Properties

Label 1520.2.d.e.609.1
Level $1520$
Weight $2$
Character 1520.609
Analytic conductor $12.137$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1520,2,Mod(609,1520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1520.609");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1372611072\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 190)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 609.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1520.609
Dual form 1520.2.d.e.609.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.41421i q^{3} +(-0.707107 + 2.12132i) q^{5} +1.58579i q^{7} -2.82843 q^{9} +O(q^{10})\) \(q-2.41421i q^{3} +(-0.707107 + 2.12132i) q^{5} +1.58579i q^{7} -2.82843 q^{9} -1.41421 q^{11} +0.171573i q^{13} +(5.12132 + 1.70711i) q^{15} -1.00000i q^{17} -1.00000 q^{19} +3.82843 q^{21} -9.24264i q^{23} +(-4.00000 - 3.00000i) q^{25} -0.414214i q^{27} +5.82843 q^{29} +2.24264 q^{31} +3.41421i q^{33} +(-3.36396 - 1.12132i) q^{35} -8.48528i q^{37} +0.414214 q^{39} +4.24264 q^{41} -10.2426i q^{43} +(2.00000 - 6.00000i) q^{45} +4.48528 q^{49} -2.41421 q^{51} -11.4853i q^{53} +(1.00000 - 3.00000i) q^{55} +2.41421i q^{57} -12.8995 q^{59} +5.75736 q^{61} -4.48528i q^{63} +(-0.363961 - 0.121320i) q^{65} +13.2426i q^{67} -22.3137 q^{69} +10.5858 q^{71} -5.48528i q^{73} +(-7.24264 + 9.65685i) q^{75} -2.24264i q^{77} +10.4853 q^{79} -9.48528 q^{81} +2.48528i q^{83} +(2.12132 + 0.707107i) q^{85} -14.0711i q^{87} +7.07107 q^{89} -0.272078 q^{91} -5.41421i q^{93} +(0.707107 - 2.12132i) q^{95} +11.6569i q^{97} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 12 q^{15} - 4 q^{19} + 4 q^{21} - 16 q^{25} + 12 q^{29} - 8 q^{31} + 12 q^{35} - 4 q^{39} + 8 q^{45} - 16 q^{49} - 4 q^{51} + 4 q^{55} - 12 q^{59} + 40 q^{61} + 24 q^{65} - 44 q^{69} + 48 q^{71} - 12 q^{75} + 8 q^{79} - 4 q^{81} - 52 q^{91} + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.41421i 1.39385i −0.717146 0.696923i \(-0.754552\pi\)
0.717146 0.696923i \(-0.245448\pi\)
\(4\) 0 0
\(5\) −0.707107 + 2.12132i −0.316228 + 0.948683i
\(6\) 0 0
\(7\) 1.58579i 0.599371i 0.954038 + 0.299685i \(0.0968817\pi\)
−0.954038 + 0.299685i \(0.903118\pi\)
\(8\) 0 0
\(9\) −2.82843 −0.942809
\(10\) 0 0
\(11\) −1.41421 −0.426401 −0.213201 0.977008i \(-0.568389\pi\)
−0.213201 + 0.977008i \(0.568389\pi\)
\(12\) 0 0
\(13\) 0.171573i 0.0475858i 0.999717 + 0.0237929i \(0.00757422\pi\)
−0.999717 + 0.0237929i \(0.992426\pi\)
\(14\) 0 0
\(15\) 5.12132 + 1.70711i 1.32232 + 0.440773i
\(16\) 0 0
\(17\) 1.00000i 0.242536i −0.992620 0.121268i \(-0.961304\pi\)
0.992620 0.121268i \(-0.0386960\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 3.82843 0.835431
\(22\) 0 0
\(23\) 9.24264i 1.92722i −0.267305 0.963612i \(-0.586133\pi\)
0.267305 0.963612i \(-0.413867\pi\)
\(24\) 0 0
\(25\) −4.00000 3.00000i −0.800000 0.600000i
\(26\) 0 0
\(27\) 0.414214i 0.0797154i
\(28\) 0 0
\(29\) 5.82843 1.08231 0.541156 0.840922i \(-0.317987\pi\)
0.541156 + 0.840922i \(0.317987\pi\)
\(30\) 0 0
\(31\) 2.24264 0.402790 0.201395 0.979510i \(-0.435452\pi\)
0.201395 + 0.979510i \(0.435452\pi\)
\(32\) 0 0
\(33\) 3.41421i 0.594338i
\(34\) 0 0
\(35\) −3.36396 1.12132i −0.568613 0.189538i
\(36\) 0 0
\(37\) 8.48528i 1.39497i −0.716599 0.697486i \(-0.754302\pi\)
0.716599 0.697486i \(-0.245698\pi\)
\(38\) 0 0
\(39\) 0.414214 0.0663273
\(40\) 0 0
\(41\) 4.24264 0.662589 0.331295 0.943527i \(-0.392515\pi\)
0.331295 + 0.943527i \(0.392515\pi\)
\(42\) 0 0
\(43\) 10.2426i 1.56199i −0.624538 0.780994i \(-0.714713\pi\)
0.624538 0.780994i \(-0.285287\pi\)
\(44\) 0 0
\(45\) 2.00000 6.00000i 0.298142 0.894427i
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 4.48528 0.640754
\(50\) 0 0
\(51\) −2.41421 −0.338058
\(52\) 0 0
\(53\) 11.4853i 1.57762i −0.614634 0.788812i \(-0.710696\pi\)
0.614634 0.788812i \(-0.289304\pi\)
\(54\) 0 0
\(55\) 1.00000 3.00000i 0.134840 0.404520i
\(56\) 0 0
\(57\) 2.41421i 0.319770i
\(58\) 0 0
\(59\) −12.8995 −1.67937 −0.839686 0.543073i \(-0.817261\pi\)
−0.839686 + 0.543073i \(0.817261\pi\)
\(60\) 0 0
\(61\) 5.75736 0.737154 0.368577 0.929597i \(-0.379845\pi\)
0.368577 + 0.929597i \(0.379845\pi\)
\(62\) 0 0
\(63\) 4.48528i 0.565092i
\(64\) 0 0
\(65\) −0.363961 0.121320i −0.0451438 0.0150479i
\(66\) 0 0
\(67\) 13.2426i 1.61785i 0.587915 + 0.808923i \(0.299949\pi\)
−0.587915 + 0.808923i \(0.700051\pi\)
\(68\) 0 0
\(69\) −22.3137 −2.68625
\(70\) 0 0
\(71\) 10.5858 1.25630 0.628151 0.778092i \(-0.283812\pi\)
0.628151 + 0.778092i \(0.283812\pi\)
\(72\) 0 0
\(73\) 5.48528i 0.642004i −0.947079 0.321002i \(-0.895980\pi\)
0.947079 0.321002i \(-0.104020\pi\)
\(74\) 0 0
\(75\) −7.24264 + 9.65685i −0.836308 + 1.11508i
\(76\) 0 0
\(77\) 2.24264i 0.255573i
\(78\) 0 0
\(79\) 10.4853 1.17969 0.589843 0.807518i \(-0.299190\pi\)
0.589843 + 0.807518i \(0.299190\pi\)
\(80\) 0 0
\(81\) −9.48528 −1.05392
\(82\) 0 0
\(83\) 2.48528i 0.272795i 0.990654 + 0.136398i \(0.0435524\pi\)
−0.990654 + 0.136398i \(0.956448\pi\)
\(84\) 0 0
\(85\) 2.12132 + 0.707107i 0.230089 + 0.0766965i
\(86\) 0 0
\(87\) 14.0711i 1.50858i
\(88\) 0 0
\(89\) 7.07107 0.749532 0.374766 0.927119i \(-0.377723\pi\)
0.374766 + 0.927119i \(0.377723\pi\)
\(90\) 0 0
\(91\) −0.272078 −0.0285215
\(92\) 0 0
\(93\) 5.41421i 0.561428i
\(94\) 0 0
\(95\) 0.707107 2.12132i 0.0725476 0.217643i
\(96\) 0 0
\(97\) 11.6569i 1.18357i 0.806094 + 0.591787i \(0.201577\pi\)
−0.806094 + 0.591787i \(0.798423\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) −1.07107 −0.106575 −0.0532876 0.998579i \(-0.516970\pi\)
−0.0532876 + 0.998579i \(0.516970\pi\)
\(102\) 0 0
\(103\) 4.24264i 0.418040i 0.977911 + 0.209020i \(0.0670273\pi\)
−0.977911 + 0.209020i \(0.932973\pi\)
\(104\) 0 0
\(105\) −2.70711 + 8.12132i −0.264187 + 0.792560i
\(106\) 0 0
\(107\) 5.72792i 0.553739i −0.960908 0.276870i \(-0.910703\pi\)
0.960908 0.276870i \(-0.0892970\pi\)
\(108\) 0 0
\(109\) −15.9706 −1.52970 −0.764851 0.644207i \(-0.777188\pi\)
−0.764851 + 0.644207i \(0.777188\pi\)
\(110\) 0 0
\(111\) −20.4853 −1.94438
\(112\) 0 0
\(113\) 1.75736i 0.165318i −0.996578 0.0826592i \(-0.973659\pi\)
0.996578 0.0826592i \(-0.0263413\pi\)
\(114\) 0 0
\(115\) 19.6066 + 6.53553i 1.82833 + 0.609442i
\(116\) 0 0
\(117\) 0.485281i 0.0448643i
\(118\) 0 0
\(119\) 1.58579 0.145369
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 0 0
\(123\) 10.2426i 0.923548i
\(124\) 0 0
\(125\) 9.19239 6.36396i 0.822192 0.569210i
\(126\) 0 0
\(127\) 14.4853i 1.28536i 0.766134 + 0.642680i \(0.222178\pi\)
−0.766134 + 0.642680i \(0.777822\pi\)
\(128\) 0 0
\(129\) −24.7279 −2.17717
\(130\) 0 0
\(131\) −16.9706 −1.48272 −0.741362 0.671105i \(-0.765820\pi\)
−0.741362 + 0.671105i \(0.765820\pi\)
\(132\) 0 0
\(133\) 1.58579i 0.137505i
\(134\) 0 0
\(135\) 0.878680 + 0.292893i 0.0756247 + 0.0252082i
\(136\) 0 0
\(137\) 13.0000i 1.11066i −0.831628 0.555332i \(-0.812591\pi\)
0.831628 0.555332i \(-0.187409\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.242641i 0.0202906i
\(144\) 0 0
\(145\) −4.12132 + 12.3640i −0.342257 + 1.02677i
\(146\) 0 0
\(147\) 10.8284i 0.893114i
\(148\) 0 0
\(149\) −6.34315 −0.519651 −0.259825 0.965656i \(-0.583665\pi\)
−0.259825 + 0.965656i \(0.583665\pi\)
\(150\) 0 0
\(151\) −6.48528 −0.527765 −0.263882 0.964555i \(-0.585003\pi\)
−0.263882 + 0.964555i \(0.585003\pi\)
\(152\) 0 0
\(153\) 2.82843i 0.228665i
\(154\) 0 0
\(155\) −1.58579 + 4.75736i −0.127373 + 0.382120i
\(156\) 0 0
\(157\) 0.343146i 0.0273860i −0.999906 0.0136930i \(-0.995641\pi\)
0.999906 0.0136930i \(-0.00435876\pi\)
\(158\) 0 0
\(159\) −27.7279 −2.19897
\(160\) 0 0
\(161\) 14.6569 1.15512
\(162\) 0 0
\(163\) 1.75736i 0.137647i 0.997629 + 0.0688235i \(0.0219245\pi\)
−0.997629 + 0.0688235i \(0.978075\pi\)
\(164\) 0 0
\(165\) −7.24264 2.41421i −0.563839 0.187946i
\(166\) 0 0
\(167\) 9.75736i 0.755047i −0.926000 0.377524i \(-0.876776\pi\)
0.926000 0.377524i \(-0.123224\pi\)
\(168\) 0 0
\(169\) 12.9706 0.997736
\(170\) 0 0
\(171\) 2.82843 0.216295
\(172\) 0 0
\(173\) 16.4853i 1.25335i −0.779280 0.626676i \(-0.784415\pi\)
0.779280 0.626676i \(-0.215585\pi\)
\(174\) 0 0
\(175\) 4.75736 6.34315i 0.359623 0.479497i
\(176\) 0 0
\(177\) 31.1421i 2.34079i
\(178\) 0 0
\(179\) −0.343146 −0.0256479 −0.0128240 0.999918i \(-0.504082\pi\)
−0.0128240 + 0.999918i \(0.504082\pi\)
\(180\) 0 0
\(181\) 8.48528 0.630706 0.315353 0.948974i \(-0.397877\pi\)
0.315353 + 0.948974i \(0.397877\pi\)
\(182\) 0 0
\(183\) 13.8995i 1.02748i
\(184\) 0 0
\(185\) 18.0000 + 6.00000i 1.32339 + 0.441129i
\(186\) 0 0
\(187\) 1.41421i 0.103418i
\(188\) 0 0
\(189\) 0.656854 0.0477791
\(190\) 0 0
\(191\) 18.5563 1.34269 0.671345 0.741145i \(-0.265717\pi\)
0.671345 + 0.741145i \(0.265717\pi\)
\(192\) 0 0
\(193\) 11.6569i 0.839079i −0.907737 0.419539i \(-0.862192\pi\)
0.907737 0.419539i \(-0.137808\pi\)
\(194\) 0 0
\(195\) −0.292893 + 0.878680i −0.0209745 + 0.0629236i
\(196\) 0 0
\(197\) 20.2426i 1.44223i 0.692816 + 0.721114i \(0.256370\pi\)
−0.692816 + 0.721114i \(0.743630\pi\)
\(198\) 0 0
\(199\) 0.757359 0.0536878 0.0268439 0.999640i \(-0.491454\pi\)
0.0268439 + 0.999640i \(0.491454\pi\)
\(200\) 0 0
\(201\) 31.9706 2.25503
\(202\) 0 0
\(203\) 9.24264i 0.648706i
\(204\) 0 0
\(205\) −3.00000 + 9.00000i −0.209529 + 0.628587i
\(206\) 0 0
\(207\) 26.1421i 1.81700i
\(208\) 0 0
\(209\) 1.41421 0.0978232
\(210\) 0 0
\(211\) −5.72792 −0.394326 −0.197163 0.980371i \(-0.563173\pi\)
−0.197163 + 0.980371i \(0.563173\pi\)
\(212\) 0 0
\(213\) 25.5563i 1.75109i
\(214\) 0 0
\(215\) 21.7279 + 7.24264i 1.48183 + 0.493944i
\(216\) 0 0
\(217\) 3.55635i 0.241421i
\(218\) 0 0
\(219\) −13.2426 −0.894855
\(220\) 0 0
\(221\) 0.171573 0.0115412
\(222\) 0 0
\(223\) 20.8284i 1.39477i 0.716694 + 0.697387i \(0.245654\pi\)
−0.716694 + 0.697387i \(0.754346\pi\)
\(224\) 0 0
\(225\) 11.3137 + 8.48528i 0.754247 + 0.565685i
\(226\) 0 0
\(227\) 25.2426i 1.67541i −0.546121 0.837706i \(-0.683896\pi\)
0.546121 0.837706i \(-0.316104\pi\)
\(228\) 0 0
\(229\) 18.9706 1.25361 0.626805 0.779176i \(-0.284362\pi\)
0.626805 + 0.779176i \(0.284362\pi\)
\(230\) 0 0
\(231\) −5.41421 −0.356229
\(232\) 0 0
\(233\) 8.97056i 0.587681i 0.955854 + 0.293841i \(0.0949335\pi\)
−0.955854 + 0.293841i \(0.905067\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 25.3137i 1.64430i
\(238\) 0 0
\(239\) 12.8995 0.834399 0.417199 0.908815i \(-0.363012\pi\)
0.417199 + 0.908815i \(0.363012\pi\)
\(240\) 0 0
\(241\) −24.9706 −1.60850 −0.804248 0.594294i \(-0.797431\pi\)
−0.804248 + 0.594294i \(0.797431\pi\)
\(242\) 0 0
\(243\) 21.6569i 1.38929i
\(244\) 0 0
\(245\) −3.17157 + 9.51472i −0.202624 + 0.607873i
\(246\) 0 0
\(247\) 0.171573i 0.0109169i
\(248\) 0 0
\(249\) 6.00000 0.380235
\(250\) 0 0
\(251\) 27.5563 1.73934 0.869671 0.493632i \(-0.164331\pi\)
0.869671 + 0.493632i \(0.164331\pi\)
\(252\) 0 0
\(253\) 13.0711i 0.821771i
\(254\) 0 0
\(255\) 1.70711 5.12132i 0.106903 0.320710i
\(256\) 0 0
\(257\) 4.72792i 0.294920i 0.989068 + 0.147460i \(0.0471097\pi\)
−0.989068 + 0.147460i \(0.952890\pi\)
\(258\) 0 0
\(259\) 13.4558 0.836105
\(260\) 0 0
\(261\) −16.4853 −1.02041
\(262\) 0 0
\(263\) 6.97056i 0.429823i −0.976633 0.214912i \(-0.931054\pi\)
0.976633 0.214912i \(-0.0689464\pi\)
\(264\) 0 0
\(265\) 24.3640 + 8.12132i 1.49667 + 0.498889i
\(266\) 0 0
\(267\) 17.0711i 1.04473i
\(268\) 0 0
\(269\) −28.6274 −1.74544 −0.872722 0.488217i \(-0.837647\pi\)
−0.872722 + 0.488217i \(0.837647\pi\)
\(270\) 0 0
\(271\) 18.7574 1.13943 0.569714 0.821843i \(-0.307054\pi\)
0.569714 + 0.821843i \(0.307054\pi\)
\(272\) 0 0
\(273\) 0.656854i 0.0397546i
\(274\) 0 0
\(275\) 5.65685 + 4.24264i 0.341121 + 0.255841i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) −6.34315 −0.379754
\(280\) 0 0
\(281\) −4.24264 −0.253095 −0.126547 0.991961i \(-0.540390\pi\)
−0.126547 + 0.991961i \(0.540390\pi\)
\(282\) 0 0
\(283\) 3.85786i 0.229326i −0.993404 0.114663i \(-0.963421\pi\)
0.993404 0.114663i \(-0.0365789\pi\)
\(284\) 0 0
\(285\) −5.12132 1.70711i −0.303361 0.101120i
\(286\) 0 0
\(287\) 6.72792i 0.397137i
\(288\) 0 0
\(289\) 16.0000 0.941176
\(290\) 0 0
\(291\) 28.1421 1.64972
\(292\) 0 0
\(293\) 11.4853i 0.670977i 0.942044 + 0.335489i \(0.108901\pi\)
−0.942044 + 0.335489i \(0.891099\pi\)
\(294\) 0 0
\(295\) 9.12132 27.3640i 0.531064 1.59319i
\(296\) 0 0
\(297\) 0.585786i 0.0339908i
\(298\) 0 0
\(299\) 1.58579 0.0917084
\(300\) 0 0
\(301\) 16.2426 0.936210
\(302\) 0 0
\(303\) 2.58579i 0.148550i
\(304\) 0 0
\(305\) −4.07107 + 12.2132i −0.233109 + 0.699326i
\(306\) 0 0
\(307\) 6.34315i 0.362022i −0.983481 0.181011i \(-0.942063\pi\)
0.983481 0.181011i \(-0.0579370\pi\)
\(308\) 0 0
\(309\) 10.2426 0.582683
\(310\) 0 0
\(311\) 13.2426 0.750921 0.375461 0.926838i \(-0.377485\pi\)
0.375461 + 0.926838i \(0.377485\pi\)
\(312\) 0 0
\(313\) 25.9706i 1.46794i 0.679180 + 0.733971i \(0.262335\pi\)
−0.679180 + 0.733971i \(0.737665\pi\)
\(314\) 0 0
\(315\) 9.51472 + 3.17157i 0.536094 + 0.178698i
\(316\) 0 0
\(317\) 7.48528i 0.420415i −0.977657 0.210208i \(-0.932586\pi\)
0.977657 0.210208i \(-0.0674140\pi\)
\(318\) 0 0
\(319\) −8.24264 −0.461499
\(320\) 0 0
\(321\) −13.8284 −0.771828
\(322\) 0 0
\(323\) 1.00000i 0.0556415i
\(324\) 0 0
\(325\) 0.514719 0.686292i 0.0285515 0.0380686i
\(326\) 0 0
\(327\) 38.5563i 2.13217i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 10.7574 0.591278 0.295639 0.955300i \(-0.404467\pi\)
0.295639 + 0.955300i \(0.404467\pi\)
\(332\) 0 0
\(333\) 24.0000i 1.31519i
\(334\) 0 0
\(335\) −28.0919 9.36396i −1.53482 0.511608i
\(336\) 0 0
\(337\) 33.8995i 1.84662i −0.384052 0.923312i \(-0.625472\pi\)
0.384052 0.923312i \(-0.374528\pi\)
\(338\) 0 0
\(339\) −4.24264 −0.230429
\(340\) 0 0
\(341\) −3.17157 −0.171750
\(342\) 0 0
\(343\) 18.2132i 0.983421i
\(344\) 0 0
\(345\) 15.7782 47.3345i 0.849468 2.54841i
\(346\) 0 0
\(347\) 22.4853i 1.20707i −0.797335 0.603537i \(-0.793758\pi\)
0.797335 0.603537i \(-0.206242\pi\)
\(348\) 0 0
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 0 0
\(351\) 0.0710678 0.00379332
\(352\) 0 0
\(353\) 19.4853i 1.03710i −0.855048 0.518548i \(-0.826473\pi\)
0.855048 0.518548i \(-0.173527\pi\)
\(354\) 0 0
\(355\) −7.48528 + 22.4558i −0.397277 + 1.19183i
\(356\) 0 0
\(357\) 3.82843i 0.202622i
\(358\) 0 0
\(359\) −31.2426 −1.64892 −0.824462 0.565918i \(-0.808522\pi\)
−0.824462 + 0.565918i \(0.808522\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 21.7279i 1.14042i
\(364\) 0 0
\(365\) 11.6360 + 3.87868i 0.609058 + 0.203019i
\(366\) 0 0
\(367\) 25.4558i 1.32878i 0.747384 + 0.664392i \(0.231309\pi\)
−0.747384 + 0.664392i \(0.768691\pi\)
\(368\) 0 0
\(369\) −12.0000 −0.624695
\(370\) 0 0
\(371\) 18.2132 0.945582
\(372\) 0 0
\(373\) 9.00000i 0.466002i 0.972476 + 0.233001i \(0.0748546\pi\)
−0.972476 + 0.233001i \(0.925145\pi\)
\(374\) 0 0
\(375\) −15.3640 22.1924i −0.793392 1.14601i
\(376\) 0 0
\(377\) 1.00000i 0.0515026i
\(378\) 0 0
\(379\) 2.75736 0.141636 0.0708180 0.997489i \(-0.477439\pi\)
0.0708180 + 0.997489i \(0.477439\pi\)
\(380\) 0 0
\(381\) 34.9706 1.79160
\(382\) 0 0
\(383\) 3.75736i 0.191992i −0.995382 0.0959960i \(-0.969396\pi\)
0.995382 0.0959960i \(-0.0306036\pi\)
\(384\) 0 0
\(385\) 4.75736 + 1.58579i 0.242457 + 0.0808192i
\(386\) 0 0
\(387\) 28.9706i 1.47266i
\(388\) 0 0
\(389\) −37.0711 −1.87958 −0.939789 0.341756i \(-0.888979\pi\)
−0.939789 + 0.341756i \(0.888979\pi\)
\(390\) 0 0
\(391\) −9.24264 −0.467420
\(392\) 0 0
\(393\) 40.9706i 2.06669i
\(394\) 0 0
\(395\) −7.41421 + 22.2426i −0.373050 + 1.11915i
\(396\) 0 0
\(397\) 24.0000i 1.20453i −0.798298 0.602263i \(-0.794266\pi\)
0.798298 0.602263i \(-0.205734\pi\)
\(398\) 0 0
\(399\) −3.82843 −0.191661
\(400\) 0 0
\(401\) −22.5858 −1.12788 −0.563940 0.825816i \(-0.690715\pi\)
−0.563940 + 0.825816i \(0.690715\pi\)
\(402\) 0 0
\(403\) 0.384776i 0.0191671i
\(404\) 0 0
\(405\) 6.70711 20.1213i 0.333279 0.999836i
\(406\) 0 0
\(407\) 12.0000i 0.594818i
\(408\) 0 0
\(409\) 17.2132 0.851138 0.425569 0.904926i \(-0.360074\pi\)
0.425569 + 0.904926i \(0.360074\pi\)
\(410\) 0 0
\(411\) −31.3848 −1.54810
\(412\) 0 0
\(413\) 20.4558i 1.00657i
\(414\) 0 0
\(415\) −5.27208 1.75736i −0.258796 0.0862654i
\(416\) 0 0
\(417\) 28.9706i 1.41869i
\(418\) 0 0
\(419\) 16.5858 0.810269 0.405134 0.914257i \(-0.367225\pi\)
0.405134 + 0.914257i \(0.367225\pi\)
\(420\) 0 0
\(421\) 2.51472 0.122560 0.0612799 0.998121i \(-0.480482\pi\)
0.0612799 + 0.998121i \(0.480482\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.00000 + 4.00000i −0.145521 + 0.194029i
\(426\) 0 0
\(427\) 9.12994i 0.441829i
\(428\) 0 0
\(429\) −0.585786 −0.0282820
\(430\) 0 0
\(431\) −30.3848 −1.46358 −0.731792 0.681528i \(-0.761316\pi\)
−0.731792 + 0.681528i \(0.761316\pi\)
\(432\) 0 0
\(433\) 21.5563i 1.03593i 0.855401 + 0.517966i \(0.173311\pi\)
−0.855401 + 0.517966i \(0.826689\pi\)
\(434\) 0 0
\(435\) 29.8492 + 9.94975i 1.43116 + 0.477054i
\(436\) 0 0
\(437\) 9.24264i 0.442135i
\(438\) 0 0
\(439\) −14.2426 −0.679764 −0.339882 0.940468i \(-0.610387\pi\)
−0.339882 + 0.940468i \(0.610387\pi\)
\(440\) 0 0
\(441\) −12.6863 −0.604109
\(442\) 0 0
\(443\) 4.24264i 0.201574i 0.994908 + 0.100787i \(0.0321361\pi\)
−0.994908 + 0.100787i \(0.967864\pi\)
\(444\) 0 0
\(445\) −5.00000 + 15.0000i −0.237023 + 0.711068i
\(446\) 0 0
\(447\) 15.3137i 0.724314i
\(448\) 0 0
\(449\) 5.31371 0.250769 0.125385 0.992108i \(-0.459983\pi\)
0.125385 + 0.992108i \(0.459983\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 0 0
\(453\) 15.6569i 0.735623i
\(454\) 0 0
\(455\) 0.192388 0.577164i 0.00901930 0.0270579i
\(456\) 0 0
\(457\) 3.00000i 0.140334i 0.997535 + 0.0701670i \(0.0223532\pi\)
−0.997535 + 0.0701670i \(0.977647\pi\)
\(458\) 0 0
\(459\) −0.414214 −0.0193338
\(460\) 0 0
\(461\) 27.5563 1.28343 0.641714 0.766944i \(-0.278224\pi\)
0.641714 + 0.766944i \(0.278224\pi\)
\(462\) 0 0
\(463\) 14.1421i 0.657241i 0.944462 + 0.328620i \(0.106584\pi\)
−0.944462 + 0.328620i \(0.893416\pi\)
\(464\) 0 0
\(465\) 11.4853 + 3.82843i 0.532617 + 0.177539i
\(466\) 0 0
\(467\) 24.7279i 1.14427i −0.820159 0.572136i \(-0.806115\pi\)
0.820159 0.572136i \(-0.193885\pi\)
\(468\) 0 0
\(469\) −21.0000 −0.969690
\(470\) 0 0
\(471\) −0.828427 −0.0381719
\(472\) 0 0
\(473\) 14.4853i 0.666034i
\(474\) 0 0
\(475\) 4.00000 + 3.00000i 0.183533 + 0.137649i
\(476\) 0 0
\(477\) 32.4853i 1.48740i
\(478\) 0 0
\(479\) 31.1127 1.42158 0.710788 0.703407i \(-0.248339\pi\)
0.710788 + 0.703407i \(0.248339\pi\)
\(480\) 0 0
\(481\) 1.45584 0.0663808
\(482\) 0 0
\(483\) 35.3848i 1.61006i
\(484\) 0 0
\(485\) −24.7279 8.24264i −1.12284 0.374279i
\(486\) 0 0
\(487\) 1.79899i 0.0815200i −0.999169 0.0407600i \(-0.987022\pi\)
0.999169 0.0407600i \(-0.0129779\pi\)
\(488\) 0 0
\(489\) 4.24264 0.191859
\(490\) 0 0
\(491\) 2.44365 0.110280 0.0551402 0.998479i \(-0.482439\pi\)
0.0551402 + 0.998479i \(0.482439\pi\)
\(492\) 0 0
\(493\) 5.82843i 0.262499i
\(494\) 0 0
\(495\) −2.82843 + 8.48528i −0.127128 + 0.381385i
\(496\) 0 0
\(497\) 16.7868i 0.752991i
\(498\) 0 0
\(499\) −34.2426 −1.53291 −0.766456 0.642297i \(-0.777981\pi\)
−0.766456 + 0.642297i \(0.777981\pi\)
\(500\) 0 0
\(501\) −23.5563 −1.05242
\(502\) 0 0
\(503\) 39.7279i 1.77138i −0.464277 0.885690i \(-0.653686\pi\)
0.464277 0.885690i \(-0.346314\pi\)
\(504\) 0 0
\(505\) 0.757359 2.27208i 0.0337020 0.101106i
\(506\) 0 0
\(507\) 31.3137i 1.39069i
\(508\) 0 0
\(509\) 4.97056 0.220316 0.110158 0.993914i \(-0.464864\pi\)
0.110158 + 0.993914i \(0.464864\pi\)
\(510\) 0 0
\(511\) 8.69848 0.384798
\(512\) 0 0
\(513\) 0.414214i 0.0182880i
\(514\) 0 0
\(515\) −9.00000 3.00000i −0.396587 0.132196i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −39.7990 −1.74698
\(520\) 0 0
\(521\) 0.686292 0.0300670 0.0150335 0.999887i \(-0.495215\pi\)
0.0150335 + 0.999887i \(0.495215\pi\)
\(522\) 0 0
\(523\) 27.7279i 1.21246i 0.795290 + 0.606229i \(0.207318\pi\)
−0.795290 + 0.606229i \(0.792682\pi\)
\(524\) 0 0
\(525\) −15.3137 11.4853i −0.668345 0.501259i
\(526\) 0 0
\(527\) 2.24264i 0.0976910i
\(528\) 0 0
\(529\) −62.4264 −2.71419
\(530\) 0 0
\(531\) 36.4853 1.58333
\(532\) 0 0
\(533\) 0.727922i 0.0315298i
\(534\) 0 0
\(535\) 12.1508 + 4.05025i 0.525323 + 0.175108i
\(536\) 0 0
\(537\) 0.828427i 0.0357493i
\(538\) 0 0
\(539\) −6.34315 −0.273219
\(540\) 0 0
\(541\) 18.2426 0.784312 0.392156 0.919899i \(-0.371729\pi\)
0.392156 + 0.919899i \(0.371729\pi\)
\(542\) 0 0
\(543\) 20.4853i 0.879108i
\(544\) 0 0
\(545\) 11.2929 33.8787i 0.483734 1.45120i
\(546\) 0 0
\(547\) 5.31371i 0.227198i 0.993527 + 0.113599i \(0.0362379\pi\)
−0.993527 + 0.113599i \(0.963762\pi\)
\(548\) 0 0
\(549\) −16.2843 −0.694996
\(550\) 0 0
\(551\) −5.82843 −0.248299
\(552\) 0 0
\(553\) 16.6274i 0.707070i
\(554\) 0 0
\(555\) 14.4853 43.4558i 0.614866 1.84460i
\(556\) 0 0
\(557\) 16.0000i 0.677942i −0.940797 0.338971i \(-0.889921\pi\)
0.940797 0.338971i \(-0.110079\pi\)
\(558\) 0 0
\(559\) 1.75736 0.0743284
\(560\) 0 0
\(561\) 3.41421 0.144148
\(562\) 0 0
\(563\) 28.9706i 1.22096i 0.792030 + 0.610482i \(0.209024\pi\)
−0.792030 + 0.610482i \(0.790976\pi\)
\(564\) 0 0
\(565\) 3.72792 + 1.24264i 0.156835 + 0.0522783i
\(566\) 0 0
\(567\) 15.0416i 0.631689i
\(568\) 0 0
\(569\) −28.2843 −1.18574 −0.592869 0.805299i \(-0.702005\pi\)
−0.592869 + 0.805299i \(0.702005\pi\)
\(570\) 0 0
\(571\) −6.24264 −0.261246 −0.130623 0.991432i \(-0.541698\pi\)
−0.130623 + 0.991432i \(0.541698\pi\)
\(572\) 0 0
\(573\) 44.7990i 1.87150i
\(574\) 0 0
\(575\) −27.7279 + 36.9706i −1.15633 + 1.54178i
\(576\) 0 0
\(577\) 2.31371i 0.0963209i −0.998840 0.0481605i \(-0.984664\pi\)
0.998840 0.0481605i \(-0.0153359\pi\)
\(578\) 0 0
\(579\) −28.1421 −1.16955
\(580\) 0 0
\(581\) −3.94113 −0.163505
\(582\) 0 0
\(583\) 16.2426i 0.672701i
\(584\) 0 0
\(585\) 1.02944 + 0.343146i 0.0425620 + 0.0141873i
\(586\) 0 0
\(587\) 21.7574i 0.898022i 0.893526 + 0.449011i \(0.148224\pi\)
−0.893526 + 0.449011i \(0.851776\pi\)
\(588\) 0 0
\(589\) −2.24264 −0.0924064
\(590\) 0 0
\(591\) 48.8701 2.01025
\(592\) 0 0
\(593\) 22.0000i 0.903432i 0.892162 + 0.451716i \(0.149188\pi\)
−0.892162 + 0.451716i \(0.850812\pi\)
\(594\) 0 0
\(595\) −1.12132 + 3.36396i −0.0459697 + 0.137909i
\(596\) 0 0
\(597\) 1.82843i 0.0748325i
\(598\) 0 0
\(599\) 27.2132 1.11190 0.555951 0.831215i \(-0.312354\pi\)
0.555951 + 0.831215i \(0.312354\pi\)
\(600\) 0 0
\(601\) −11.7574 −0.479593 −0.239796 0.970823i \(-0.577081\pi\)
−0.239796 + 0.970823i \(0.577081\pi\)
\(602\) 0 0
\(603\) 37.4558i 1.52532i
\(604\) 0 0
\(605\) 6.36396 19.0919i 0.258732 0.776195i
\(606\) 0 0
\(607\) 8.82843i 0.358335i 0.983819 + 0.179167i \(0.0573404\pi\)
−0.983819 + 0.179167i \(0.942660\pi\)
\(608\) 0 0
\(609\) 22.3137 0.904197
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 47.6985i 1.92652i 0.268564 + 0.963262i \(0.413451\pi\)
−0.268564 + 0.963262i \(0.586549\pi\)
\(614\) 0 0
\(615\) 21.7279 + 7.24264i 0.876154 + 0.292051i
\(616\) 0 0
\(617\) 12.4853i 0.502639i −0.967904 0.251319i \(-0.919136\pi\)
0.967904 0.251319i \(-0.0808644\pi\)
\(618\) 0 0
\(619\) 16.2426 0.652847 0.326423 0.945224i \(-0.394156\pi\)
0.326423 + 0.945224i \(0.394156\pi\)
\(620\) 0 0
\(621\) −3.82843 −0.153629
\(622\) 0 0
\(623\) 11.2132i 0.449248i
\(624\) 0 0
\(625\) 7.00000 + 24.0000i 0.280000 + 0.960000i
\(626\) 0 0
\(627\) 3.41421i 0.136351i
\(628\) 0 0
\(629\) −8.48528 −0.338330
\(630\) 0 0
\(631\) 5.02944 0.200219 0.100109 0.994976i \(-0.468081\pi\)
0.100109 + 0.994976i \(0.468081\pi\)
\(632\) 0 0
\(633\) 13.8284i 0.549631i
\(634\) 0 0
\(635\) −30.7279 10.2426i −1.21940 0.406467i
\(636\) 0 0
\(637\) 0.769553i 0.0304908i
\(638\) 0 0
\(639\) −29.9411 −1.18445
\(640\) 0 0
\(641\) 30.0416 1.18657 0.593287 0.804991i \(-0.297830\pi\)
0.593287 + 0.804991i \(0.297830\pi\)
\(642\) 0 0
\(643\) 2.48528i 0.0980099i −0.998799 0.0490050i \(-0.984395\pi\)
0.998799 0.0490050i \(-0.0156050\pi\)
\(644\) 0 0
\(645\) 17.4853 52.4558i 0.688482 2.06545i
\(646\) 0 0
\(647\) 27.2426i 1.07102i −0.844529 0.535509i \(-0.820120\pi\)
0.844529 0.535509i \(-0.179880\pi\)
\(648\) 0 0
\(649\) 18.2426 0.716086
\(650\) 0 0
\(651\) 8.58579 0.336504
\(652\) 0 0
\(653\) 4.97056i 0.194513i 0.995259 + 0.0972566i \(0.0310067\pi\)
−0.995259 + 0.0972566i \(0.968993\pi\)
\(654\) 0 0
\(655\) 12.0000 36.0000i 0.468879 1.40664i
\(656\) 0 0
\(657\) 15.5147i 0.605287i
\(658\) 0 0
\(659\) −0.899495 −0.0350393 −0.0175197 0.999847i \(-0.505577\pi\)
−0.0175197 + 0.999847i \(0.505577\pi\)
\(660\) 0 0
\(661\) 32.4558 1.26239 0.631193 0.775626i \(-0.282566\pi\)
0.631193 + 0.775626i \(0.282566\pi\)
\(662\) 0 0
\(663\) 0.414214i 0.0160867i
\(664\) 0 0
\(665\) 3.36396 + 1.12132i 0.130449 + 0.0434829i
\(666\) 0 0
\(667\) 53.8701i 2.08586i
\(668\) 0 0
\(669\) 50.2843 1.94410
\(670\) 0 0
\(671\) −8.14214 −0.314324
\(672\) 0 0
\(673\) 12.0000i 0.462566i −0.972887 0.231283i \(-0.925708\pi\)
0.972887 0.231283i \(-0.0742923\pi\)
\(674\) 0 0
\(675\) −1.24264 + 1.65685i −0.0478293 + 0.0637723i
\(676\) 0 0
\(677\) 26.9411i 1.03543i −0.855553 0.517716i \(-0.826782\pi\)
0.855553 0.517716i \(-0.173218\pi\)
\(678\) 0 0
\(679\) −18.4853 −0.709400
\(680\) 0 0
\(681\) −60.9411 −2.33527
\(682\) 0 0
\(683\) 12.0000i 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) 0 0
\(685\) 27.5772 + 9.19239i 1.05367 + 0.351223i
\(686\) 0 0
\(687\) 45.7990i 1.74734i
\(688\) 0 0
\(689\) 1.97056 0.0750725
\(690\) 0 0
\(691\) −5.51472 −0.209790 −0.104895 0.994483i \(-0.533451\pi\)
−0.104895 + 0.994483i \(0.533451\pi\)
\(692\) 0 0
\(693\) 6.34315i 0.240956i
\(694\) 0 0
\(695\) 8.48528 25.4558i 0.321865 0.965595i
\(696\) 0 0
\(697\) 4.24264i 0.160701i
\(698\) 0 0
\(699\) 21.6569 0.819137
\(700\) 0 0
\(701\) −16.9706 −0.640969 −0.320485 0.947254i \(-0.603846\pi\)
−0.320485 + 0.947254i \(0.603846\pi\)
\(702\) 0 0
\(703\) 8.48528i 0.320028i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.69848i 0.0638781i
\(708\) 0 0
\(709\) 34.0000 1.27690 0.638448 0.769665i \(-0.279577\pi\)
0.638448 + 0.769665i \(0.279577\pi\)
\(710\) 0 0
\(711\) −29.6569 −1.11222
\(712\) 0 0
\(713\) 20.7279i 0.776267i
\(714\) 0 0
\(715\) 0.514719 + 0.171573i 0.0192494 + 0.00641646i
\(716\) 0 0
\(717\) 31.1421i 1.16302i
\(718\) 0 0
\(719\) −24.8995 −0.928594 −0.464297 0.885679i \(-0.653693\pi\)
−0.464297 + 0.885679i \(0.653693\pi\)
\(720\) 0 0
\(721\) −6.72792 −0.250561
\(722\) 0 0
\(723\) 60.2843i 2.24200i
\(724\) 0 0
\(725\) −23.3137 17.4853i −0.865849 0.649387i
\(726\) 0 0
\(727\) 15.7279i 0.583316i −0.956523 0.291658i \(-0.905793\pi\)
0.956523 0.291658i \(-0.0942070\pi\)
\(728\) 0 0
\(729\) 23.8284 0.882534
\(730\) 0 0
\(731\) −10.2426 −0.378838
\(732\) 0 0
\(733\) 12.0000i 0.443230i 0.975134 + 0.221615i \(0.0711328\pi\)
−0.975134 + 0.221615i \(0.928867\pi\)
\(734\) 0 0
\(735\) 22.9706 + 7.65685i 0.847282 + 0.282427i
\(736\) 0 0
\(737\) 18.7279i 0.689852i
\(738\) 0 0
\(739\) 26.7279 0.983203 0.491601 0.870820i \(-0.336412\pi\)
0.491601 + 0.870820i \(0.336412\pi\)
\(740\) 0 0
\(741\) −0.414214 −0.0152165
\(742\) 0 0
\(743\) 18.7279i 0.687061i 0.939142 + 0.343530i \(0.111623\pi\)
−0.939142 + 0.343530i \(0.888377\pi\)
\(744\) 0 0
\(745\) 4.48528 13.4558i 0.164328 0.492984i
\(746\) 0 0
\(747\) 7.02944i 0.257194i
\(748\) 0 0
\(749\) 9.08326 0.331895
\(750\) 0 0
\(751\) 1.27208 0.0464188 0.0232094 0.999731i \(-0.492612\pi\)
0.0232094 + 0.999731i \(0.492612\pi\)
\(752\) 0 0
\(753\) 66.5269i 2.42438i
\(754\) 0 0
\(755\) 4.58579 13.7574i 0.166894 0.500682i
\(756\) 0 0
\(757\) 23.6569i 0.859823i −0.902871 0.429911i \(-0.858545\pi\)
0.902871 0.429911i \(-0.141455\pi\)
\(758\) 0 0
\(759\) 31.5563 1.14542
\(760\) 0 0
\(761\) 10.0294 0.363567 0.181783 0.983339i \(-0.441813\pi\)
0.181783 + 0.983339i \(0.441813\pi\)
\(762\) 0 0
\(763\) 25.3259i 0.916859i
\(764\) 0 0
\(765\) −6.00000 2.00000i −0.216930 0.0723102i
\(766\) 0 0
\(767\) 2.21320i 0.0799141i
\(768\) 0 0
\(769\) −14.4558 −0.521291 −0.260646 0.965435i \(-0.583935\pi\)
−0.260646 + 0.965435i \(0.583935\pi\)
\(770\) 0 0
\(771\) 11.4142 0.411073
\(772\) 0 0
\(773\) 19.9706i 0.718291i −0.933282 0.359146i \(-0.883068\pi\)
0.933282 0.359146i \(-0.116932\pi\)
\(774\) 0 0
\(775\) −8.97056 6.72792i −0.322232 0.241674i
\(776\) 0 0
\(777\) 32.4853i 1.16540i
\(778\) 0 0
\(779\) −4.24264 −0.152008
\(780\) 0 0
\(781\) −14.9706 −0.535689
\(782\) 0 0
\(783\) 2.41421i 0.0862770i
\(784\) 0 0
\(785\) 0.727922 + 0.242641i 0.0259807 + 0.00866022i
\(786\) 0 0
\(787\) 35.1838i 1.25417i 0.778953 + 0.627083i \(0.215751\pi\)
−0.778953 + 0.627083i \(0.784249\pi\)
\(788\) 0 0
\(789\) −16.8284 −0.599108
\(790\) 0 0
\(791\) 2.78680 0.0990871
\(792\) 0 0
\(793\) 0.987807i 0.0350780i
\(794\) 0 0
\(795\) 19.6066 58.8198i 0.695375 2.08612i
\(796\) 0 0
\(797\) 30.5147i