Properties

Label 1520.2.d.e.609.3
Level $1520$
Weight $2$
Character 1520.609
Analytic conductor $12.137$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1520,2,Mod(609,1520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1520.609");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1372611072\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 190)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 609.3
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1520.609
Dual form 1520.2.d.e.609.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.414214i q^{3} +(0.707107 - 2.12132i) q^{5} +4.41421i q^{7} +2.82843 q^{9} +O(q^{10})\) \(q+0.414214i q^{3} +(0.707107 - 2.12132i) q^{5} +4.41421i q^{7} +2.82843 q^{9} +1.41421 q^{11} +5.82843i q^{13} +(0.878680 + 0.292893i) q^{15} -1.00000i q^{17} -1.00000 q^{19} -1.82843 q^{21} -0.757359i q^{23} +(-4.00000 - 3.00000i) q^{25} +2.41421i q^{27} +0.171573 q^{29} -6.24264 q^{31} +0.585786i q^{33} +(9.36396 + 3.12132i) q^{35} +8.48528i q^{37} -2.41421 q^{39} -4.24264 q^{41} -1.75736i q^{43} +(2.00000 - 6.00000i) q^{45} -12.4853 q^{49} +0.414214 q^{51} +5.48528i q^{53} +(1.00000 - 3.00000i) q^{55} -0.414214i q^{57} +6.89949 q^{59} +14.2426 q^{61} +12.4853i q^{63} +(12.3640 + 4.12132i) q^{65} +4.75736i q^{67} +0.313708 q^{69} +13.4142 q^{71} +11.4853i q^{73} +(1.24264 - 1.65685i) q^{75} +6.24264i q^{77} -6.48528 q^{79} +7.48528 q^{81} -14.4853i q^{83} +(-2.12132 - 0.707107i) q^{85} +0.0710678i q^{87} -7.07107 q^{89} -25.7279 q^{91} -2.58579i q^{93} +(-0.707107 + 2.12132i) q^{95} +0.343146i q^{97} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 12 q^{15} - 4 q^{19} + 4 q^{21} - 16 q^{25} + 12 q^{29} - 8 q^{31} + 12 q^{35} - 4 q^{39} + 8 q^{45} - 16 q^{49} - 4 q^{51} + 4 q^{55} - 12 q^{59} + 40 q^{61} + 24 q^{65} - 44 q^{69} + 48 q^{71} - 12 q^{75} + 8 q^{79} - 4 q^{81} - 52 q^{91} + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.414214i 0.239146i 0.992825 + 0.119573i \(0.0381526\pi\)
−0.992825 + 0.119573i \(0.961847\pi\)
\(4\) 0 0
\(5\) 0.707107 2.12132i 0.316228 0.948683i
\(6\) 0 0
\(7\) 4.41421i 1.66842i 0.551450 + 0.834208i \(0.314075\pi\)
−0.551450 + 0.834208i \(0.685925\pi\)
\(8\) 0 0
\(9\) 2.82843 0.942809
\(10\) 0 0
\(11\) 1.41421 0.426401 0.213201 0.977008i \(-0.431611\pi\)
0.213201 + 0.977008i \(0.431611\pi\)
\(12\) 0 0
\(13\) 5.82843i 1.61651i 0.588829 + 0.808257i \(0.299589\pi\)
−0.588829 + 0.808257i \(0.700411\pi\)
\(14\) 0 0
\(15\) 0.878680 + 0.292893i 0.226874 + 0.0756247i
\(16\) 0 0
\(17\) 1.00000i 0.242536i −0.992620 0.121268i \(-0.961304\pi\)
0.992620 0.121268i \(-0.0386960\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −1.82843 −0.398996
\(22\) 0 0
\(23\) 0.757359i 0.157920i −0.996878 0.0789602i \(-0.974840\pi\)
0.996878 0.0789602i \(-0.0251600\pi\)
\(24\) 0 0
\(25\) −4.00000 3.00000i −0.800000 0.600000i
\(26\) 0 0
\(27\) 2.41421i 0.464616i
\(28\) 0 0
\(29\) 0.171573 0.0318603 0.0159301 0.999873i \(-0.494929\pi\)
0.0159301 + 0.999873i \(0.494929\pi\)
\(30\) 0 0
\(31\) −6.24264 −1.12121 −0.560606 0.828083i \(-0.689432\pi\)
−0.560606 + 0.828083i \(0.689432\pi\)
\(32\) 0 0
\(33\) 0.585786i 0.101972i
\(34\) 0 0
\(35\) 9.36396 + 3.12132i 1.58280 + 0.527599i
\(36\) 0 0
\(37\) 8.48528i 1.39497i 0.716599 + 0.697486i \(0.245698\pi\)
−0.716599 + 0.697486i \(0.754302\pi\)
\(38\) 0 0
\(39\) −2.41421 −0.386584
\(40\) 0 0
\(41\) −4.24264 −0.662589 −0.331295 0.943527i \(-0.607485\pi\)
−0.331295 + 0.943527i \(0.607485\pi\)
\(42\) 0 0
\(43\) 1.75736i 0.267995i −0.990982 0.133997i \(-0.957219\pi\)
0.990982 0.133997i \(-0.0427814\pi\)
\(44\) 0 0
\(45\) 2.00000 6.00000i 0.298142 0.894427i
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −12.4853 −1.78361
\(50\) 0 0
\(51\) 0.414214 0.0580015
\(52\) 0 0
\(53\) 5.48528i 0.753461i 0.926323 + 0.376731i \(0.122952\pi\)
−0.926323 + 0.376731i \(0.877048\pi\)
\(54\) 0 0
\(55\) 1.00000 3.00000i 0.134840 0.404520i
\(56\) 0 0
\(57\) 0.414214i 0.0548639i
\(58\) 0 0
\(59\) 6.89949 0.898238 0.449119 0.893472i \(-0.351738\pi\)
0.449119 + 0.893472i \(0.351738\pi\)
\(60\) 0 0
\(61\) 14.2426 1.82358 0.911792 0.410653i \(-0.134699\pi\)
0.911792 + 0.410653i \(0.134699\pi\)
\(62\) 0 0
\(63\) 12.4853i 1.57300i
\(64\) 0 0
\(65\) 12.3640 + 4.12132i 1.53356 + 0.511187i
\(66\) 0 0
\(67\) 4.75736i 0.581204i 0.956844 + 0.290602i \(0.0938555\pi\)
−0.956844 + 0.290602i \(0.906144\pi\)
\(68\) 0 0
\(69\) 0.313708 0.0377661
\(70\) 0 0
\(71\) 13.4142 1.59197 0.795987 0.605314i \(-0.206952\pi\)
0.795987 + 0.605314i \(0.206952\pi\)
\(72\) 0 0
\(73\) 11.4853i 1.34425i 0.740437 + 0.672125i \(0.234618\pi\)
−0.740437 + 0.672125i \(0.765382\pi\)
\(74\) 0 0
\(75\) 1.24264 1.65685i 0.143488 0.191317i
\(76\) 0 0
\(77\) 6.24264i 0.711415i
\(78\) 0 0
\(79\) −6.48528 −0.729651 −0.364826 0.931076i \(-0.618871\pi\)
−0.364826 + 0.931076i \(0.618871\pi\)
\(80\) 0 0
\(81\) 7.48528 0.831698
\(82\) 0 0
\(83\) 14.4853i 1.58997i −0.606632 0.794983i \(-0.707480\pi\)
0.606632 0.794983i \(-0.292520\pi\)
\(84\) 0 0
\(85\) −2.12132 0.707107i −0.230089 0.0766965i
\(86\) 0 0
\(87\) 0.0710678i 0.00761927i
\(88\) 0 0
\(89\) −7.07107 −0.749532 −0.374766 0.927119i \(-0.622277\pi\)
−0.374766 + 0.927119i \(0.622277\pi\)
\(90\) 0 0
\(91\) −25.7279 −2.69702
\(92\) 0 0
\(93\) 2.58579i 0.268134i
\(94\) 0 0
\(95\) −0.707107 + 2.12132i −0.0725476 + 0.217643i
\(96\) 0 0
\(97\) 0.343146i 0.0348412i 0.999848 + 0.0174206i \(0.00554543\pi\)
−0.999848 + 0.0174206i \(0.994455\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) 13.0711 1.30062 0.650310 0.759669i \(-0.274639\pi\)
0.650310 + 0.759669i \(0.274639\pi\)
\(102\) 0 0
\(103\) 4.24264i 0.418040i −0.977911 0.209020i \(-0.932973\pi\)
0.977911 0.209020i \(-0.0670273\pi\)
\(104\) 0 0
\(105\) −1.29289 + 3.87868i −0.126173 + 0.378520i
\(106\) 0 0
\(107\) 19.7279i 1.90717i 0.301124 + 0.953585i \(0.402638\pi\)
−0.301124 + 0.953585i \(0.597362\pi\)
\(108\) 0 0
\(109\) 17.9706 1.72127 0.860634 0.509224i \(-0.170068\pi\)
0.860634 + 0.509224i \(0.170068\pi\)
\(110\) 0 0
\(111\) −3.51472 −0.333602
\(112\) 0 0
\(113\) 10.2426i 0.963547i −0.876296 0.481773i \(-0.839993\pi\)
0.876296 0.481773i \(-0.160007\pi\)
\(114\) 0 0
\(115\) −1.60660 0.535534i −0.149816 0.0499388i
\(116\) 0 0
\(117\) 16.4853i 1.52406i
\(118\) 0 0
\(119\) 4.41421 0.404650
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 0 0
\(123\) 1.75736i 0.158456i
\(124\) 0 0
\(125\) −9.19239 + 6.36396i −0.822192 + 0.569210i
\(126\) 0 0
\(127\) 2.48528i 0.220533i −0.993902 0.110267i \(-0.964830\pi\)
0.993902 0.110267i \(-0.0351704\pi\)
\(128\) 0 0
\(129\) 0.727922 0.0640900
\(130\) 0 0
\(131\) 16.9706 1.48272 0.741362 0.671105i \(-0.234180\pi\)
0.741362 + 0.671105i \(0.234180\pi\)
\(132\) 0 0
\(133\) 4.41421i 0.382761i
\(134\) 0 0
\(135\) 5.12132 + 1.70711i 0.440773 + 0.146924i
\(136\) 0 0
\(137\) 13.0000i 1.11066i −0.831628 0.555332i \(-0.812591\pi\)
0.831628 0.555332i \(-0.187409\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.24264i 0.689284i
\(144\) 0 0
\(145\) 0.121320 0.363961i 0.0100751 0.0302253i
\(146\) 0 0
\(147\) 5.17157i 0.426544i
\(148\) 0 0
\(149\) −17.6569 −1.44651 −0.723253 0.690583i \(-0.757354\pi\)
−0.723253 + 0.690583i \(0.757354\pi\)
\(150\) 0 0
\(151\) 10.4853 0.853280 0.426640 0.904422i \(-0.359697\pi\)
0.426640 + 0.904422i \(0.359697\pi\)
\(152\) 0 0
\(153\) 2.82843i 0.228665i
\(154\) 0 0
\(155\) −4.41421 + 13.2426i −0.354558 + 1.06367i
\(156\) 0 0
\(157\) 11.6569i 0.930318i −0.885227 0.465159i \(-0.845997\pi\)
0.885227 0.465159i \(-0.154003\pi\)
\(158\) 0 0
\(159\) −2.27208 −0.180188
\(160\) 0 0
\(161\) 3.34315 0.263477
\(162\) 0 0
\(163\) 10.2426i 0.802266i 0.916020 + 0.401133i \(0.131383\pi\)
−0.916020 + 0.401133i \(0.868617\pi\)
\(164\) 0 0
\(165\) 1.24264 + 0.414214i 0.0967394 + 0.0322465i
\(166\) 0 0
\(167\) 18.2426i 1.41166i −0.708382 0.705829i \(-0.750575\pi\)
0.708382 0.705829i \(-0.249425\pi\)
\(168\) 0 0
\(169\) −20.9706 −1.61312
\(170\) 0 0
\(171\) −2.82843 −0.216295
\(172\) 0 0
\(173\) 0.485281i 0.0368953i 0.999830 + 0.0184476i \(0.00587240\pi\)
−0.999830 + 0.0184476i \(0.994128\pi\)
\(174\) 0 0
\(175\) 13.2426 17.6569i 1.00105 1.33473i
\(176\) 0 0
\(177\) 2.85786i 0.214810i
\(178\) 0 0
\(179\) −11.6569 −0.871274 −0.435637 0.900122i \(-0.643477\pi\)
−0.435637 + 0.900122i \(0.643477\pi\)
\(180\) 0 0
\(181\) −8.48528 −0.630706 −0.315353 0.948974i \(-0.602123\pi\)
−0.315353 + 0.948974i \(0.602123\pi\)
\(182\) 0 0
\(183\) 5.89949i 0.436103i
\(184\) 0 0
\(185\) 18.0000 + 6.00000i 1.32339 + 0.441129i
\(186\) 0 0
\(187\) 1.41421i 0.103418i
\(188\) 0 0
\(189\) −10.6569 −0.775172
\(190\) 0 0
\(191\) −12.5563 −0.908546 −0.454273 0.890863i \(-0.650101\pi\)
−0.454273 + 0.890863i \(0.650101\pi\)
\(192\) 0 0
\(193\) 0.343146i 0.0247002i −0.999924 0.0123501i \(-0.996069\pi\)
0.999924 0.0123501i \(-0.00393125\pi\)
\(194\) 0 0
\(195\) −1.70711 + 5.12132i −0.122248 + 0.366745i
\(196\) 0 0
\(197\) 11.7574i 0.837677i 0.908061 + 0.418839i \(0.137563\pi\)
−0.908061 + 0.418839i \(0.862437\pi\)
\(198\) 0 0
\(199\) 9.24264 0.655193 0.327597 0.944818i \(-0.393761\pi\)
0.327597 + 0.944818i \(0.393761\pi\)
\(200\) 0 0
\(201\) −1.97056 −0.138993
\(202\) 0 0
\(203\) 0.757359i 0.0531562i
\(204\) 0 0
\(205\) −3.00000 + 9.00000i −0.209529 + 0.628587i
\(206\) 0 0
\(207\) 2.14214i 0.148889i
\(208\) 0 0
\(209\) −1.41421 −0.0978232
\(210\) 0 0
\(211\) 19.7279 1.35813 0.679063 0.734080i \(-0.262386\pi\)
0.679063 + 0.734080i \(0.262386\pi\)
\(212\) 0 0
\(213\) 5.55635i 0.380715i
\(214\) 0 0
\(215\) −3.72792 1.24264i −0.254242 0.0847474i
\(216\) 0 0
\(217\) 27.5563i 1.87065i
\(218\) 0 0
\(219\) −4.75736 −0.321473
\(220\) 0 0
\(221\) 5.82843 0.392062
\(222\) 0 0
\(223\) 15.1716i 1.01596i 0.861368 + 0.507982i \(0.169608\pi\)
−0.861368 + 0.507982i \(0.830392\pi\)
\(224\) 0 0
\(225\) −11.3137 8.48528i −0.754247 0.565685i
\(226\) 0 0
\(227\) 16.7574i 1.11223i −0.831107 0.556113i \(-0.812292\pi\)
0.831107 0.556113i \(-0.187708\pi\)
\(228\) 0 0
\(229\) −14.9706 −0.989283 −0.494641 0.869097i \(-0.664701\pi\)
−0.494641 + 0.869097i \(0.664701\pi\)
\(230\) 0 0
\(231\) −2.58579 −0.170132
\(232\) 0 0
\(233\) 24.9706i 1.63588i −0.575306 0.817938i \(-0.695117\pi\)
0.575306 0.817938i \(-0.304883\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2.68629i 0.174493i
\(238\) 0 0
\(239\) −6.89949 −0.446291 −0.223146 0.974785i \(-0.571633\pi\)
−0.223146 + 0.974785i \(0.571633\pi\)
\(240\) 0 0
\(241\) 8.97056 0.577845 0.288922 0.957353i \(-0.406703\pi\)
0.288922 + 0.957353i \(0.406703\pi\)
\(242\) 0 0
\(243\) 10.3431i 0.663513i
\(244\) 0 0
\(245\) −8.82843 + 26.4853i −0.564028 + 1.69208i
\(246\) 0 0
\(247\) 5.82843i 0.370854i
\(248\) 0 0
\(249\) 6.00000 0.380235
\(250\) 0 0
\(251\) −3.55635 −0.224475 −0.112237 0.993681i \(-0.535802\pi\)
−0.112237 + 0.993681i \(0.535802\pi\)
\(252\) 0 0
\(253\) 1.07107i 0.0673375i
\(254\) 0 0
\(255\) 0.292893 0.878680i 0.0183417 0.0550251i
\(256\) 0 0
\(257\) 20.7279i 1.29297i −0.762926 0.646486i \(-0.776238\pi\)
0.762926 0.646486i \(-0.223762\pi\)
\(258\) 0 0
\(259\) −37.4558 −2.32739
\(260\) 0 0
\(261\) 0.485281 0.0300382
\(262\) 0 0
\(263\) 26.9706i 1.66308i 0.555468 + 0.831538i \(0.312539\pi\)
−0.555468 + 0.831538i \(0.687461\pi\)
\(264\) 0 0
\(265\) 11.6360 + 3.87868i 0.714796 + 0.238265i
\(266\) 0 0
\(267\) 2.92893i 0.179248i
\(268\) 0 0
\(269\) 16.6274 1.01379 0.506896 0.862007i \(-0.330793\pi\)
0.506896 + 0.862007i \(0.330793\pi\)
\(270\) 0 0
\(271\) 27.2426 1.65487 0.827436 0.561560i \(-0.189798\pi\)
0.827436 + 0.561560i \(0.189798\pi\)
\(272\) 0 0
\(273\) 10.6569i 0.644982i
\(274\) 0 0
\(275\) −5.65685 4.24264i −0.341121 0.255841i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) −17.6569 −1.05709
\(280\) 0 0
\(281\) 4.24264 0.253095 0.126547 0.991961i \(-0.459610\pi\)
0.126547 + 0.991961i \(0.459610\pi\)
\(282\) 0 0
\(283\) 32.1421i 1.91065i −0.295555 0.955326i \(-0.595504\pi\)
0.295555 0.955326i \(-0.404496\pi\)
\(284\) 0 0
\(285\) −0.878680 0.292893i −0.0520485 0.0173495i
\(286\) 0 0
\(287\) 18.7279i 1.10547i
\(288\) 0 0
\(289\) 16.0000 0.941176
\(290\) 0 0
\(291\) −0.142136 −0.00833214
\(292\) 0 0
\(293\) 5.48528i 0.320454i −0.987080 0.160227i \(-0.948777\pi\)
0.987080 0.160227i \(-0.0512226\pi\)
\(294\) 0 0
\(295\) 4.87868 14.6360i 0.284048 0.852143i
\(296\) 0 0
\(297\) 3.41421i 0.198113i
\(298\) 0 0
\(299\) 4.41421 0.255281
\(300\) 0 0
\(301\) 7.75736 0.447127
\(302\) 0 0
\(303\) 5.41421i 0.311038i
\(304\) 0 0
\(305\) 10.0711 30.2132i 0.576668 1.73000i
\(306\) 0 0
\(307\) 17.6569i 1.00773i −0.863782 0.503865i \(-0.831911\pi\)
0.863782 0.503865i \(-0.168089\pi\)
\(308\) 0 0
\(309\) 1.75736 0.0999727
\(310\) 0 0
\(311\) 4.75736 0.269765 0.134883 0.990862i \(-0.456934\pi\)
0.134883 + 0.990862i \(0.456934\pi\)
\(312\) 0 0
\(313\) 7.97056i 0.450523i −0.974298 0.225261i \(-0.927676\pi\)
0.974298 0.225261i \(-0.0723236\pi\)
\(314\) 0 0
\(315\) 26.4853 + 8.82843i 1.49228 + 0.497426i
\(316\) 0 0
\(317\) 9.48528i 0.532746i 0.963870 + 0.266373i \(0.0858254\pi\)
−0.963870 + 0.266373i \(0.914175\pi\)
\(318\) 0 0
\(319\) 0.242641 0.0135853
\(320\) 0 0
\(321\) −8.17157 −0.456093
\(322\) 0 0
\(323\) 1.00000i 0.0556415i
\(324\) 0 0
\(325\) 17.4853 23.3137i 0.969909 1.29321i
\(326\) 0 0
\(327\) 7.44365i 0.411635i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 19.2426 1.05767 0.528836 0.848724i \(-0.322629\pi\)
0.528836 + 0.848724i \(0.322629\pi\)
\(332\) 0 0
\(333\) 24.0000i 1.31519i
\(334\) 0 0
\(335\) 10.0919 + 3.36396i 0.551378 + 0.183793i
\(336\) 0 0
\(337\) 14.1005i 0.768103i −0.923312 0.384052i \(-0.874528\pi\)
0.923312 0.384052i \(-0.125472\pi\)
\(338\) 0 0
\(339\) 4.24264 0.230429
\(340\) 0 0
\(341\) −8.82843 −0.478086
\(342\) 0 0
\(343\) 24.2132i 1.30739i
\(344\) 0 0
\(345\) 0.221825 0.665476i 0.0119427 0.0358280i
\(346\) 0 0
\(347\) 5.51472i 0.296046i −0.988984 0.148023i \(-0.952709\pi\)
0.988984 0.148023i \(-0.0472909\pi\)
\(348\) 0 0
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 0 0
\(351\) −14.0711 −0.751058
\(352\) 0 0
\(353\) 2.51472i 0.133845i −0.997758 0.0669225i \(-0.978682\pi\)
0.997758 0.0669225i \(-0.0213180\pi\)
\(354\) 0 0
\(355\) 9.48528 28.4558i 0.503426 1.51028i
\(356\) 0 0
\(357\) 1.82843i 0.0967706i
\(358\) 0 0
\(359\) −22.7574 −1.20109 −0.600544 0.799592i \(-0.705049\pi\)
−0.600544 + 0.799592i \(0.705049\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 3.72792i 0.195665i
\(364\) 0 0
\(365\) 24.3640 + 8.12132i 1.27527 + 0.425089i
\(366\) 0 0
\(367\) 25.4558i 1.32878i −0.747384 0.664392i \(-0.768691\pi\)
0.747384 0.664392i \(-0.231309\pi\)
\(368\) 0 0
\(369\) −12.0000 −0.624695
\(370\) 0 0
\(371\) −24.2132 −1.25709
\(372\) 0 0
\(373\) 9.00000i 0.466002i 0.972476 + 0.233001i \(0.0748546\pi\)
−0.972476 + 0.233001i \(0.925145\pi\)
\(374\) 0 0
\(375\) −2.63604 3.80761i −0.136124 0.196624i
\(376\) 0 0
\(377\) 1.00000i 0.0515026i
\(378\) 0 0
\(379\) 11.2426 0.577496 0.288748 0.957405i \(-0.406761\pi\)
0.288748 + 0.957405i \(0.406761\pi\)
\(380\) 0 0
\(381\) 1.02944 0.0527397
\(382\) 0 0
\(383\) 12.2426i 0.625570i −0.949824 0.312785i \(-0.898738\pi\)
0.949824 0.312785i \(-0.101262\pi\)
\(384\) 0 0
\(385\) 13.2426 + 4.41421i 0.674907 + 0.224969i
\(386\) 0 0
\(387\) 4.97056i 0.252668i
\(388\) 0 0
\(389\) −22.9289 −1.16254 −0.581272 0.813710i \(-0.697445\pi\)
−0.581272 + 0.813710i \(0.697445\pi\)
\(390\) 0 0
\(391\) −0.757359 −0.0383013
\(392\) 0 0
\(393\) 7.02944i 0.354588i
\(394\) 0 0
\(395\) −4.58579 + 13.7574i −0.230736 + 0.692208i
\(396\) 0 0
\(397\) 24.0000i 1.20453i −0.798298 0.602263i \(-0.794266\pi\)
0.798298 0.602263i \(-0.205734\pi\)
\(398\) 0 0
\(399\) 1.82843 0.0915358
\(400\) 0 0
\(401\) −25.4142 −1.26913 −0.634563 0.772871i \(-0.718820\pi\)
−0.634563 + 0.772871i \(0.718820\pi\)
\(402\) 0 0
\(403\) 36.3848i 1.81245i
\(404\) 0 0
\(405\) 5.29289 15.8787i 0.263006 0.789018i
\(406\) 0 0
\(407\) 12.0000i 0.594818i
\(408\) 0 0
\(409\) −25.2132 −1.24671 −0.623356 0.781938i \(-0.714231\pi\)
−0.623356 + 0.781938i \(0.714231\pi\)
\(410\) 0 0
\(411\) 5.38478 0.265611
\(412\) 0 0
\(413\) 30.4558i 1.49863i
\(414\) 0 0
\(415\) −30.7279 10.2426i −1.50837 0.502791i
\(416\) 0 0
\(417\) 4.97056i 0.243410i
\(418\) 0 0
\(419\) 19.4142 0.948446 0.474223 0.880405i \(-0.342729\pi\)
0.474223 + 0.880405i \(0.342729\pi\)
\(420\) 0 0
\(421\) 19.4853 0.949655 0.474827 0.880079i \(-0.342511\pi\)
0.474827 + 0.880079i \(0.342511\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.00000 + 4.00000i −0.145521 + 0.194029i
\(426\) 0 0
\(427\) 62.8701i 3.04250i
\(428\) 0 0
\(429\) −3.41421 −0.164840
\(430\) 0 0
\(431\) 6.38478 0.307544 0.153772 0.988106i \(-0.450858\pi\)
0.153772 + 0.988106i \(0.450858\pi\)
\(432\) 0 0
\(433\) 9.55635i 0.459249i −0.973279 0.229624i \(-0.926250\pi\)
0.973279 0.229624i \(-0.0737498\pi\)
\(434\) 0 0
\(435\) 0.150758 + 0.0502525i 0.00722827 + 0.00240942i
\(436\) 0 0
\(437\) 0.757359i 0.0362294i
\(438\) 0 0
\(439\) −5.75736 −0.274784 −0.137392 0.990517i \(-0.543872\pi\)
−0.137392 + 0.990517i \(0.543872\pi\)
\(440\) 0 0
\(441\) −35.3137 −1.68161
\(442\) 0 0
\(443\) 4.24264i 0.201574i −0.994908 0.100787i \(-0.967864\pi\)
0.994908 0.100787i \(-0.0321361\pi\)
\(444\) 0 0
\(445\) −5.00000 + 15.0000i −0.237023 + 0.711068i
\(446\) 0 0
\(447\) 7.31371i 0.345927i
\(448\) 0 0
\(449\) −17.3137 −0.817084 −0.408542 0.912739i \(-0.633963\pi\)
−0.408542 + 0.912739i \(0.633963\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 0 0
\(453\) 4.34315i 0.204059i
\(454\) 0 0
\(455\) −18.1924 + 54.5772i −0.852872 + 2.55862i
\(456\) 0 0
\(457\) 3.00000i 0.140334i 0.997535 + 0.0701670i \(0.0223532\pi\)
−0.997535 + 0.0701670i \(0.977647\pi\)
\(458\) 0 0
\(459\) 2.41421 0.112686
\(460\) 0 0
\(461\) −3.55635 −0.165636 −0.0828178 0.996565i \(-0.526392\pi\)
−0.0828178 + 0.996565i \(0.526392\pi\)
\(462\) 0 0
\(463\) 14.1421i 0.657241i −0.944462 0.328620i \(-0.893416\pi\)
0.944462 0.328620i \(-0.106584\pi\)
\(464\) 0 0
\(465\) −5.48528 1.82843i −0.254374 0.0847913i
\(466\) 0 0
\(467\) 0.727922i 0.0336842i 0.999858 + 0.0168421i \(0.00536126\pi\)
−0.999858 + 0.0168421i \(0.994639\pi\)
\(468\) 0 0
\(469\) −21.0000 −0.969690
\(470\) 0 0
\(471\) 4.82843 0.222482
\(472\) 0 0
\(473\) 2.48528i 0.114273i
\(474\) 0 0
\(475\) 4.00000 + 3.00000i 0.183533 + 0.137649i
\(476\) 0 0
\(477\) 15.5147i 0.710370i
\(478\) 0 0
\(479\) −31.1127 −1.42158 −0.710788 0.703407i \(-0.751661\pi\)
−0.710788 + 0.703407i \(0.751661\pi\)
\(480\) 0 0
\(481\) −49.4558 −2.25499
\(482\) 0 0
\(483\) 1.38478i 0.0630095i
\(484\) 0 0
\(485\) 0.727922 + 0.242641i 0.0330532 + 0.0110177i
\(486\) 0 0
\(487\) 37.7990i 1.71284i 0.516283 + 0.856418i \(0.327315\pi\)
−0.516283 + 0.856418i \(0.672685\pi\)
\(488\) 0 0
\(489\) −4.24264 −0.191859
\(490\) 0 0
\(491\) 33.5563 1.51438 0.757188 0.653197i \(-0.226572\pi\)
0.757188 + 0.653197i \(0.226572\pi\)
\(492\) 0 0
\(493\) 0.171573i 0.00772725i
\(494\) 0 0
\(495\) 2.82843 8.48528i 0.127128 0.381385i
\(496\) 0 0
\(497\) 59.2132i 2.65608i
\(498\) 0 0
\(499\) −25.7574 −1.15306 −0.576529 0.817077i \(-0.695593\pi\)
−0.576529 + 0.817077i \(0.695593\pi\)
\(500\) 0 0
\(501\) 7.55635 0.337593
\(502\) 0 0
\(503\) 14.2721i 0.636361i −0.948030 0.318180i \(-0.896928\pi\)
0.948030 0.318180i \(-0.103072\pi\)
\(504\) 0 0
\(505\) 9.24264 27.7279i 0.411292 1.23388i
\(506\) 0 0
\(507\) 8.68629i 0.385772i
\(508\) 0 0
\(509\) −28.9706 −1.28410 −0.642049 0.766664i \(-0.721915\pi\)
−0.642049 + 0.766664i \(0.721915\pi\)
\(510\) 0 0
\(511\) −50.6985 −2.24277
\(512\) 0 0
\(513\) 2.41421i 0.106590i
\(514\) 0 0
\(515\) −9.00000 3.00000i −0.396587 0.132196i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.201010 −0.00882337
\(520\) 0 0
\(521\) 23.3137 1.02139 0.510696 0.859761i \(-0.329388\pi\)
0.510696 + 0.859761i \(0.329388\pi\)
\(522\) 0 0
\(523\) 2.27208i 0.0993510i 0.998765 + 0.0496755i \(0.0158187\pi\)
−0.998765 + 0.0496755i \(0.984181\pi\)
\(524\) 0 0
\(525\) 7.31371 + 5.48528i 0.319196 + 0.239397i
\(526\) 0 0
\(527\) 6.24264i 0.271934i
\(528\) 0 0
\(529\) 22.4264 0.975061
\(530\) 0 0
\(531\) 19.5147 0.846867
\(532\) 0 0
\(533\) 24.7279i 1.07109i
\(534\) 0 0
\(535\) 41.8492 + 13.9497i 1.80930 + 0.603100i
\(536\) 0 0
\(537\) 4.82843i 0.208362i
\(538\) 0 0
\(539\) −17.6569 −0.760535
\(540\) 0 0
\(541\) 9.75736 0.419502 0.209751 0.977755i \(-0.432735\pi\)
0.209751 + 0.977755i \(0.432735\pi\)
\(542\) 0 0
\(543\) 3.51472i 0.150831i
\(544\) 0 0
\(545\) 12.7071 38.1213i 0.544313 1.63294i
\(546\) 0 0
\(547\) 17.3137i 0.740281i −0.928976 0.370140i \(-0.879310\pi\)
0.928976 0.370140i \(-0.120690\pi\)
\(548\) 0 0
\(549\) 40.2843 1.71929
\(550\) 0 0
\(551\) −0.171573 −0.00730925
\(552\) 0 0
\(553\) 28.6274i 1.21736i
\(554\) 0 0
\(555\) −2.48528 + 7.45584i −0.105494 + 0.316483i
\(556\) 0 0
\(557\) 16.0000i 0.677942i −0.940797 0.338971i \(-0.889921\pi\)
0.940797 0.338971i \(-0.110079\pi\)
\(558\) 0 0
\(559\) 10.2426 0.433218
\(560\) 0 0
\(561\) 0.585786 0.0247319
\(562\) 0 0
\(563\) 4.97056i 0.209484i −0.994499 0.104742i \(-0.966598\pi\)
0.994499 0.104742i \(-0.0334017\pi\)
\(564\) 0 0
\(565\) −21.7279 7.24264i −0.914101 0.304700i
\(566\) 0 0
\(567\) 33.0416i 1.38762i
\(568\) 0 0
\(569\) 28.2843 1.18574 0.592869 0.805299i \(-0.297995\pi\)
0.592869 + 0.805299i \(0.297995\pi\)
\(570\) 0 0
\(571\) 2.24264 0.0938516 0.0469258 0.998898i \(-0.485058\pi\)
0.0469258 + 0.998898i \(0.485058\pi\)
\(572\) 0 0
\(573\) 5.20101i 0.217275i
\(574\) 0 0
\(575\) −2.27208 + 3.02944i −0.0947522 + 0.126336i
\(576\) 0 0
\(577\) 20.3137i 0.845671i 0.906207 + 0.422835i \(0.138965\pi\)
−0.906207 + 0.422835i \(0.861035\pi\)
\(578\) 0 0
\(579\) 0.142136 0.00590695
\(580\) 0 0
\(581\) 63.9411 2.65272
\(582\) 0 0
\(583\) 7.75736i 0.321277i
\(584\) 0 0
\(585\) 34.9706 + 11.6569i 1.44585 + 0.481952i
\(586\) 0 0
\(587\) 30.2426i 1.24825i 0.781326 + 0.624124i \(0.214544\pi\)
−0.781326 + 0.624124i \(0.785456\pi\)
\(588\) 0 0
\(589\) 6.24264 0.257224
\(590\) 0 0
\(591\) −4.87006 −0.200327
\(592\) 0 0
\(593\) 22.0000i 0.903432i 0.892162 + 0.451716i \(0.149188\pi\)
−0.892162 + 0.451716i \(0.850812\pi\)
\(594\) 0 0
\(595\) 3.12132 9.36396i 0.127962 0.383885i
\(596\) 0 0
\(597\) 3.82843i 0.156687i
\(598\) 0 0
\(599\) −15.2132 −0.621595 −0.310797 0.950476i \(-0.600596\pi\)
−0.310797 + 0.950476i \(0.600596\pi\)
\(600\) 0 0
\(601\) −20.2426 −0.825715 −0.412857 0.910796i \(-0.635469\pi\)
−0.412857 + 0.910796i \(0.635469\pi\)
\(602\) 0 0
\(603\) 13.4558i 0.547964i
\(604\) 0 0
\(605\) −6.36396 + 19.0919i −0.258732 + 0.776195i
\(606\) 0 0
\(607\) 3.17157i 0.128730i 0.997926 + 0.0643651i \(0.0205022\pi\)
−0.997926 + 0.0643651i \(0.979498\pi\)
\(608\) 0 0
\(609\) −0.313708 −0.0127121
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 11.6985i 0.472497i −0.971693 0.236249i \(-0.924082\pi\)
0.971693 0.236249i \(-0.0759180\pi\)
\(614\) 0 0
\(615\) −3.72792 1.24264i −0.150324 0.0501081i
\(616\) 0 0
\(617\) 4.48528i 0.180571i 0.995916 + 0.0902853i \(0.0287779\pi\)
−0.995916 + 0.0902853i \(0.971222\pi\)
\(618\) 0 0
\(619\) 7.75736 0.311795 0.155897 0.987773i \(-0.450173\pi\)
0.155897 + 0.987773i \(0.450173\pi\)
\(620\) 0 0
\(621\) 1.82843 0.0733723
\(622\) 0 0
\(623\) 31.2132i 1.25053i
\(624\) 0 0
\(625\) 7.00000 + 24.0000i 0.280000 + 0.960000i
\(626\) 0 0
\(627\) 0.585786i 0.0233941i
\(628\) 0 0
\(629\) 8.48528 0.338330
\(630\) 0 0
\(631\) 38.9706 1.55139 0.775697 0.631106i \(-0.217399\pi\)
0.775697 + 0.631106i \(0.217399\pi\)
\(632\) 0 0
\(633\) 8.17157i 0.324791i
\(634\) 0 0
\(635\) −5.27208 1.75736i −0.209216 0.0697387i
\(636\) 0 0
\(637\) 72.7696i 2.88323i
\(638\) 0 0
\(639\) 37.9411 1.50093
\(640\) 0 0
\(641\) −18.0416 −0.712602 −0.356301 0.934371i \(-0.615962\pi\)
−0.356301 + 0.934371i \(0.615962\pi\)
\(642\) 0 0
\(643\) 14.4853i 0.571244i 0.958342 + 0.285622i \(0.0922001\pi\)
−0.958342 + 0.285622i \(0.907800\pi\)
\(644\) 0 0
\(645\) 0.514719 1.54416i 0.0202670 0.0608011i
\(646\) 0 0
\(647\) 18.7574i 0.737428i −0.929543 0.368714i \(-0.879798\pi\)
0.929543 0.368714i \(-0.120202\pi\)
\(648\) 0 0
\(649\) 9.75736 0.383010
\(650\) 0 0
\(651\) 11.4142 0.447358
\(652\) 0 0
\(653\) 28.9706i 1.13371i −0.823819 0.566853i \(-0.808161\pi\)
0.823819 0.566853i \(-0.191839\pi\)
\(654\) 0 0
\(655\) 12.0000 36.0000i 0.468879 1.40664i
\(656\) 0 0
\(657\) 32.4853i 1.26737i
\(658\) 0 0
\(659\) 18.8995 0.736220 0.368110 0.929782i \(-0.380005\pi\)
0.368110 + 0.929782i \(0.380005\pi\)
\(660\) 0 0
\(661\) −18.4558 −0.717849 −0.358925 0.933367i \(-0.616856\pi\)
−0.358925 + 0.933367i \(0.616856\pi\)
\(662\) 0 0
\(663\) 2.41421i 0.0937603i
\(664\) 0 0
\(665\) −9.36396 3.12132i −0.363119 0.121040i
\(666\) 0 0
\(667\) 0.129942i 0.00503139i
\(668\) 0 0
\(669\) −6.28427 −0.242964
\(670\) 0 0
\(671\) 20.1421 0.777579
\(672\) 0 0
\(673\) 12.0000i 0.462566i −0.972887 0.231283i \(-0.925708\pi\)
0.972887 0.231283i \(-0.0742923\pi\)
\(674\) 0 0
\(675\) 7.24264 9.65685i 0.278769 0.371692i
\(676\) 0 0
\(677\) 40.9411i 1.57350i 0.617275 + 0.786748i \(0.288237\pi\)
−0.617275 + 0.786748i \(0.711763\pi\)
\(678\) 0 0
\(679\) −1.51472 −0.0581296
\(680\) 0 0
\(681\) 6.94113 0.265985
\(682\) 0 0
\(683\) 12.0000i 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) 0 0
\(685\) −27.5772 9.19239i −1.05367 0.351223i
\(686\) 0 0
\(687\) 6.20101i 0.236583i
\(688\) 0 0
\(689\) −31.9706 −1.21798
\(690\) 0 0
\(691\) −22.4853 −0.855380 −0.427690 0.903925i \(-0.640673\pi\)
−0.427690 + 0.903925i \(0.640673\pi\)
\(692\) 0 0
\(693\) 17.6569i 0.670728i
\(694\) 0 0
\(695\) −8.48528 + 25.4558i −0.321865 + 0.965595i
\(696\) 0 0
\(697\) 4.24264i 0.160701i
\(698\) 0 0
\(699\) 10.3431 0.391214
\(700\) 0 0
\(701\) 16.9706 0.640969 0.320485 0.947254i \(-0.396154\pi\)
0.320485 + 0.947254i \(0.396154\pi\)
\(702\) 0 0
\(703\) 8.48528i 0.320028i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 57.6985i 2.16997i
\(708\) 0 0
\(709\) 34.0000 1.27690 0.638448 0.769665i \(-0.279577\pi\)
0.638448 + 0.769665i \(0.279577\pi\)
\(710\) 0 0
\(711\) −18.3431 −0.687922
\(712\) 0 0
\(713\) 4.72792i 0.177062i
\(714\) 0 0
\(715\) 17.4853 + 5.82843i 0.653912 + 0.217971i
\(716\) 0 0
\(717\) 2.85786i 0.106729i
\(718\) 0 0
\(719\) −5.10051 −0.190217 −0.0951084 0.995467i \(-0.530320\pi\)
−0.0951084 + 0.995467i \(0.530320\pi\)
\(720\) 0 0
\(721\) 18.7279 0.697464
\(722\) 0 0
\(723\) 3.71573i 0.138189i
\(724\) 0 0
\(725\) −0.686292 0.514719i −0.0254882 0.0191162i
\(726\) 0 0
\(727\) 9.72792i 0.360789i 0.983594 + 0.180394i \(0.0577374\pi\)
−0.983594 + 0.180394i \(0.942263\pi\)
\(728\) 0 0
\(729\) 18.1716 0.673021
\(730\) 0 0
\(731\) −1.75736 −0.0649983
\(732\) 0 0
\(733\) 12.0000i 0.443230i 0.975134 + 0.221615i \(0.0711328\pi\)
−0.975134 + 0.221615i \(0.928867\pi\)
\(734\) 0 0
\(735\) −10.9706 3.65685i −0.404655 0.134885i
\(736\) 0 0
\(737\) 6.72792i 0.247826i
\(738\) 0 0
\(739\) 1.27208 0.0467941 0.0233971 0.999726i \(-0.492552\pi\)
0.0233971 + 0.999726i \(0.492552\pi\)
\(740\) 0 0
\(741\) 2.41421 0.0886884
\(742\) 0 0
\(743\) 6.72792i 0.246824i −0.992356 0.123412i \(-0.960616\pi\)
0.992356 0.123412i \(-0.0393836\pi\)
\(744\) 0 0
\(745\) −12.4853 + 37.4558i −0.457425 + 1.37228i
\(746\) 0 0
\(747\) 40.9706i 1.49903i
\(748\) 0 0
\(749\) −87.0833 −3.18195
\(750\) 0 0
\(751\) 26.7279 0.975316 0.487658 0.873035i \(-0.337851\pi\)
0.487658 + 0.873035i \(0.337851\pi\)
\(752\) 0 0
\(753\) 1.47309i 0.0536823i
\(754\) 0 0
\(755\) 7.41421 22.2426i 0.269831 0.809493i
\(756\) 0 0
\(757\) 12.3431i 0.448619i −0.974518 0.224310i \(-0.927987\pi\)
0.974518 0.224310i \(-0.0720127\pi\)
\(758\) 0 0
\(759\) 0.443651 0.0161035
\(760\) 0 0
\(761\) 43.9706 1.59393 0.796966 0.604024i \(-0.206437\pi\)
0.796966 + 0.604024i \(0.206437\pi\)
\(762\) 0 0
\(763\) 79.3259i 2.87179i
\(764\) 0 0
\(765\) −6.00000 2.00000i −0.216930 0.0723102i
\(766\) 0 0
\(767\) 40.2132i 1.45201i
\(768\) 0 0
\(769\) 36.4558 1.31463 0.657316 0.753615i \(-0.271692\pi\)
0.657316 + 0.753615i \(0.271692\pi\)
\(770\) 0 0
\(771\) 8.58579 0.309210
\(772\) 0 0
\(773\) 13.9706i 0.502486i 0.967924 + 0.251243i \(0.0808394\pi\)
−0.967924 + 0.251243i \(0.919161\pi\)
\(774\) 0 0
\(775\) 24.9706 + 18.7279i 0.896969 + 0.672727i
\(776\) 0 0
\(777\) 15.5147i 0.556587i
\(778\) 0 0
\(779\) 4.24264 0.152008
\(780\) 0 0
\(781\) 18.9706 0.678820
\(782\) 0 0
\(783\) 0.414214i 0.0148028i
\(784\) 0 0
\(785\) −24.7279 8.24264i −0.882577 0.294192i
\(786\) 0 0
\(787\) 41.1838i 1.46804i −0.679126 0.734021i \(-0.737641\pi\)
0.679126 0.734021i \(-0.262359\pi\)
\(788\) 0 0
\(789\) −11.1716 −0.397719
\(790\) 0 0
\(791\) 45.2132 1.60760
\(792\) 0 0
\(793\) 83.0122i 2.94785i
\(794\) 0 0
\(795\) −1.60660 + 4.81981i −0.0569803 + 0.170941i
\(796\) 0 0
\(797\) 47.4853i