2.88001
\(520\) 0 0
\(521\) −2.77259 −0.121469 −0.0607346 0.998154i \(-0.519344\pi\)
−0.0607346 + 0.998154i \(0.519344\pi\)
\(522\) 0 0
\(523\) 20.5373i 0.898033i 0.893524 + 0.449016i \(0.148226\pi\)
−0.893524 + 0.449016i \(0.851774\pi\)
\(524\) 0 0
\(525\) −39.4797 13.6540i −1.72303 0.595909i
\(526\) 0 0
\(527\) 18.4874i 0.805323i
\(528\) 0 0
\(529\) 22.6741 0.985830
\(530\) 0 0
\(531\) −61.4482 −2.66662
\(532\) 0 0
\(533\) 14.5377i 0.629698i
\(534\) 0 0
\(535\) −12.5782 2.11365i −0.543801 0.0913811i
\(536\) 0 0
\(537\) 80.6547i 3.48051i
\(538\) 0 0
\(539\) −0.191865 −0.00826419
\(540\) 0 0
\(541\) 35.4797 1.52539 0.762695 0.646758i \(-0.223876\pi\)
0.762695 + 0.646758i \(0.223876\pi\)
\(542\) 0 0
\(543\) 62.4891i 2.68166i
\(544\) 0 0
\(545\) 0.609632 3.62787i 0.0261138 0.155401i
\(546\) 0 0
\(547\) 43.0756i 1.84178i 0.389822 + 0.920890i \(0.372537\pi\)
−0.389822 + 0.920890i \(0.627463\pi\)
\(548\) 0 0
\(549\) 63.0908 2.69265
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) 4.76964i 0.202826i
\(554\) 0 0
\(555\) −1.67409 + 9.96237i −0.0710612 + 0.422879i
\(556\) 0 0
\(557\) 40.4376i 1.71340i −0.515818 0.856698i \(-0.672512\pi\)
0.515818 0.856698i \(-0.327488\pi\)
\(558\) 0 0
\(559\) 9.83705 0.416063
\(560\) 0 0
\(561\) −7.55332 −0.318902
\(562\) 0 0
\(563\) 19.7173i 0.830986i −0.909596 0.415493i \(-0.863609\pi\)
0.909596 0.415493i \(-0.136391\pi\)
\(564\) 0 0
\(565\) −8.57816 1.44149i −0.360886 0.0606437i
\(566\) 0 0
\(567\) 59.7915i 2.51101i
\(568\) 0 0
\(569\) −18.6807 −0.783137 −0.391568 0.920149i \(-0.628067\pi\)
−0.391568 + 0.920149i \(0.628067\pi\)
\(570\) 0 0
\(571\) 29.9371 1.25283 0.626413 0.779491i \(-0.284522\pi\)
0.626413 + 0.779491i \(0.284522\pi\)
\(572\) 0 0
\(573\) 36.8473i 1.53932i
\(574\) 0 0
\(575\) 0.932977 2.69765i 0.0389079 0.112500i
\(576\) 0 0
\(577\) 0.156779i 0.00652679i 0.999995 + 0.00326339i \(0.00103877\pi\)
−0.999995 + 0.00326339i \(0.998961\pi\)
\(578\) 0 0
\(579\) −12.1919 −0.506677
\(580\) 0 0
\(581\) −10.9015 −0.452271
\(582\) 0 0
\(583\) 0.119249i 0.00493877i
\(584\) 0 0
\(585\) 61.4482 + 10.3258i 2.54057 + 0.426921i
\(586\) 0 0
\(587\) 31.1474i 1.28559i 0.766038 + 0.642795i \(0.222225\pi\)
−0.766038 + 0.642795i \(0.777775\pi\)
\(588\) 0 0
\(589\) 5.83705 0.240511
\(590\) 0 0
\(591\) 7.34818 0.302264
\(592\) 0 0
\(593\) 28.8728i 1.18567i 0.805326 + 0.592833i \(0.201991\pi\)
−0.805326 + 0.592833i \(0.798009\pi\)
\(594\) 0 0
\(595\) 3.04721 18.1337i 0.124923 0.743409i
\(596\) 0 0
\(597\) 62.5904i 2.56165i
\(598\) 0 0
\(599\) 25.3274 1.03485 0.517425 0.855728i \(-0.326891\pi\)
0.517425 + 0.855728i \(0.326891\pi\)
\(600\) 0 0
\(601\) −19.8370 −0.809170 −0.404585 0.914500i \(-0.632584\pi\)
−0.404585 + 0.914500i \(0.632584\pi\)
\(602\) 0 0
\(603\) 109.193i 4.44667i
\(604\) 0 0
\(605\) 3.87259 23.0455i 0.157443 0.936932i
\(606\) 0 0
\(607\) 2.49921i 0.101440i −0.998713 0.0507199i \(-0.983848\pi\)
0.998713 0.0507199i \(-0.0161516\pi\)
\(608\) 0 0
\(609\) −50.1289 −2.03133
\(610\) 0 0
\(611\) 19.2563 0.779027
\(612\) 0 0
\(613\) 0.883711i 0.0356927i −0.999841 0.0178464i \(-0.994319\pi\)
0.999841 0.0178464i \(-0.00568098\pi\)
\(614\) 0 0
\(615\) 27.2274 + 4.57533i 1.09792 + 0.184495i
\(616\) 0 0
\(617\) 29.4085i 1.18394i 0.805959 + 0.591971i \(0.201650\pi\)
−0.805959 + 0.591971i \(0.798350\pi\)
\(618\) 0 0
\(619\) 30.3208 1.21870 0.609348 0.792903i \(-0.291431\pi\)
0.609348 + 0.792903i \(0.291431\pi\)
\(620\) 0 0
\(621\) 8.00000 0.321029
\(622\) 0 0
\(623\) 43.8825i 1.75811i
\(624\) 0 0
\(625\) 19.6584 + 15.4450i 0.786334 + 0.617801i
\(626\) 0 0
\(627\) 2.38482i 0.0952405i
\(628\) 0 0
\(629\) −4.44668 −0.177301
\(630\) 0 0
\(631\) −17.7767 −0.707678 −0.353839 0.935306i \(-0.615124\pi\)
−0.353839 + 0.935306i \(0.615124\pi\)
\(632\) 0 0
\(633\) 36.1286i 1.43598i
\(634\) 0 0
\(635\) −31.8056 5.34465i −1.26217 0.212096i
\(636\) 0 0
\(637\) 0.980865i 0.0388633i
\(638\) 0 0
\(639\) 26.8096 1.06057
\(640\) 0 0
\(641\) −32.6675 −1.29029 −0.645143 0.764062i \(-0.723202\pi\)
−0.645143 + 0.764062i \(0.723202\pi\)
\(642\) 0 0
\(643\) 31.8661i 1.25668i −0.777941 0.628338i \(-0.783736\pi\)
0.777941 0.628338i \(-0.216264\pi\)
\(644\) 0 0
\(645\) −3.09593 + 18.4236i −0.121902 + 0.725430i
\(646\) 0 0
\(647\) 21.2601i 0.835820i 0.908488 + 0.417910i \(0.137237\pi\)
−0.908488 + 0.417910i \(0.862763\pi\)
\(648\) 0 0
\(649\) −6.19186 −0.243052
\(650\) 0 0
\(651\) −48.7675 −1.91135
\(652\) 0 0
\(653\) 12.8340i 0.502234i 0.967957 + 0.251117i \(0.0807980\pi\)
−0.967957 + 0.251117i \(0.919202\pi\)
\(654\) 0 0
\(655\) 3.69390 21.9821i 0.144333 0.858912i
\(656\) 0 0
\(657\) 79.7710i 3.11216i
\(658\) 0 0
\(659\) 20.3548 0.792911 0.396456 0.918054i \(-0.370240\pi\)
0.396456 + 0.918054i \(0.370240\pi\)
\(660\) 0 0
\(661\) −30.7385 −1.19559 −0.597795 0.801649i \(-0.703957\pi\)
−0.597795 + 0.801649i \(0.703957\pi\)
\(662\) 0 0
\(663\) 38.6147i 1.49967i
\(664\) 0 0
\(665\) −5.72538 0.962100i −0.222021 0.0373086i
\(666\) 0 0
\(667\) 3.42531i 0.132629i
\(668\) 0 0
\(669\) −12.9934 −0.502352
\(670\) 0 0
\(671\) 6.35738 0.245424
\(672\) 0 0
\(673\) 21.2094i 0.817564i 0.912632 + 0.408782i \(0.134046\pi\)
−0.912632 + 0.408782i \(0.865954\pi\)
\(674\) 0 0
\(675\) −22.9015 + 66.2183i −0.881479 + 2.54874i
\(676\) 0 0
\(677\) 11.2650i 0.432951i −0.976288 0.216475i \(-0.930544\pi\)
0.976288 0.216475i \(-0.0694561\pi\)
\(678\) 0 0
\(679\) −9.83705 −0.377511
\(680\) 0 0
\(681\) 36.1000 1.38336
\(682\) 0 0
\(683\) 12.3603i 0.472954i 0.971637 + 0.236477i \(0.0759928\pi\)
−0.971637 + 0.236477i \(0.924007\pi\)
\(684\) 0 0
\(685\) 21.3995 + 3.59600i 0.817632 + 0.137396i
\(686\) 0 0
\(687\) 51.9093i 1.98046i
\(688\) 0 0
\(689\) −0.609632 −0.0232251
\(690\) 0 0
\(691\) −22.7493 −0.865423 −0.432711 0.901533i \(-0.642443\pi\)
−0.432711 + 0.901533i \(0.642443\pi\)
\(692\) 0 0
\(693\) 14.1521i 0.537595i
\(694\) 0 0
\(695\) 4.98426 29.6609i 0.189064 1.12510i
\(696\) 0 0
\(697\) 12.1529i 0.460323i
\(698\) 0 0
\(699\) 6.84368 0.258852
\(700\) 0 0
\(701\) −16.0289 −0.605404 −0.302702 0.953085i \(-0.597889\pi\)
−0.302702 + 0.953085i \(0.597889\pi\)
\(702\) 0 0
\(703\) 1.40396i 0.0529512i
\(704\) 0 0
\(705\) −6.06038 + 36.0648i −0.228247 + 1.35828i
\(706\) 0 0
\(707\) 21.6922i 0.815818i
\(708\) 0 0
\(709\) −31.4193 −1.17998 −0.589988 0.807412i \(-0.700867\pi\)
−0.589988 + 0.807412i \(0.700867\pi\)
\(710\) 0 0
\(711\) −13.5111 −0.506707
\(712\) 0 0
\(713\) 3.33228i 0.124795i
\(714\) 0 0
\(715\) 6.19186 + 1.04049i 0.231563 + 0.0389121i
\(716\) 0 0
\(717\) 46.3865i 1.73234i
\(718\) 0 0
\(719\) 11.2589 0.419886 0.209943 0.977714i \(-0.432672\pi\)
0.209943 + 0.977714i \(0.432672\pi\)
\(720\) 0 0
\(721\) 5.39037 0.200748
\(722\) 0 0
\(723\) 0.524371i 0.0195016i
\(724\) 0 0
\(725\) 28.3523 + 9.80559i 1.05298 + 0.364171i
\(726\) 0 0
\(727\) 48.9829i 1.81668i 0.418237 + 0.908338i \(0.362648\pi\)
−0.418237 + 0.908338i \(0.637352\pi\)
\(728\) 0 0
\(729\) −34.0934 −1.26272
\(730\) 0 0
\(731\) −8.22334 −0.304151
\(732\) 0 0
\(733\) 35.9260i 1.32696i −0.748195 0.663479i \(-0.769079\pi\)
0.748195 0.663479i \(-0.230921\pi\)
\(734\) 0 0
\(735\) −1.83705 0.308700i −0.0677604 0.0113866i
\(736\) 0 0
\(737\) 11.0029i 0.405296i
\(738\) 0 0
\(739\) 14.3523 0.527956 0.263978 0.964529i \(-0.414965\pi\)
0.263978 + 0.964529i \(0.414965\pi\)
\(740\) 0 0
\(741\) 12.1919 0.447879
\(742\) 0 0
\(743\) 12.5629i 0.460887i −0.973086 0.230443i \(-0.925982\pi\)
0.973086 0.230443i \(-0.0740176\pi\)
\(744\) 0 0
\(745\) 5.59390 33.2888i 0.204944 1.21961i
\(746\) 0 0
\(747\) 30.8811i 1.12988i
\(748\) 0 0
\(749\) 14.8096 0.541133
\(750\) 0 0
\(751\) −26.4548 −0.965350 −0.482675 0.875799i \(-0.660335\pi\)
−0.482675 + 0.875799i \(0.660335\pi\)
\(752\) 0 0
\(753\) 41.6169i 1.51660i
\(754\) 0 0
\(755\) 5.25889 31.2952i 0.191390 1.13895i
\(756\) 0 0
\(757\) 15.7350i 0.571897i 0.958245 + 0.285949i \(0.0923087\pi\)
−0.958245 + 0.285949i \(0.907691\pi\)
\(758\) 0 0
\(759\) 1.36146 0.0494178
\(760\) 0 0
\(761\) 16.9619 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(762\) 0 0
\(763\) 4.27149i 0.154638i
\(764\) 0 0
\(765\) −51.3680 8.63195i −1.85721 0.312089i
\(766\) 0 0
\(767\) 31.6545i 1.14298i
\(768\) 0 0
\(769\) −41.9974 −1.51447 −0.757233 0.653145i \(-0.773449\pi\)
−0.757233 + 0.653145i \(0.773449\pi\)
\(770\) 0 0
\(771\) −35.5400 −1.27994
\(772\) 0 0
\(773\) 40.9579i 1.47315i −0.676355 0.736576i \(-0.736441\pi\)
0.676355 0.736576i \(-0.263559\pi\)
\(774\) 0 0
\(775\) 27.5822 + 9.53928i 0.990783 + 0.342661i
\(776\) 0 0
\(777\) 11.7298i 0.420804i
\(778\) 0 0
\(779\) 3.83705 0.137476
\(780\) 0 0
\(781\) 2.70149 0.0966669
\(782\) 0 0
\(783\) 84.0800i 3.00477i
\(784\) 0 0
\(785\) 16.7096 + 2.80791i 0.596393 + 0.100219i
\(786\) 0 0
\(787\) 28.5379i 1.01727i −0.860983 0.508634i \(-0.830151\pi\)
0.860983 0.508634i \(-0.169849\pi\)
\(788\) 0 0
\(789\) 57.4482 2.04521
\(790\) 0 0
\(791\) 10.1000 0.359115
\(792\) 0 0
\(793\) 32.5007i 1.15413i
\(794\) 0 0
\(795\) 0.191865 1.14177i 0.00680473 0.0404944i
\(796\) 0 0
\(797\) 33.2790i 1.17880i 0.807840 + 0.589402i \(0.200636\pi\)
−0.807840 + 0.589402i \(0.799364\pi\)
\(798\) 0 0
\(799\) −16.0974 −0.569487
\(800\) 0 0
\(801\) −124.308 −4.39219