Properties

Label 1520.2.d.h.609.2
Level $1520$
Weight $2$
Character 1520.609
Analytic conductor $12.137$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1520,2,Mod(609,1520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1520.609");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1372611072\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.16516096.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 9x^{4} + 13x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 609.2
Root \(-2.68667i\) of defining polynomial
Character \(\chi\) \(=\) 1520.609
Dual form 1520.2.d.h.609.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.31446i q^{3} +(1.94827 + 1.09737i) q^{5} +1.45033i q^{7} -2.35673 q^{9} +3.89655 q^{11} +3.05888i q^{13} +(2.53982 - 4.50920i) q^{15} -3.92301i q^{17} -1.00000 q^{19} +3.35673 q^{21} +5.37334i q^{23} +(2.59155 + 4.27596i) q^{25} -1.48883i q^{27} -6.00000 q^{29} +8.43637 q^{31} -9.01841i q^{33} +(-1.59155 + 2.82564i) q^{35} +5.95953i q^{37} +7.07965 q^{39} +10.4364 q^{41} +1.45033i q^{43} +(-4.59155 - 2.58620i) q^{45} +4.90686i q^{47} +4.89655 q^{49} -9.07965 q^{51} -4.23127i q^{53} +(7.59155 + 4.27596i) q^{55} +2.31446i q^{57} +3.35673 q^{59} +10.3329 q^{61} -3.41802i q^{63} +(-3.35673 + 5.95953i) q^{65} -9.84404i q^{67} +12.4364 q^{69} -8.64327 q^{71} -2.43418i q^{73} +(9.89655 - 5.99804i) q^{75} +5.65127i q^{77} -12.4364 q^{79} -10.5160 q^{81} -12.6635i q^{83} +(4.30500 - 7.64310i) q^{85} +13.8868i q^{87} -12.3662 q^{89} -4.43637 q^{91} -19.5256i q^{93} +(-1.94827 - 1.09737i) q^{95} -3.05888i q^{97} -9.18310 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{5} - 14 q^{9} - 2 q^{11} - 10 q^{15} - 6 q^{19} + 20 q^{21} + 3 q^{25} - 36 q^{29} + 3 q^{35} - 8 q^{39} + 12 q^{41} - 15 q^{45} + 4 q^{49} - 4 q^{51} + 33 q^{55} + 20 q^{59} - 14 q^{61} - 20 q^{65}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.31446i 1.33625i −0.744047 0.668127i \(-0.767096\pi\)
0.744047 0.668127i \(-0.232904\pi\)
\(4\) 0 0
\(5\) 1.94827 + 1.09737i 0.871295 + 0.490760i
\(6\) 0 0
\(7\) 1.45033i 0.548172i 0.961705 + 0.274086i \(0.0883754\pi\)
−0.961705 + 0.274086i \(0.911625\pi\)
\(8\) 0 0
\(9\) −2.35673 −0.785575
\(10\) 0 0
\(11\) 3.89655 1.17485 0.587427 0.809277i \(-0.300141\pi\)
0.587427 + 0.809277i \(0.300141\pi\)
\(12\) 0 0
\(13\) 3.05888i 0.848380i 0.905573 + 0.424190i \(0.139441\pi\)
−0.905573 + 0.424190i \(0.860559\pi\)
\(14\) 0 0
\(15\) 2.53982 4.50920i 0.655780 1.16427i
\(16\) 0 0
\(17\) 3.92301i 0.951469i −0.879589 0.475735i \(-0.842182\pi\)
0.879589 0.475735i \(-0.157818\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 3.35673 0.732498
\(22\) 0 0
\(23\) 5.37334i 1.12042i 0.828351 + 0.560209i \(0.189279\pi\)
−0.828351 + 0.560209i \(0.810721\pi\)
\(24\) 0 0
\(25\) 2.59155 + 4.27596i 0.518310 + 0.855193i
\(26\) 0 0
\(27\) 1.48883i 0.286526i
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 8.43637 1.51522 0.757609 0.652709i \(-0.226368\pi\)
0.757609 + 0.652709i \(0.226368\pi\)
\(32\) 0 0
\(33\) 9.01841i 1.56990i
\(34\) 0 0
\(35\) −1.59155 + 2.82564i −0.269021 + 0.477620i
\(36\) 0 0
\(37\) 5.95953i 0.979741i 0.871795 + 0.489871i \(0.162956\pi\)
−0.871795 + 0.489871i \(0.837044\pi\)
\(38\) 0 0
\(39\) 7.07965 1.13365
\(40\) 0 0
\(41\) 10.4364 1.62989 0.814944 0.579540i \(-0.196768\pi\)
0.814944 + 0.579540i \(0.196768\pi\)
\(42\) 0 0
\(43\) 1.45033i 0.221173i 0.993867 + 0.110586i \(0.0352729\pi\)
−0.993867 + 0.110586i \(0.964727\pi\)
\(44\) 0 0
\(45\) −4.59155 2.58620i −0.684468 0.385529i
\(46\) 0 0
\(47\) 4.90686i 0.715739i 0.933772 + 0.357869i \(0.116497\pi\)
−0.933772 + 0.357869i \(0.883503\pi\)
\(48\) 0 0
\(49\) 4.89655 0.699507
\(50\) 0 0
\(51\) −9.07965 −1.27140
\(52\) 0 0
\(53\) 4.23127i 0.581209i −0.956843 0.290605i \(-0.906144\pi\)
0.956843 0.290605i \(-0.0938564\pi\)
\(54\) 0 0
\(55\) 7.59155 + 4.27596i 1.02364 + 0.576571i
\(56\) 0 0
\(57\) 2.31446i 0.306558i
\(58\) 0 0
\(59\) 3.35673 0.437008 0.218504 0.975836i \(-0.429882\pi\)
0.218504 + 0.975836i \(0.429882\pi\)
\(60\) 0 0
\(61\) 10.3329 1.32300 0.661498 0.749947i \(-0.269921\pi\)
0.661498 + 0.749947i \(0.269921\pi\)
\(62\) 0 0
\(63\) 3.41802i 0.430631i
\(64\) 0 0
\(65\) −3.35673 + 5.95953i −0.416351 + 0.739189i
\(66\) 0 0
\(67\) 9.84404i 1.20264i −0.799008 0.601320i \(-0.794642\pi\)
0.799008 0.601320i \(-0.205358\pi\)
\(68\) 0 0
\(69\) 12.4364 1.49716
\(70\) 0 0
\(71\) −8.64327 −1.02577 −0.512884 0.858458i \(-0.671423\pi\)
−0.512884 + 0.858458i \(0.671423\pi\)
\(72\) 0 0
\(73\) 2.43418i 0.284899i −0.989802 0.142449i \(-0.954502\pi\)
0.989802 0.142449i \(-0.0454978\pi\)
\(74\) 0 0
\(75\) 9.89655 5.99804i 1.14276 0.692594i
\(76\) 0 0
\(77\) 5.65127i 0.644022i
\(78\) 0 0
\(79\) −12.4364 −1.39920 −0.699601 0.714534i \(-0.746639\pi\)
−0.699601 + 0.714534i \(0.746639\pi\)
\(80\) 0 0
\(81\) −10.5160 −1.16845
\(82\) 0 0
\(83\) 12.6635i 1.39000i −0.719011 0.694999i \(-0.755405\pi\)
0.719011 0.694999i \(-0.244595\pi\)
\(84\) 0 0
\(85\) 4.30500 7.64310i 0.466943 0.829011i
\(86\) 0 0
\(87\) 13.8868i 1.48882i
\(88\) 0 0
\(89\) −12.3662 −1.31081 −0.655407 0.755276i \(-0.727503\pi\)
−0.655407 + 0.755276i \(0.727503\pi\)
\(90\) 0 0
\(91\) −4.43637 −0.465058
\(92\) 0 0
\(93\) 19.5256i 2.02472i
\(94\) 0 0
\(95\) −1.94827 1.09737i −0.199889 0.112588i
\(96\) 0 0
\(97\) 3.05888i 0.310582i −0.987869 0.155291i \(-0.950369\pi\)
0.987869 0.155291i \(-0.0496315\pi\)
\(98\) 0 0
\(99\) −9.18310 −0.922936
\(100\) 0 0
\(101\) 3.35673 0.334007 0.167003 0.985956i \(-0.446591\pi\)
0.167003 + 0.985956i \(0.446591\pi\)
\(102\) 0 0
\(103\) 13.0611i 1.28695i −0.765466 0.643476i \(-0.777492\pi\)
0.765466 0.643476i \(-0.222508\pi\)
\(104\) 0 0
\(105\) 6.53982 + 3.68358i 0.638221 + 0.359480i
\(106\) 0 0
\(107\) 5.77099i 0.557903i −0.960305 0.278951i \(-0.910013\pi\)
0.960305 0.278951i \(-0.0899868\pi\)
\(108\) 0 0
\(109\) −6.64327 −0.636310 −0.318155 0.948039i \(-0.603063\pi\)
−0.318155 + 0.948039i \(0.603063\pi\)
\(110\) 0 0
\(111\) 13.7931 1.30918
\(112\) 0 0
\(113\) 9.41606i 0.885789i −0.896574 0.442894i \(-0.853952\pi\)
0.896574 0.442894i \(-0.146048\pi\)
\(114\) 0 0
\(115\) −5.89655 + 10.4687i −0.549856 + 0.976215i
\(116\) 0 0
\(117\) 7.20893i 0.666466i
\(118\) 0 0
\(119\) 5.68965 0.521569
\(120\) 0 0
\(121\) 4.18310 0.380282
\(122\) 0 0
\(123\) 24.1546i 2.17794i
\(124\) 0 0
\(125\) 0.356726 + 11.1746i 0.0319065 + 0.999491i
\(126\) 0 0
\(127\) 11.0934i 0.984383i 0.870487 + 0.492192i \(0.163804\pi\)
−0.870487 + 0.492192i \(0.836196\pi\)
\(128\) 0 0
\(129\) 3.35673 0.295543
\(130\) 0 0
\(131\) −4.61000 −0.402778 −0.201389 0.979511i \(-0.564545\pi\)
−0.201389 + 0.979511i \(0.564545\pi\)
\(132\) 0 0
\(133\) 1.45033i 0.125759i
\(134\) 0 0
\(135\) 1.63380 2.90066i 0.140615 0.249649i
\(136\) 0 0
\(137\) 13.1808i 1.12612i 0.826417 + 0.563058i \(0.190375\pi\)
−0.826417 + 0.563058i \(0.809625\pi\)
\(138\) 0 0
\(139\) 1.18310 0.100349 0.0501745 0.998740i \(-0.484022\pi\)
0.0501745 + 0.998740i \(0.484022\pi\)
\(140\) 0 0
\(141\) 11.3567 0.956409
\(142\) 0 0
\(143\) 11.9191i 0.996722i
\(144\) 0 0
\(145\) −11.6896 6.58423i −0.970772 0.546791i
\(146\) 0 0
\(147\) 11.3329i 0.934719i
\(148\) 0 0
\(149\) −5.46018 −0.447315 −0.223658 0.974668i \(-0.571800\pi\)
−0.223658 + 0.974668i \(0.571800\pi\)
\(150\) 0 0
\(151\) 5.07965 0.413376 0.206688 0.978407i \(-0.433732\pi\)
0.206688 + 0.978407i \(0.433732\pi\)
\(152\) 0 0
\(153\) 9.24546i 0.747451i
\(154\) 0 0
\(155\) 16.4364 + 9.25784i 1.32020 + 0.743608i
\(156\) 0 0
\(157\) 6.11775i 0.488250i −0.969744 0.244125i \(-0.921499\pi\)
0.969744 0.244125i \(-0.0785007\pi\)
\(158\) 0 0
\(159\) −9.79310 −0.776643
\(160\) 0 0
\(161\) −7.79310 −0.614182
\(162\) 0 0
\(163\) 16.4365i 1.28740i 0.765277 + 0.643701i \(0.222602\pi\)
−0.765277 + 0.643701i \(0.777398\pi\)
\(164\) 0 0
\(165\) 9.89655 17.5703i 0.770445 1.36785i
\(166\) 0 0
\(167\) 3.80329i 0.294308i −0.989114 0.147154i \(-0.952989\pi\)
0.989114 0.147154i \(-0.0470112\pi\)
\(168\) 0 0
\(169\) 3.64327 0.280252
\(170\) 0 0
\(171\) 2.35673 0.180223
\(172\) 0 0
\(173\) 11.3838i 0.865491i −0.901516 0.432746i \(-0.857545\pi\)
0.901516 0.432746i \(-0.142455\pi\)
\(174\) 0 0
\(175\) −6.20155 + 3.75860i −0.468793 + 0.284123i
\(176\) 0 0
\(177\) 7.76901i 0.583954i
\(178\) 0 0
\(179\) 10.0702 0.752680 0.376340 0.926482i \(-0.377182\pi\)
0.376340 + 0.926482i \(0.377182\pi\)
\(180\) 0 0
\(181\) 0.573097 0.0425980 0.0212990 0.999773i \(-0.493220\pi\)
0.0212990 + 0.999773i \(0.493220\pi\)
\(182\) 0 0
\(183\) 23.9151i 1.76786i
\(184\) 0 0
\(185\) −6.53982 + 11.6108i −0.480817 + 0.853643i
\(186\) 0 0
\(187\) 15.2862i 1.11784i
\(188\) 0 0
\(189\) 2.15930 0.157066
\(190\) 0 0
\(191\) 3.18310 0.230321 0.115160 0.993347i \(-0.463262\pi\)
0.115160 + 0.993347i \(0.463262\pi\)
\(192\) 0 0
\(193\) 3.05888i 0.220183i 0.993921 + 0.110091i \(0.0351143\pi\)
−0.993921 + 0.110091i \(0.964886\pi\)
\(194\) 0 0
\(195\) 13.7931 + 7.76901i 0.987744 + 0.556350i
\(196\) 0 0
\(197\) 21.4933i 1.53134i −0.643235 0.765669i \(-0.722408\pi\)
0.643235 0.765669i \(-0.277592\pi\)
\(198\) 0 0
\(199\) −4.81690 −0.341461 −0.170731 0.985318i \(-0.554613\pi\)
−0.170731 + 0.985318i \(0.554613\pi\)
\(200\) 0 0
\(201\) −22.7836 −1.60703
\(202\) 0 0
\(203\) 8.70197i 0.610758i
\(204\) 0 0
\(205\) 20.3329 + 11.4526i 1.42011 + 0.799883i
\(206\) 0 0
\(207\) 12.6635i 0.880173i
\(208\) 0 0
\(209\) −3.89655 −0.269530
\(210\) 0 0
\(211\) −10.5066 −0.723301 −0.361650 0.932314i \(-0.617787\pi\)
−0.361650 + 0.932314i \(0.617787\pi\)
\(212\) 0 0
\(213\) 20.0045i 1.37069i
\(214\) 0 0
\(215\) −1.59155 + 2.82564i −0.108543 + 0.192707i
\(216\) 0 0
\(217\) 12.2355i 0.830600i
\(218\) 0 0
\(219\) −5.63380 −0.380697
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) 16.8947i 1.13136i 0.824626 + 0.565678i \(0.191385\pi\)
−0.824626 + 0.565678i \(0.808615\pi\)
\(224\) 0 0
\(225\) −6.10757 10.0773i −0.407171 0.671818i
\(226\) 0 0
\(227\) 17.1342i 1.13724i 0.822602 + 0.568618i \(0.192522\pi\)
−0.822602 + 0.568618i \(0.807478\pi\)
\(228\) 0 0
\(229\) −25.0464 −1.65511 −0.827555 0.561384i \(-0.810269\pi\)
−0.827555 + 0.561384i \(0.810269\pi\)
\(230\) 0 0
\(231\) 13.0796 0.860578
\(232\) 0 0
\(233\) 19.2986i 1.26429i 0.774849 + 0.632147i \(0.217826\pi\)
−0.774849 + 0.632147i \(0.782174\pi\)
\(234\) 0 0
\(235\) −5.38465 + 9.55991i −0.351256 + 0.623620i
\(236\) 0 0
\(237\) 28.7835i 1.86969i
\(238\) 0 0
\(239\) 18.7693 1.21408 0.607042 0.794669i \(-0.292356\pi\)
0.607042 + 0.794669i \(0.292356\pi\)
\(240\) 0 0
\(241\) −14.4364 −0.929929 −0.464964 0.885329i \(-0.653933\pi\)
−0.464964 + 0.885329i \(0.653933\pi\)
\(242\) 0 0
\(243\) 19.8724i 1.27482i
\(244\) 0 0
\(245\) 9.53982 + 5.37334i 0.609477 + 0.343290i
\(246\) 0 0
\(247\) 3.05888i 0.194632i
\(248\) 0 0
\(249\) −29.3091 −1.85739
\(250\) 0 0
\(251\) 10.9762 0.692811 0.346406 0.938085i \(-0.387402\pi\)
0.346406 + 0.938085i \(0.387402\pi\)
\(252\) 0 0
\(253\) 20.9375i 1.31633i
\(254\) 0 0
\(255\) −17.6896 9.96375i −1.10777 0.623954i
\(256\) 0 0
\(257\) 17.6392i 1.10030i 0.835066 + 0.550150i \(0.185430\pi\)
−0.835066 + 0.550150i \(0.814570\pi\)
\(258\) 0 0
\(259\) −8.64327 −0.537067
\(260\) 0 0
\(261\) 14.1404 0.875266
\(262\) 0 0
\(263\) 1.68976i 0.104195i 0.998642 + 0.0520975i \(0.0165907\pi\)
−0.998642 + 0.0520975i \(0.983409\pi\)
\(264\) 0 0
\(265\) 4.64327 8.24367i 0.285234 0.506405i
\(266\) 0 0
\(267\) 28.6211i 1.75158i
\(268\) 0 0
\(269\) 27.1022 1.65245 0.826226 0.563339i \(-0.190484\pi\)
0.826226 + 0.563339i \(0.190484\pi\)
\(270\) 0 0
\(271\) −23.9524 −1.45500 −0.727502 0.686105i \(-0.759319\pi\)
−0.727502 + 0.686105i \(0.759319\pi\)
\(272\) 0 0
\(273\) 10.2678i 0.621436i
\(274\) 0 0
\(275\) 10.0981 + 16.6615i 0.608938 + 1.00473i
\(276\) 0 0
\(277\) 8.23549i 0.494822i −0.968911 0.247411i \(-0.920420\pi\)
0.968911 0.247411i \(-0.0795799\pi\)
\(278\) 0 0
\(279\) −19.8822 −1.19032
\(280\) 0 0
\(281\) −10.4364 −0.622582 −0.311291 0.950315i \(-0.600761\pi\)
−0.311291 + 0.950315i \(0.600761\pi\)
\(282\) 0 0
\(283\) 10.4687i 0.622302i 0.950361 + 0.311151i \(0.100714\pi\)
−0.950361 + 0.311151i \(0.899286\pi\)
\(284\) 0 0
\(285\) −2.53982 + 4.50920i −0.150446 + 0.267102i
\(286\) 0 0
\(287\) 15.1362i 0.893459i
\(288\) 0 0
\(289\) 1.61000 0.0947059
\(290\) 0 0
\(291\) −7.07965 −0.415016
\(292\) 0 0
\(293\) 16.4668i 0.961999i −0.876721 0.481000i \(-0.840274\pi\)
0.876721 0.481000i \(-0.159726\pi\)
\(294\) 0 0
\(295\) 6.53982 + 3.68358i 0.380763 + 0.214466i
\(296\) 0 0
\(297\) 5.80131i 0.336626i
\(298\) 0 0
\(299\) −16.4364 −0.950540
\(300\) 0 0
\(301\) −2.10345 −0.121241
\(302\) 0 0
\(303\) 7.76901i 0.446318i
\(304\) 0 0
\(305\) 20.1314 + 11.3391i 1.15272 + 0.649273i
\(306\) 0 0
\(307\) 7.87634i 0.449526i 0.974413 + 0.224763i \(0.0721609\pi\)
−0.974413 + 0.224763i \(0.927839\pi\)
\(308\) 0 0
\(309\) −30.2295 −1.71969
\(310\) 0 0
\(311\) −3.89655 −0.220953 −0.110477 0.993879i \(-0.535238\pi\)
−0.110477 + 0.993879i \(0.535238\pi\)
\(312\) 0 0
\(313\) 7.76901i 0.439130i 0.975598 + 0.219565i \(0.0704638\pi\)
−0.975598 + 0.219565i \(0.929536\pi\)
\(314\) 0 0
\(315\) 3.75084 6.65925i 0.211336 0.375206i
\(316\) 0 0
\(317\) 19.0510i 1.07001i −0.844849 0.535005i \(-0.820310\pi\)
0.844849 0.535005i \(-0.179690\pi\)
\(318\) 0 0
\(319\) −23.3793 −1.30899
\(320\) 0 0
\(321\) −13.3567 −0.745500
\(322\) 0 0
\(323\) 3.92301i 0.218282i
\(324\) 0 0
\(325\) −13.0796 + 7.92723i −0.725528 + 0.439724i
\(326\) 0 0
\(327\) 15.3756i 0.850272i
\(328\) 0 0
\(329\) −7.11655 −0.392348
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 0 0
\(333\) 14.0450i 0.769660i
\(334\) 0 0
\(335\) 10.8026 19.1789i 0.590207 1.04785i
\(336\) 0 0
\(337\) 6.89249i 0.375458i 0.982221 + 0.187729i \(0.0601127\pi\)
−0.982221 + 0.187729i \(0.939887\pi\)
\(338\) 0 0
\(339\) −21.7931 −1.18364
\(340\) 0 0
\(341\) 32.8727 1.78016
\(342\) 0 0
\(343\) 17.2539i 0.931623i
\(344\) 0 0
\(345\) 24.2295 + 13.6473i 1.30447 + 0.734747i
\(346\) 0 0
\(347\) 30.5503i 1.64002i −0.572346 0.820012i \(-0.693967\pi\)
0.572346 0.820012i \(-0.306033\pi\)
\(348\) 0 0
\(349\) −16.7693 −0.897640 −0.448820 0.893622i \(-0.648156\pi\)
−0.448820 + 0.893622i \(0.648156\pi\)
\(350\) 0 0
\(351\) 4.55416 0.243083
\(352\) 0 0
\(353\) 29.0999i 1.54883i 0.632676 + 0.774417i \(0.281956\pi\)
−0.632676 + 0.774417i \(0.718044\pi\)
\(354\) 0 0
\(355\) −16.8395 9.48489i −0.893746 0.503406i
\(356\) 0 0
\(357\) 13.1685i 0.696949i
\(358\) 0 0
\(359\) −11.6896 −0.616956 −0.308478 0.951231i \(-0.599820\pi\)
−0.308478 + 0.951231i \(0.599820\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 9.68161i 0.508153i
\(364\) 0 0
\(365\) 2.67120 4.74244i 0.139817 0.248231i
\(366\) 0 0
\(367\) 4.20095i 0.219288i −0.993971 0.109644i \(-0.965029\pi\)
0.993971 0.109644i \(-0.0349710\pi\)
\(368\) 0 0
\(369\) −24.5957 −1.28040
\(370\) 0 0
\(371\) 6.13672 0.318603
\(372\) 0 0
\(373\) 16.9456i 0.877412i −0.898631 0.438706i \(-0.855437\pi\)
0.898631 0.438706i \(-0.144563\pi\)
\(374\) 0 0
\(375\) 25.8633 0.825627i 1.33557 0.0426352i
\(376\) 0 0
\(377\) 18.3533i 0.945241i
\(378\) 0 0
\(379\) 10.3662 0.532476 0.266238 0.963907i \(-0.414219\pi\)
0.266238 + 0.963907i \(0.414219\pi\)
\(380\) 0 0
\(381\) 25.6753 1.31539
\(382\) 0 0
\(383\) 20.5907i 1.05214i −0.850442 0.526068i \(-0.823666\pi\)
0.850442 0.526068i \(-0.176334\pi\)
\(384\) 0 0
\(385\) −6.20155 + 11.0102i −0.316060 + 0.561133i
\(386\) 0 0
\(387\) 3.41802i 0.173748i
\(388\) 0 0
\(389\) −8.10345 −0.410861 −0.205431 0.978672i \(-0.565859\pi\)
−0.205431 + 0.978672i \(0.565859\pi\)
\(390\) 0 0
\(391\) 21.0796 1.06604
\(392\) 0 0
\(393\) 10.6697i 0.538213i
\(394\) 0 0
\(395\) −24.2295 13.6473i −1.21912 0.686672i
\(396\) 0 0
\(397\) 3.46891i 0.174100i −0.996204 0.0870499i \(-0.972256\pi\)
0.996204 0.0870499i \(-0.0277440\pi\)
\(398\) 0 0
\(399\) −3.35673 −0.168046
\(400\) 0 0
\(401\) −15.9524 −0.796625 −0.398312 0.917250i \(-0.630404\pi\)
−0.398312 + 0.917250i \(0.630404\pi\)
\(402\) 0 0
\(403\) 25.8058i 1.28548i
\(404\) 0 0
\(405\) −20.4881 11.5400i −1.01806 0.573427i
\(406\) 0 0
\(407\) 23.2216i 1.15105i
\(408\) 0 0
\(409\) 3.92982 0.194317 0.0971586 0.995269i \(-0.469025\pi\)
0.0971586 + 0.995269i \(0.469025\pi\)
\(410\) 0 0
\(411\) 30.5066 1.50478
\(412\) 0 0
\(413\) 4.86835i 0.239556i
\(414\) 0 0
\(415\) 13.8965 24.6719i 0.682155 1.21110i
\(416\) 0 0
\(417\) 2.73823i 0.134092i
\(418\) 0 0
\(419\) −34.2996 −1.67565 −0.837824 0.545941i \(-0.816172\pi\)
−0.837824 + 0.545941i \(0.816172\pi\)
\(420\) 0 0
\(421\) −26.0891 −1.27151 −0.635753 0.771893i \(-0.719310\pi\)
−0.635753 + 0.771893i \(0.719310\pi\)
\(422\) 0 0
\(423\) 11.5641i 0.562267i
\(424\) 0 0
\(425\) 16.7746 10.1667i 0.813690 0.493156i
\(426\) 0 0
\(427\) 14.9861i 0.725229i
\(428\) 0 0
\(429\) 27.5862 1.33187
\(430\) 0 0
\(431\) −10.2996 −0.496117 −0.248058 0.968745i \(-0.579792\pi\)
−0.248058 + 0.968745i \(0.579792\pi\)
\(432\) 0 0
\(433\) 36.2319i 1.74119i −0.491999 0.870596i \(-0.663734\pi\)
0.491999 0.870596i \(-0.336266\pi\)
\(434\) 0 0
\(435\) −15.2389 + 27.0552i −0.730651 + 1.29720i
\(436\) 0 0
\(437\) 5.37334i 0.257042i
\(438\) 0 0
\(439\) −24.0891 −1.14971 −0.574855 0.818255i \(-0.694942\pi\)
−0.574855 + 0.818255i \(0.694942\pi\)
\(440\) 0 0
\(441\) −11.5398 −0.549515
\(442\) 0 0
\(443\) 5.52337i 0.262423i 0.991354 + 0.131212i \(0.0418868\pi\)
−0.991354 + 0.131212i \(0.958113\pi\)
\(444\) 0 0
\(445\) −24.0927 13.5703i −1.14211 0.643295i
\(446\) 0 0
\(447\) 12.6374i 0.597727i
\(448\) 0 0
\(449\) −7.92982 −0.374231 −0.187116 0.982338i \(-0.559914\pi\)
−0.187116 + 0.982338i \(0.559914\pi\)
\(450\) 0 0
\(451\) 40.6658 1.91488
\(452\) 0 0
\(453\) 11.7566i 0.552375i
\(454\) 0 0
\(455\) −8.64327 4.86835i −0.405203 0.228232i
\(456\) 0 0
\(457\) 22.6534i 1.05968i 0.848098 + 0.529840i \(0.177748\pi\)
−0.848098 + 0.529840i \(0.822252\pi\)
\(458\) 0 0
\(459\) −5.84070 −0.272621
\(460\) 0 0
\(461\) 13.3900 0.623634 0.311817 0.950142i \(-0.399062\pi\)
0.311817 + 0.950142i \(0.399062\pi\)
\(462\) 0 0
\(463\) 16.9029i 0.785546i 0.919635 + 0.392773i \(0.128484\pi\)
−0.919635 + 0.392773i \(0.871516\pi\)
\(464\) 0 0
\(465\) 21.4269 38.0413i 0.993649 1.76412i
\(466\) 0 0
\(467\) 22.2501i 1.02961i −0.857306 0.514807i \(-0.827864\pi\)
0.857306 0.514807i \(-0.172136\pi\)
\(468\) 0 0
\(469\) 14.2771 0.659254
\(470\) 0 0
\(471\) −14.1593 −0.652426
\(472\) 0 0
\(473\) 5.65127i 0.259846i
\(474\) 0 0
\(475\) −2.59155 4.27596i −0.118908 0.196195i
\(476\) 0 0
\(477\) 9.97194i 0.456584i
\(478\) 0 0
\(479\) 0.366196 0.0167319 0.00836597 0.999965i \(-0.497337\pi\)
0.00836597 + 0.999965i \(0.497337\pi\)
\(480\) 0 0
\(481\) −18.2295 −0.831192
\(482\) 0 0
\(483\) 18.0368i 0.820704i
\(484\) 0 0
\(485\) 3.35673 5.95953i 0.152421 0.270608i
\(486\) 0 0
\(487\) 26.8461i 1.21651i −0.793740 0.608257i \(-0.791869\pi\)
0.793740 0.608257i \(-0.208131\pi\)
\(488\) 0 0
\(489\) 38.0415 1.72030
\(490\) 0 0
\(491\) 23.7266 1.07076 0.535382 0.844610i \(-0.320168\pi\)
0.535382 + 0.844610i \(0.320168\pi\)
\(492\) 0 0
\(493\) 23.5381i 1.06010i
\(494\) 0 0
\(495\) −17.8912 10.0773i −0.804150 0.452940i
\(496\) 0 0
\(497\) 12.5356i 0.562298i
\(498\) 0 0
\(499\) 6.81690 0.305166 0.152583 0.988291i \(-0.451241\pi\)
0.152583 + 0.988291i \(0.451241\pi\)
\(500\) 0 0
\(501\) −8.80257 −0.393270
\(502\) 0 0
\(503\) 23.4102i 1.04381i 0.853004 + 0.521904i \(0.174778\pi\)
−0.853004 + 0.521904i \(0.825222\pi\)
\(504\) 0 0
\(505\) 6.53982 + 3.68358i 0.291018 + 0.163917i
\(506\) 0 0
\(507\) 8.43221i 0.374488i
\(508\) 0 0
\(509\) −16.9204 −0.749981 −0.374991 0.927029i \(-0.622354\pi\)
−0.374991 + 0.927029i \(0.622354\pi\)
\(510\) 0 0
\(511\) 3.53035 0.156174
\(512\) 0 0
\(513\) 1.48883i 0.0657336i
\(514\) 0 0
\(515\) 14.3329 25.4467i 0.631584 1.12131i
\(516\) 0 0
\(517\) 19.1198i 0.840888i
\(518\) 0 0
\(519\) −26.3473 −1.15652
\(520\) 0 0
\(521\) −3.49345 −0.153051 −0.0765254 0.997068i \(-0.524383\pi\)
−0.0765254 + 0.997068i \(0.524383\pi\)
\(522\) 0 0
\(523\) 14.9271i 0.652714i 0.945247 + 0.326357i \(0.105821\pi\)
−0.945247 + 0.326357i \(0.894179\pi\)
\(524\) 0 0
\(525\) 8.69912 + 14.3532i 0.379661 + 0.626427i
\(526\) 0 0
\(527\) 33.0960i 1.44168i
\(528\) 0 0
\(529\) −5.87275 −0.255337
\(530\) 0 0
\(531\) −7.91088 −0.343303
\(532\) 0 0
\(533\) 31.9236i 1.38276i
\(534\) 0 0
\(535\) 6.33292 11.2435i 0.273796 0.486098i
\(536\) 0 0
\(537\) 23.3070i 1.00577i
\(538\) 0 0
\(539\) 19.0796 0.821819
\(540\) 0 0
\(541\) −12.6991 −0.545978 −0.272989 0.962017i \(-0.588012\pi\)
−0.272989 + 0.962017i \(0.588012\pi\)
\(542\) 0 0
\(543\) 1.32641i 0.0569217i
\(544\) 0 0
\(545\) −12.9429 7.29014i −0.554414 0.312275i
\(546\) 0 0
\(547\) 31.8162i 1.36036i −0.733043 0.680182i \(-0.761901\pi\)
0.733043 0.680182i \(-0.238099\pi\)
\(548\) 0 0
\(549\) −24.3519 −1.03931
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) 18.0368i 0.767003i
\(554\) 0 0
\(555\) 26.8727 + 15.1362i 1.14068 + 0.642494i
\(556\) 0 0
\(557\) 9.64731i 0.408770i 0.978891 + 0.204385i \(0.0655194\pi\)
−0.978891 + 0.204385i \(0.934481\pi\)
\(558\) 0 0
\(559\) −4.43637 −0.187639
\(560\) 0 0
\(561\) −35.3793 −1.49372
\(562\) 0 0
\(563\) 4.28216i 0.180471i 0.995920 + 0.0902357i \(0.0287620\pi\)
−0.995920 + 0.0902357i \(0.971238\pi\)
\(564\) 0 0
\(565\) 10.3329 18.3451i 0.434709 0.771783i
\(566\) 0 0
\(567\) 15.2517i 0.640510i
\(568\) 0 0
\(569\) −42.2295 −1.77035 −0.885176 0.465257i \(-0.845962\pi\)
−0.885176 + 0.465257i \(0.845962\pi\)
\(570\) 0 0
\(571\) 19.2200 0.804332 0.402166 0.915567i \(-0.368257\pi\)
0.402166 + 0.915567i \(0.368257\pi\)
\(572\) 0 0
\(573\) 7.36715i 0.307767i
\(574\) 0 0
\(575\) −22.9762 + 13.9253i −0.958174 + 0.580724i
\(576\) 0 0
\(577\) 40.7919i 1.69819i 0.528239 + 0.849096i \(0.322852\pi\)
−0.528239 + 0.849096i \(0.677148\pi\)
\(578\) 0 0
\(579\) 7.07965 0.294220
\(580\) 0 0
\(581\) 18.3662 0.761958
\(582\) 0 0
\(583\) 16.4873i 0.682836i
\(584\) 0 0
\(585\) 7.91088 14.0450i 0.327075 0.580689i
\(586\) 0 0
\(587\) 31.8851i 1.31604i −0.753001 0.658019i \(-0.771395\pi\)
0.753001 0.658019i \(-0.228605\pi\)
\(588\) 0 0
\(589\) −8.43637 −0.347615
\(590\) 0 0
\(591\) −49.7455 −2.04626
\(592\) 0 0
\(593\) 38.8973i 1.59732i −0.601783 0.798660i \(-0.705543\pi\)
0.601783 0.798660i \(-0.294457\pi\)
\(594\) 0 0
\(595\) 11.0850 + 6.24366i 0.454441 + 0.255965i
\(596\) 0 0
\(597\) 11.1485i 0.456279i
\(598\) 0 0
\(599\) 28.1629 1.15071 0.575353 0.817905i \(-0.304865\pi\)
0.575353 + 0.817905i \(0.304865\pi\)
\(600\) 0 0
\(601\) −5.56363 −0.226945 −0.113473 0.993541i \(-0.536197\pi\)
−0.113473 + 0.993541i \(0.536197\pi\)
\(602\) 0 0
\(603\) 23.1997i 0.944764i
\(604\) 0 0
\(605\) 8.14982 + 4.59042i 0.331337 + 0.186627i
\(606\) 0 0
\(607\) 33.9986i 1.37996i 0.723828 + 0.689980i \(0.242381\pi\)
−0.723828 + 0.689980i \(0.757619\pi\)
\(608\) 0 0
\(609\) −20.1404 −0.816128
\(610\) 0 0
\(611\) −15.0095 −0.607218
\(612\) 0 0
\(613\) 17.5703i 0.709659i 0.934931 + 0.354830i \(0.115461\pi\)
−0.934931 + 0.354830i \(0.884539\pi\)
\(614\) 0 0
\(615\) 26.5066 47.0597i 1.06885 1.89763i
\(616\) 0 0
\(617\) 13.0791i 0.526544i 0.964722 + 0.263272i \(0.0848016\pi\)
−0.964722 + 0.263272i \(0.915198\pi\)
\(618\) 0 0
\(619\) −18.9393 −0.761234 −0.380617 0.924733i \(-0.624288\pi\)
−0.380617 + 0.924733i \(0.624288\pi\)
\(620\) 0 0
\(621\) 8.00000 0.321029
\(622\) 0 0
\(623\) 17.9350i 0.718552i
\(624\) 0 0
\(625\) −11.5677 + 22.1627i −0.462710 + 0.886510i
\(626\) 0 0
\(627\) 9.01841i 0.360161i
\(628\) 0 0
\(629\) 23.3793 0.932194
\(630\) 0 0
\(631\) −31.6896 −1.26154 −0.630772 0.775968i \(-0.717262\pi\)
−0.630772 + 0.775968i \(0.717262\pi\)
\(632\) 0 0
\(633\) 24.3170i 0.966514i
\(634\) 0 0
\(635\) −12.1736 + 21.6131i −0.483096 + 0.857688i
\(636\) 0 0
\(637\) 14.9779i 0.593448i
\(638\) 0 0
\(639\) 20.3698 0.805818
\(640\) 0 0
\(641\) 47.9750 1.89490 0.947449 0.319908i \(-0.103652\pi\)
0.947449 + 0.319908i \(0.103652\pi\)
\(642\) 0 0
\(643\) 0.200927i 0.00792378i 0.999992 + 0.00396189i \(0.00126111\pi\)
−0.999992 + 0.00396189i \(0.998739\pi\)
\(644\) 0 0
\(645\) 6.53982 + 3.68358i 0.257505 + 0.145041i
\(646\) 0 0
\(647\) 1.58798i 0.0624299i 0.999513 + 0.0312150i \(0.00993765\pi\)
−0.999513 + 0.0312150i \(0.990062\pi\)
\(648\) 0 0
\(649\) 13.0796 0.513421
\(650\) 0 0
\(651\) 28.3186 1.10989
\(652\) 0 0
\(653\) 33.5624i 1.31340i −0.754152 0.656700i \(-0.771952\pi\)
0.754152 0.656700i \(-0.228048\pi\)
\(654\) 0 0
\(655\) −8.98155 5.05889i −0.350938 0.197667i
\(656\) 0 0
\(657\) 5.73669i 0.223809i
\(658\) 0 0
\(659\) 15.3567 0.598213 0.299107 0.954220i \(-0.403311\pi\)
0.299107 + 0.954220i \(0.403311\pi\)
\(660\) 0 0
\(661\) 12.8026 0.497962 0.248981 0.968508i \(-0.419904\pi\)
0.248981 + 0.968508i \(0.419904\pi\)
\(662\) 0 0
\(663\) 27.7735i 1.07863i
\(664\) 0 0
\(665\) 1.59155 2.82564i 0.0617176 0.109573i
\(666\) 0 0
\(667\) 32.2400i 1.24834i
\(668\) 0 0
\(669\) 39.1022 1.51178
\(670\) 0 0
\(671\) 40.2627 1.55433
\(672\) 0 0
\(673\) 7.82545i 0.301649i 0.988561 + 0.150824i \(0.0481928\pi\)
−0.988561 + 0.150824i \(0.951807\pi\)
\(674\) 0 0
\(675\) 6.36620 3.85838i 0.245035 0.148509i
\(676\) 0 0
\(677\) 21.6516i 0.832137i −0.909333 0.416069i \(-0.863408\pi\)
0.909333 0.416069i \(-0.136592\pi\)
\(678\) 0 0
\(679\) 4.43637 0.170252
\(680\) 0 0
\(681\) 39.6564 1.51964
\(682\) 0 0
\(683\) 6.38751i 0.244411i −0.992505 0.122206i \(-0.961003\pi\)
0.992505 0.122206i \(-0.0389967\pi\)
\(684\) 0 0
\(685\) −14.4643 + 25.6799i −0.552652 + 0.981179i
\(686\) 0 0
\(687\) 57.9688i 2.21165i
\(688\) 0 0
\(689\) 12.9429 0.493086
\(690\) 0 0
\(691\) −44.4958 −1.69270 −0.846351 0.532626i \(-0.821205\pi\)
−0.846351 + 0.532626i \(0.821205\pi\)
\(692\) 0 0
\(693\) 13.3185i 0.505928i
\(694\) 0 0
\(695\) 2.30500 + 1.29830i 0.0874336 + 0.0492473i
\(696\) 0 0
\(697\) 40.9420i 1.55079i
\(698\) 0 0
\(699\) 44.6658 1.68942
\(700\) 0 0
\(701\) 17.5160 0.661571 0.330785 0.943706i \(-0.392686\pi\)
0.330785 + 0.943706i \(0.392686\pi\)
\(702\) 0 0
\(703\) 5.95953i 0.224768i
\(704\) 0 0
\(705\) 22.1260 + 12.4626i 0.833314 + 0.469367i
\(706\) 0 0
\(707\) 4.86835i 0.183093i
\(708\) 0 0
\(709\) −11.4269 −0.429146 −0.214573 0.976708i \(-0.568836\pi\)
−0.214573 + 0.976708i \(0.568836\pi\)
\(710\) 0 0
\(711\) 29.3091 1.09918
\(712\) 0 0
\(713\) 45.3315i 1.69768i
\(714\) 0 0
\(715\) −13.0796 + 23.2216i −0.489151 + 0.868439i
\(716\) 0 0
\(717\) 43.4408i 1.62233i
\(718\) 0 0
\(719\) 15.8965 0.592841 0.296421 0.955057i \(-0.404207\pi\)
0.296421 + 0.955057i \(0.404207\pi\)
\(720\) 0 0
\(721\) 18.9429 0.705471
\(722\) 0 0
\(723\) 33.4124i 1.24262i
\(724\) 0 0
\(725\) −15.5493 25.6558i −0.577486 0.952832i
\(726\) 0 0
\(727\) 41.9905i 1.55734i 0.627434 + 0.778670i \(0.284105\pi\)
−0.627434 + 0.778670i \(0.715895\pi\)
\(728\) 0 0
\(729\) 14.4458 0.535031
\(730\) 0 0
\(731\) 5.68965 0.210439
\(732\) 0 0
\(733\) 0.632884i 0.0233761i −0.999932 0.0116881i \(-0.996279\pi\)
0.999932 0.0116881i \(-0.00372051\pi\)
\(734\) 0 0
\(735\) 12.4364 22.0795i 0.458723 0.814416i
\(736\) 0 0
\(737\) 38.3578i 1.41293i
\(738\) 0 0
\(739\) −29.5493 −1.08699 −0.543494 0.839413i \(-0.682899\pi\)
−0.543494 + 0.839413i \(0.682899\pi\)
\(740\) 0 0
\(741\) −7.07965 −0.260077
\(742\) 0 0
\(743\) 31.3374i 1.14966i 0.818274 + 0.574829i \(0.194931\pi\)
−0.818274 + 0.574829i \(0.805069\pi\)
\(744\) 0 0
\(745\) −10.6379 5.99184i −0.389743 0.219524i
\(746\) 0 0
\(747\) 29.8443i 1.09195i
\(748\) 0 0
\(749\) 8.36983 0.305827
\(750\) 0 0
\(751\) −25.0131 −0.912741 −0.456371 0.889790i \(-0.650851\pi\)
−0.456371 + 0.889790i \(0.650851\pi\)
\(752\) 0 0
\(753\) 25.4040i 0.925772i
\(754\) 0 0
\(755\) 9.89655 + 5.57426i 0.360172 + 0.202868i
\(756\) 0 0
\(757\) 32.0900i 1.16633i 0.812354 + 0.583165i \(0.198186\pi\)
−0.812354 + 0.583165i \(0.801814\pi\)
\(758\) 0 0
\(759\) 48.4589 1.75895
\(760\) 0 0
\(761\) −40.4922 −1.46784 −0.733921 0.679235i \(-0.762312\pi\)
−0.733921 + 0.679235i \(0.762312\pi\)
\(762\) 0 0
\(763\) 9.63492i 0.348808i
\(764\) 0 0
\(765\) −10.1457 + 18.0127i −0.366819 + 0.651250i
\(766\) 0 0
\(767\) 10.2678i 0.370749i
\(768\) 0 0
\(769\) −3.09398 −0.111572 −0.0557859 0.998443i \(-0.517766\pi\)
−0.0557859 + 0.998443i \(0.517766\pi\)
\(770\) 0 0
\(771\) 40.8251 1.47028
\(772\) 0 0
\(773\) 1.96350i 0.0706220i −0.999376 0.0353110i \(-0.988758\pi\)
0.999376 0.0353110i \(-0.0112422\pi\)
\(774\) 0 0
\(775\) 21.8633 + 36.0736i 0.785352 + 1.29580i
\(776\) 0 0
\(777\) 20.0045i 0.717658i
\(778\) 0 0
\(779\) −10.4364 −0.373922
\(780\) 0 0
\(781\) −33.6789 −1.20513
\(782\) 0 0
\(783\) 8.93300i 0.319239i
\(784\) 0 0
\(785\) 6.71345 11.9191i 0.239613 0.425410i
\(786\) 0 0
\(787\) 0.107331i 0.00382595i −0.999998 0.00191297i \(-0.999391\pi\)
0.999998 0.00191297i \(-0.000608919\pi\)
\(788\) 0 0
\(789\) 3.91088 0.139231
\(790\) 0 0
\(791\) 13.6564 0.485565
\(792\) 0 0
\(793\) 31.6071i 1.12240i
\(794\) 0 0
\(795\) −19.0796 10.7467i −0.676685 0.381145i
\(796\) 0 0
\(797\) 8.32068i 0.294734i 0.989082 + 0.147367i \(0.0470798\pi\)
−0.989082 + 0.147367i \(0.952920\pi\)
\(798\) 0 0
\(799\) 19.2496 0.681003
\(800\) 0 0
\(801\) 29.1437 1.02974
\(802\) 0 0
\(803\) 9.48489i 0.334714i
\(804\) 0 0
\(805\) −15.1831 8.55193i −0.535134 0.301416i
\(806\) 0 0
\(807\) 62.7270i 2.20810i
\(808\) 0 0
\(809\) 27.6231 0.971177 0.485588 0.874188i \(-0.338605\pi\)
0.485588 + 0.874188i \(0.338605\pi\)
\(810\) 0 0
\(811\) −23.0095 −0.807972 −0.403986 0.914765i \(-0.632376\pi\)
−0.403986 + 0.914765i \(0.632376\pi\)
\(812\) 0 0
\(813\) 55.4369i 1.94426i
\(814\) 0 0
\(815\) −18.0369 + 32.0227i −0.631805 + 1.12171i
\(816\) 0 0
\(817\) 1.45033i 0.0507405i
\(818\) 0 0
\(819\) 10.4553 0.365338
\(820\) 0 0
\(821\) 31.1355 1.08664 0.543318 0.839527i \(-0.317168\pi\)
0.543318 + 0.839527i \(0.317168\pi\)
\(822\) 0 0
\(823\) 20.4201i 0.711800i −0.934524 0.355900i \(-0.884174\pi\)
0.934524 0.355900i \(-0.115826\pi\)
\(824\) 0 0
\(825\) 38.5624 23.3716i 1.34257 0.813696i
\(826\) 0 0
\(827\) 0.902638i 0.0313878i −0.999877 0.0156939i \(-0.995004\pi\)
0.999877 0.0156939i \(-0.00499573\pi\)
\(828\) 0 0
\(829\) 13.4971 0.468773 0.234386 0.972143i \(-0.424692\pi\)
0.234386 + 0.972143i \(0.424692\pi\)
\(830\) 0 0
\(831\) −19.0607 −0.661209
\(832\) 0 0
\(833\) 19.2092i 0.665560i
\(834\) 0 0
\(835\) 4.17363 7.40986i 0.144434 0.256429i
\(836\) 0 0
\(837\) 12.5603i 0.434149i
\(838\) 0 0
\(839\) 33.1022 1.14282 0.571408 0.820666i \(-0.306397\pi\)
0.571408 + 0.820666i \(0.306397\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 24.1546i 0.831928i
\(844\) 0 0
\(845\) 7.09810 + 3.99803i 0.244182 + 0.137536i
\(846\) 0 0
\(847\) 6.06686i 0.208460i
\(848\) 0 0
\(849\) 24.2295 0.831553
\(850\) 0 0
\(851\) −32.0226 −1.09772
\(852\) 0 0
\(853\) 50.9097i 1.74312i 0.490293 + 0.871558i \(0.336890\pi\)
−0.490293 + 0.871558i \(0.663110\pi\)
\(854\) 0 0
\(855\) 4.59155 + 2.58620i 0.157028 + 0.0884463i
\(856\) 0 0
\(857\) 21.2333i 0.725317i −0.931922 0.362659i \(-0.881869\pi\)
0.931922 0.362659i \(-0.118131\pi\)
\(858\) 0 0
\(859\) 29.4827 1.00594 0.502969 0.864304i \(-0.332241\pi\)
0.502969 + 0.864304i \(0.332241\pi\)
\(860\) 0 0
\(861\) 35.0320 1.19389
\(862\) 0 0
\(863\) 25.7755i 0.877408i −0.898632 0.438704i \(-0.855438\pi\)
0.898632 0.438704i \(-0.144562\pi\)
\(864\) 0 0
\(865\) 12.4922 22.1787i 0.424748 0.754098i
\(866\) 0 0
\(867\) 3.72628i 0.126551i
\(868\) 0 0
\(869\) −48.4589 −1.64386
\(870\) 0 0
\(871\) 30.1117 1.02030
\(872\) 0 0
\(873\) 7.20893i 0.243985i
\(874\) 0 0
\(875\) −16.2069 + 0.517369i −0.547893 + 0.0174903i
\(876\) 0 0
\(877\) 54.2687i 1.83252i −0.400581 0.916261i \(-0.631192\pi\)
0.400581 0.916261i \(-0.368808\pi\)
\(878\) 0 0
\(879\) −38.1117 −1.28548
\(880\) 0 0
\(881\) −28.4922 −0.959927 −0.479964 0.877288i \(-0.659350\pi\)
−0.479964 + 0.877288i \(0.659350\pi\)
\(882\) 0 0
\(883\) 40.5264i 1.36382i −0.731435 0.681911i \(-0.761149\pi\)
0.731435 0.681911i \(-0.238851\pi\)
\(884\) 0 0
\(885\) 8.52549 15.1362i 0.286581 0.508797i
\(886\) 0 0
\(887\) 11.4705i 0.385142i −0.981283 0.192571i \(-0.938317\pi\)
0.981283 0.192571i \(-0.0616826\pi\)
\(888\) 0 0
\(889\) −16.0891 −0.539612
\(890\) 0 0
\(891\) −40.9762 −1.37275
\(892\) 0 0
\(893\) 4.90686i 0.164202i
\(894\) 0 0
\(895\) 19.6195 + 11.0507i 0.655807 + 0.369385i
\(896\) 0 0
\(897\) 38.0413i 1.27016i
\(898\) 0 0
\(899\) −50.6182 −1.68821
\(900\) 0 0
\(901\) −16.5993 −0.553003
\(902\) 0 0
\(903\) 4.86835i 0.162009i
\(904\) 0 0
\(905\) 1.11655 + 0.628901i 0.0371154 + 0.0209054i
\(906\) 0 0
\(907\) 48.1000i 1.59714i −0.601905 0.798568i \(-0.705591\pi\)
0.601905 0.798568i \(-0.294409\pi\)
\(908\) 0 0
\(909\) −7.91088 −0.262387
\(910\) 0 0
\(911\) 12.8062 0.424288 0.212144 0.977238i \(-0.431955\pi\)
0.212144 + 0.977238i \(0.431955\pi\)
\(912\) 0 0
\(913\) 49.3439i 1.63304i
\(914\) 0 0
\(915\) 26.2438 46.5933i 0.867593 1.54033i
\(916\) 0 0
\(917\) 6.68601i 0.220792i
\(918\) 0 0
\(919\) −38.7135 −1.27704 −0.638519 0.769606i \(-0.720453\pi\)
−0.638519 + 0.769606i \(0.720453\pi\)
\(920\) 0 0
\(921\) 18.2295 0.600682
\(922\) 0 0
\(923\) 26.4387i 0.870241i
\(924\) 0 0
\(925\) −25.4827 + 15.4444i −0.837868 + 0.507809i
\(926\) 0 0
\(927\) 30.7815i 1.01100i
\(928\) 0 0
\(929\) 36.0189 1.18174 0.590872 0.806766i \(-0.298784\pi\)
0.590872 + 0.806766i \(0.298784\pi\)
\(930\) 0 0
\(931\) −4.89655 −0.160478
\(932\) 0 0
\(933\) 9.01841i 0.295249i
\(934\) 0 0
\(935\) 16.7746 29.7817i 0.548590 0.973966i
\(936\) 0 0
\(937\) 45.2421i 1.47799i −0.673709 0.738997i \(-0.735300\pi\)
0.673709 0.738997i \(-0.264700\pi\)
\(938\) 0 0
\(939\) 17.9811 0.586790
\(940\) 0 0
\(941\) −11.7455 −0.382892 −0.191446 0.981503i \(-0.561318\pi\)
−0.191446 + 0.981503i \(0.561318\pi\)
\(942\) 0 0
\(943\) 56.0781i 1.82616i
\(944\) 0 0
\(945\) 4.20690 + 2.36955i 0.136850 + 0.0770815i
\(946\) 0 0
\(947\) 13.7752i 0.447635i 0.974631 + 0.223817i \(0.0718519\pi\)
−0.974631 + 0.223817i \(0.928148\pi\)
\(948\) 0 0
\(949\) 7.44584 0.241702
\(950\) 0 0
\(951\) −44.0927 −1.42981
\(952\) 0 0
\(953\) 9.01421i 0.291999i −0.989285 0.145999i \(-0.953360\pi\)
0.989285 0.145999i \(-0.0466398\pi\)
\(954\) 0 0
\(955\) 6.20155 + 3.49304i 0.200677 + 0.113032i
\(956\) 0 0
\(957\) 54.1105i 1.74914i
\(958\) 0 0
\(959\) −19.1166 −0.617306
\(960\) 0 0
\(961\) 40.1724 1.29588
\(962\) 0 0
\(963\) 13.6006i 0.438274i
\(964\) 0 0
\(965\) −3.35673 + 5.95953i −0.108057 + 0.191844i
\(966\) 0 0
\(967\) 30.3232i 0.975129i −0.873087 0.487564i \(-0.837885\pi\)
0.873087 0.487564i \(-0.162115\pi\)
\(968\) 0 0
\(969\) 9.07965 0.291680
\(970\) 0 0
\(971\) 31.5636 1.01292 0.506462 0.862262i \(-0.330953\pi\)
0.506462 + 0.862262i \(0.330953\pi\)
\(972\) 0 0
\(973\) 1.71588i 0.0550086i
\(974\) 0 0
\(975\) 18.3473 + 30.2723i 0.587582 + 0.969490i
\(976\) 0 0
\(977\) 43.1285i 1.37980i 0.723903 + 0.689902i \(0.242346\pi\)
−0.723903 + 0.689902i \(0.757654\pi\)
\(978\) 0 0
\(979\) −48.1855 −1.54002
\(980\) 0 0
\(981\) 15.6564 0.499870
\(982\) 0 0
\(983\) 7.81570i 0.249282i 0.992202 + 0.124641i \(0.0397779\pi\)
−0.992202 + 0.124641i \(0.960222\pi\)
\(984\) 0 0
\(985\) 23.5862 41.8749i 0.751519 1.33425i
\(986\) 0 0
\(987\) 16.4710i 0.524277i
\(988\) 0 0
\(989\) −7.79310 −0.247806
\(990\) 0 0
\(991\) 23.5197 0.747126 0.373563 0.927605i \(-0.378136\pi\)
0.373563 + 0.927605i \(0.378136\pi\)
\(992\) 0 0
\(993\) 18.5157i 0.587577i
\(994\) 0 0
\(995\) −9.38465 5.28593i −0.297513 0.167575i
\(996\) 0 0
\(997\) 33.6395i 1.06537i −0.846313 0.532686i \(-0.821183\pi\)
0.846313 0.532686i \(-0.178817\pi\)
\(998\) 0 0
\(999\) 8.87275 0.280721
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1520.2.d.h.609.2 6
4.3 odd 2 95.2.b.b.39.2 6
5.2 odd 4 7600.2.a.ck.1.2 6
5.3 odd 4 7600.2.a.ck.1.5 6
5.4 even 2 inner 1520.2.d.h.609.5 6
12.11 even 2 855.2.c.d.514.5 6
20.3 even 4 475.2.a.j.1.2 6
20.7 even 4 475.2.a.j.1.5 6
20.19 odd 2 95.2.b.b.39.5 yes 6
60.23 odd 4 4275.2.a.br.1.5 6
60.47 odd 4 4275.2.a.br.1.2 6
60.59 even 2 855.2.c.d.514.2 6
76.75 even 2 1805.2.b.e.1084.5 6
380.227 odd 4 9025.2.a.bx.1.2 6
380.303 odd 4 9025.2.a.bx.1.5 6
380.379 even 2 1805.2.b.e.1084.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.b.b.39.2 6 4.3 odd 2
95.2.b.b.39.5 yes 6 20.19 odd 2
475.2.a.j.1.2 6 20.3 even 4
475.2.a.j.1.5 6 20.7 even 4
855.2.c.d.514.2 6 60.59 even 2
855.2.c.d.514.5 6 12.11 even 2
1520.2.d.h.609.2 6 1.1 even 1 trivial
1520.2.d.h.609.5 6 5.4 even 2 inner
1805.2.b.e.1084.2 6 380.379 even 2
1805.2.b.e.1084.5 6 76.75 even 2
4275.2.a.br.1.2 6 60.47 odd 4
4275.2.a.br.1.5 6 60.23 odd 4
7600.2.a.ck.1.2 6 5.2 odd 4
7600.2.a.ck.1.5 6 5.3 odd 4
9025.2.a.bx.1.2 6 380.227 odd 4
9025.2.a.bx.1.5 6 380.303 odd 4