# Properties

 Label 1520.2.a.l.1.1 Level $1520$ Weight $2$ Character 1520.1 Self dual yes Analytic conductor $12.137$ Analytic rank $1$ Dimension $2$ CM no Inner twists $1$

# Learn more

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1520,2,Mod(1,1520)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1520, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1520.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1520 = 2^{4} \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1520.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$12.1372611072$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{12})^+$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - 3$$ x^2 - 3 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 380) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Root $$-1.73205$$ of defining polynomial Character $$\chi$$ $$=$$ 1520.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-2.73205 q^{3} +1.00000 q^{5} -2.00000 q^{7} +4.46410 q^{9} +O(q^{10})$$ $$q-2.73205 q^{3} +1.00000 q^{5} -2.00000 q^{7} +4.46410 q^{9} +3.46410 q^{11} -2.73205 q^{13} -2.73205 q^{15} -3.46410 q^{17} -1.00000 q^{19} +5.46410 q^{21} +3.46410 q^{23} +1.00000 q^{25} -4.00000 q^{27} +3.46410 q^{29} +1.46410 q^{31} -9.46410 q^{33} -2.00000 q^{35} +6.73205 q^{37} +7.46410 q^{39} -6.00000 q^{41} +4.92820 q^{43} +4.46410 q^{45} -12.9282 q^{47} -3.00000 q^{49} +9.46410 q^{51} -10.7321 q^{53} +3.46410 q^{55} +2.73205 q^{57} -6.92820 q^{59} +12.3923 q^{61} -8.92820 q^{63} -2.73205 q^{65} -6.73205 q^{67} -9.46410 q^{69} +2.53590 q^{71} -0.535898 q^{73} -2.73205 q^{75} -6.92820 q^{77} -2.92820 q^{79} -2.46410 q^{81} -3.46410 q^{83} -3.46410 q^{85} -9.46410 q^{87} -15.4641 q^{89} +5.46410 q^{91} -4.00000 q^{93} -1.00000 q^{95} -16.5885 q^{97} +15.4641 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{3} + 2 q^{5} - 4 q^{7} + 2 q^{9}+O(q^{10})$$ 2 * q - 2 * q^3 + 2 * q^5 - 4 * q^7 + 2 * q^9 $$2 q - 2 q^{3} + 2 q^{5} - 4 q^{7} + 2 q^{9} - 2 q^{13} - 2 q^{15} - 2 q^{19} + 4 q^{21} + 2 q^{25} - 8 q^{27} - 4 q^{31} - 12 q^{33} - 4 q^{35} + 10 q^{37} + 8 q^{39} - 12 q^{41} - 4 q^{43} + 2 q^{45} - 12 q^{47} - 6 q^{49} + 12 q^{51} - 18 q^{53} + 2 q^{57} + 4 q^{61} - 4 q^{63} - 2 q^{65} - 10 q^{67} - 12 q^{69} + 12 q^{71} - 8 q^{73} - 2 q^{75} + 8 q^{79} + 2 q^{81} - 12 q^{87} - 24 q^{89} + 4 q^{91} - 8 q^{93} - 2 q^{95} - 2 q^{97} + 24 q^{99}+O(q^{100})$$ 2 * q - 2 * q^3 + 2 * q^5 - 4 * q^7 + 2 * q^9 - 2 * q^13 - 2 * q^15 - 2 * q^19 + 4 * q^21 + 2 * q^25 - 8 * q^27 - 4 * q^31 - 12 * q^33 - 4 * q^35 + 10 * q^37 + 8 * q^39 - 12 * q^41 - 4 * q^43 + 2 * q^45 - 12 * q^47 - 6 * q^49 + 12 * q^51 - 18 * q^53 + 2 * q^57 + 4 * q^61 - 4 * q^63 - 2 * q^65 - 10 * q^67 - 12 * q^69 + 12 * q^71 - 8 * q^73 - 2 * q^75 + 8 * q^79 + 2 * q^81 - 12 * q^87 - 24 * q^89 + 4 * q^91 - 8 * q^93 - 2 * q^95 - 2 * q^97 + 24 * q^99

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ −2.73205 −1.57735 −0.788675 0.614810i $$-0.789233\pi$$
−0.788675 + 0.614810i $$0.789233\pi$$
$$4$$ 0 0
$$5$$ 1.00000 0.447214
$$6$$ 0 0
$$7$$ −2.00000 −0.755929 −0.377964 0.925820i $$-0.623376\pi$$
−0.377964 + 0.925820i $$0.623376\pi$$
$$8$$ 0 0
$$9$$ 4.46410 1.48803
$$10$$ 0 0
$$11$$ 3.46410 1.04447 0.522233 0.852803i $$-0.325099\pi$$
0.522233 + 0.852803i $$0.325099\pi$$
$$12$$ 0 0
$$13$$ −2.73205 −0.757735 −0.378867 0.925451i $$-0.623686\pi$$
−0.378867 + 0.925451i $$0.623686\pi$$
$$14$$ 0 0
$$15$$ −2.73205 −0.705412
$$16$$ 0 0
$$17$$ −3.46410 −0.840168 −0.420084 0.907485i $$-0.637999\pi$$
−0.420084 + 0.907485i $$0.637999\pi$$
$$18$$ 0 0
$$19$$ −1.00000 −0.229416
$$20$$ 0 0
$$21$$ 5.46410 1.19236
$$22$$ 0 0
$$23$$ 3.46410 0.722315 0.361158 0.932505i $$-0.382382\pi$$
0.361158 + 0.932505i $$0.382382\pi$$
$$24$$ 0 0
$$25$$ 1.00000 0.200000
$$26$$ 0 0
$$27$$ −4.00000 −0.769800
$$28$$ 0 0
$$29$$ 3.46410 0.643268 0.321634 0.946864i $$-0.395768\pi$$
0.321634 + 0.946864i $$0.395768\pi$$
$$30$$ 0 0
$$31$$ 1.46410 0.262960 0.131480 0.991319i $$-0.458027\pi$$
0.131480 + 0.991319i $$0.458027\pi$$
$$32$$ 0 0
$$33$$ −9.46410 −1.64749
$$34$$ 0 0
$$35$$ −2.00000 −0.338062
$$36$$ 0 0
$$37$$ 6.73205 1.10674 0.553371 0.832935i $$-0.313341\pi$$
0.553371 + 0.832935i $$0.313341\pi$$
$$38$$ 0 0
$$39$$ 7.46410 1.19521
$$40$$ 0 0
$$41$$ −6.00000 −0.937043 −0.468521 0.883452i $$-0.655213\pi$$
−0.468521 + 0.883452i $$0.655213\pi$$
$$42$$ 0 0
$$43$$ 4.92820 0.751544 0.375772 0.926712i $$-0.377378\pi$$
0.375772 + 0.926712i $$0.377378\pi$$
$$44$$ 0 0
$$45$$ 4.46410 0.665469
$$46$$ 0 0
$$47$$ −12.9282 −1.88577 −0.942886 0.333115i $$-0.891900\pi$$
−0.942886 + 0.333115i $$0.891900\pi$$
$$48$$ 0 0
$$49$$ −3.00000 −0.428571
$$50$$ 0 0
$$51$$ 9.46410 1.32524
$$52$$ 0 0
$$53$$ −10.7321 −1.47416 −0.737080 0.675805i $$-0.763796\pi$$
−0.737080 + 0.675805i $$0.763796\pi$$
$$54$$ 0 0
$$55$$ 3.46410 0.467099
$$56$$ 0 0
$$57$$ 2.73205 0.361869
$$58$$ 0 0
$$59$$ −6.92820 −0.901975 −0.450988 0.892530i $$-0.648928\pi$$
−0.450988 + 0.892530i $$0.648928\pi$$
$$60$$ 0 0
$$61$$ 12.3923 1.58667 0.793336 0.608784i $$-0.208342\pi$$
0.793336 + 0.608784i $$0.208342\pi$$
$$62$$ 0 0
$$63$$ −8.92820 −1.12485
$$64$$ 0 0
$$65$$ −2.73205 −0.338869
$$66$$ 0 0
$$67$$ −6.73205 −0.822451 −0.411225 0.911534i $$-0.634899\pi$$
−0.411225 + 0.911534i $$0.634899\pi$$
$$68$$ 0 0
$$69$$ −9.46410 −1.13934
$$70$$ 0 0
$$71$$ 2.53590 0.300956 0.150478 0.988613i $$-0.451919\pi$$
0.150478 + 0.988613i $$0.451919\pi$$
$$72$$ 0 0
$$73$$ −0.535898 −0.0627222 −0.0313611 0.999508i $$-0.509984\pi$$
−0.0313611 + 0.999508i $$0.509984\pi$$
$$74$$ 0 0
$$75$$ −2.73205 −0.315470
$$76$$ 0 0
$$77$$ −6.92820 −0.789542
$$78$$ 0 0
$$79$$ −2.92820 −0.329449 −0.164724 0.986340i $$-0.552673\pi$$
−0.164724 + 0.986340i $$0.552673\pi$$
$$80$$ 0 0
$$81$$ −2.46410 −0.273789
$$82$$ 0 0
$$83$$ −3.46410 −0.380235 −0.190117 0.981761i $$-0.560887\pi$$
−0.190117 + 0.981761i $$0.560887\pi$$
$$84$$ 0 0
$$85$$ −3.46410 −0.375735
$$86$$ 0 0
$$87$$ −9.46410 −1.01466
$$88$$ 0 0
$$89$$ −15.4641 −1.63919 −0.819596 0.572942i $$-0.805802\pi$$
−0.819596 + 0.572942i $$0.805802\pi$$
$$90$$ 0 0
$$91$$ 5.46410 0.572793
$$92$$ 0 0
$$93$$ −4.00000 −0.414781
$$94$$ 0 0
$$95$$ −1.00000 −0.102598
$$96$$ 0 0
$$97$$ −16.5885 −1.68430 −0.842151 0.539241i $$-0.818711\pi$$
−0.842151 + 0.539241i $$0.818711\pi$$
$$98$$ 0 0
$$99$$ 15.4641 1.55420
$$100$$ 0 0
$$101$$ −16.3923 −1.63110 −0.815548 0.578690i $$-0.803564\pi$$
−0.815548 + 0.578690i $$0.803564\pi$$
$$102$$ 0 0
$$103$$ −13.6603 −1.34598 −0.672992 0.739649i $$-0.734991\pi$$
−0.672992 + 0.739649i $$0.734991\pi$$
$$104$$ 0 0
$$105$$ 5.46410 0.533242
$$106$$ 0 0
$$107$$ 5.66025 0.547197 0.273599 0.961844i $$-0.411786\pi$$
0.273599 + 0.961844i $$0.411786\pi$$
$$108$$ 0 0
$$109$$ −14.3923 −1.37853 −0.689266 0.724508i $$-0.742067\pi$$
−0.689266 + 0.724508i $$0.742067\pi$$
$$110$$ 0 0
$$111$$ −18.3923 −1.74572
$$112$$ 0 0
$$113$$ 12.5885 1.18422 0.592111 0.805856i $$-0.298295\pi$$
0.592111 + 0.805856i $$0.298295\pi$$
$$114$$ 0 0
$$115$$ 3.46410 0.323029
$$116$$ 0 0
$$117$$ −12.1962 −1.12753
$$118$$ 0 0
$$119$$ 6.92820 0.635107
$$120$$ 0 0
$$121$$ 1.00000 0.0909091
$$122$$ 0 0
$$123$$ 16.3923 1.47804
$$124$$ 0 0
$$125$$ 1.00000 0.0894427
$$126$$ 0 0
$$127$$ −20.5885 −1.82693 −0.913465 0.406917i $$-0.866604\pi$$
−0.913465 + 0.406917i $$0.866604\pi$$
$$128$$ 0 0
$$129$$ −13.4641 −1.18545
$$130$$ 0 0
$$131$$ 18.9282 1.65376 0.826882 0.562375i $$-0.190112\pi$$
0.826882 + 0.562375i $$0.190112\pi$$
$$132$$ 0 0
$$133$$ 2.00000 0.173422
$$134$$ 0 0
$$135$$ −4.00000 −0.344265
$$136$$ 0 0
$$137$$ 17.3205 1.47979 0.739895 0.672722i $$-0.234875\pi$$
0.739895 + 0.672722i $$0.234875\pi$$
$$138$$ 0 0
$$139$$ −11.4641 −0.972372 −0.486186 0.873855i $$-0.661612\pi$$
−0.486186 + 0.873855i $$0.661612\pi$$
$$140$$ 0 0
$$141$$ 35.3205 2.97452
$$142$$ 0 0
$$143$$ −9.46410 −0.791428
$$144$$ 0 0
$$145$$ 3.46410 0.287678
$$146$$ 0 0
$$147$$ 8.19615 0.676007
$$148$$ 0 0
$$149$$ −4.39230 −0.359832 −0.179916 0.983682i $$-0.557583\pi$$
−0.179916 + 0.983682i $$0.557583\pi$$
$$150$$ 0 0
$$151$$ 8.39230 0.682956 0.341478 0.939890i $$-0.389073\pi$$
0.341478 + 0.939890i $$0.389073\pi$$
$$152$$ 0 0
$$153$$ −15.4641 −1.25020
$$154$$ 0 0
$$155$$ 1.46410 0.117599
$$156$$ 0 0
$$157$$ 23.4641 1.87264 0.936320 0.351149i $$-0.114209\pi$$
0.936320 + 0.351149i $$0.114209\pi$$
$$158$$ 0 0
$$159$$ 29.3205 2.32527
$$160$$ 0 0
$$161$$ −6.92820 −0.546019
$$162$$ 0 0
$$163$$ −7.07180 −0.553906 −0.276953 0.960883i $$-0.589325\pi$$
−0.276953 + 0.960883i $$0.589325\pi$$
$$164$$ 0 0
$$165$$ −9.46410 −0.736779
$$166$$ 0 0
$$167$$ 10.7321 0.830471 0.415236 0.909714i $$-0.363699\pi$$
0.415236 + 0.909714i $$0.363699\pi$$
$$168$$ 0 0
$$169$$ −5.53590 −0.425838
$$170$$ 0 0
$$171$$ −4.46410 −0.341378
$$172$$ 0 0
$$173$$ 3.80385 0.289201 0.144601 0.989490i $$-0.453810\pi$$
0.144601 + 0.989490i $$0.453810\pi$$
$$174$$ 0 0
$$175$$ −2.00000 −0.151186
$$176$$ 0 0
$$177$$ 18.9282 1.42273
$$178$$ 0 0
$$179$$ −20.7846 −1.55351 −0.776757 0.629800i $$-0.783137\pi$$
−0.776757 + 0.629800i $$0.783137\pi$$
$$180$$ 0 0
$$181$$ 14.0000 1.04061 0.520306 0.853980i $$-0.325818\pi$$
0.520306 + 0.853980i $$0.325818\pi$$
$$182$$ 0 0
$$183$$ −33.8564 −2.50274
$$184$$ 0 0
$$185$$ 6.73205 0.494950
$$186$$ 0 0
$$187$$ −12.0000 −0.877527
$$188$$ 0 0
$$189$$ 8.00000 0.581914
$$190$$ 0 0
$$191$$ −6.92820 −0.501307 −0.250654 0.968077i $$-0.580646\pi$$
−0.250654 + 0.968077i $$0.580646\pi$$
$$192$$ 0 0
$$193$$ −7.80385 −0.561733 −0.280867 0.959747i $$-0.590622\pi$$
−0.280867 + 0.959747i $$0.590622\pi$$
$$194$$ 0 0
$$195$$ 7.46410 0.534515
$$196$$ 0 0
$$197$$ 0.928203 0.0661317 0.0330659 0.999453i $$-0.489473\pi$$
0.0330659 + 0.999453i $$0.489473\pi$$
$$198$$ 0 0
$$199$$ −26.9282 −1.90889 −0.954445 0.298387i $$-0.903551\pi$$
−0.954445 + 0.298387i $$0.903551\pi$$
$$200$$ 0 0
$$201$$ 18.3923 1.29729
$$202$$ 0 0
$$203$$ −6.92820 −0.486265
$$204$$ 0 0
$$205$$ −6.00000 −0.419058
$$206$$ 0 0
$$207$$ 15.4641 1.07483
$$208$$ 0 0
$$209$$ −3.46410 −0.239617
$$210$$ 0 0
$$211$$ −19.3205 −1.33008 −0.665039 0.746808i $$-0.731585\pi$$
−0.665039 + 0.746808i $$0.731585\pi$$
$$212$$ 0 0
$$213$$ −6.92820 −0.474713
$$214$$ 0 0
$$215$$ 4.92820 0.336101
$$216$$ 0 0
$$217$$ −2.92820 −0.198779
$$218$$ 0 0
$$219$$ 1.46410 0.0989348
$$220$$ 0 0
$$221$$ 9.46410 0.636624
$$222$$ 0 0
$$223$$ 9.66025 0.646898 0.323449 0.946246i $$-0.395158\pi$$
0.323449 + 0.946246i $$0.395158\pi$$
$$224$$ 0 0
$$225$$ 4.46410 0.297607
$$226$$ 0 0
$$227$$ −8.19615 −0.543998 −0.271999 0.962298i $$-0.587685\pi$$
−0.271999 + 0.962298i $$0.587685\pi$$
$$228$$ 0 0
$$229$$ 17.4641 1.15406 0.577030 0.816723i $$-0.304212\pi$$
0.577030 + 0.816723i $$0.304212\pi$$
$$230$$ 0 0
$$231$$ 18.9282 1.24538
$$232$$ 0 0
$$233$$ −0.928203 −0.0608086 −0.0304043 0.999538i $$-0.509679\pi$$
−0.0304043 + 0.999538i $$0.509679\pi$$
$$234$$ 0 0
$$235$$ −12.9282 −0.843343
$$236$$ 0 0
$$237$$ 8.00000 0.519656
$$238$$ 0 0
$$239$$ 13.8564 0.896296 0.448148 0.893959i $$-0.352084\pi$$
0.448148 + 0.893959i $$0.352084\pi$$
$$240$$ 0 0
$$241$$ −11.8564 −0.763738 −0.381869 0.924216i $$-0.624719\pi$$
−0.381869 + 0.924216i $$0.624719\pi$$
$$242$$ 0 0
$$243$$ 18.7321 1.20166
$$244$$ 0 0
$$245$$ −3.00000 −0.191663
$$246$$ 0 0
$$247$$ 2.73205 0.173836
$$248$$ 0 0
$$249$$ 9.46410 0.599763
$$250$$ 0 0
$$251$$ 24.0000 1.51487 0.757433 0.652913i $$-0.226453\pi$$
0.757433 + 0.652913i $$0.226453\pi$$
$$252$$ 0 0
$$253$$ 12.0000 0.754434
$$254$$ 0 0
$$255$$ 9.46410 0.592665
$$256$$ 0 0
$$257$$ −15.1244 −0.943431 −0.471716 0.881751i $$-0.656365\pi$$
−0.471716 + 0.881751i $$0.656365\pi$$
$$258$$ 0 0
$$259$$ −13.4641 −0.836619
$$260$$ 0 0
$$261$$ 15.4641 0.957204
$$262$$ 0 0
$$263$$ −8.53590 −0.526346 −0.263173 0.964749i $$-0.584769\pi$$
−0.263173 + 0.964749i $$0.584769\pi$$
$$264$$ 0 0
$$265$$ −10.7321 −0.659265
$$266$$ 0 0
$$267$$ 42.2487 2.58558
$$268$$ 0 0
$$269$$ 10.3923 0.633630 0.316815 0.948487i $$-0.397387\pi$$
0.316815 + 0.948487i $$0.397387\pi$$
$$270$$ 0 0
$$271$$ 2.39230 0.145322 0.0726611 0.997357i $$-0.476851\pi$$
0.0726611 + 0.997357i $$0.476851\pi$$
$$272$$ 0 0
$$273$$ −14.9282 −0.903496
$$274$$ 0 0
$$275$$ 3.46410 0.208893
$$276$$ 0 0
$$277$$ 18.3923 1.10509 0.552543 0.833484i $$-0.313657\pi$$
0.552543 + 0.833484i $$0.313657\pi$$
$$278$$ 0 0
$$279$$ 6.53590 0.391294
$$280$$ 0 0
$$281$$ 0.928203 0.0553720 0.0276860 0.999617i $$-0.491186\pi$$
0.0276860 + 0.999617i $$0.491186\pi$$
$$282$$ 0 0
$$283$$ −18.3923 −1.09331 −0.546655 0.837358i $$-0.684099\pi$$
−0.546655 + 0.837358i $$0.684099\pi$$
$$284$$ 0 0
$$285$$ 2.73205 0.161833
$$286$$ 0 0
$$287$$ 12.0000 0.708338
$$288$$ 0 0
$$289$$ −5.00000 −0.294118
$$290$$ 0 0
$$291$$ 45.3205 2.65674
$$292$$ 0 0
$$293$$ −5.66025 −0.330676 −0.165338 0.986237i $$-0.552871\pi$$
−0.165338 + 0.986237i $$0.552871\pi$$
$$294$$ 0 0
$$295$$ −6.92820 −0.403376
$$296$$ 0 0
$$297$$ −13.8564 −0.804030
$$298$$ 0 0
$$299$$ −9.46410 −0.547323
$$300$$ 0 0
$$301$$ −9.85641 −0.568114
$$302$$ 0 0
$$303$$ 44.7846 2.57281
$$304$$ 0 0
$$305$$ 12.3923 0.709581
$$306$$ 0 0
$$307$$ 7.80385 0.445389 0.222695 0.974888i $$-0.428515\pi$$
0.222695 + 0.974888i $$0.428515\pi$$
$$308$$ 0 0
$$309$$ 37.3205 2.12309
$$310$$ 0 0
$$311$$ 1.60770 0.0911640 0.0455820 0.998961i $$-0.485486\pi$$
0.0455820 + 0.998961i $$0.485486\pi$$
$$312$$ 0 0
$$313$$ 10.7846 0.609582 0.304791 0.952419i $$-0.401413\pi$$
0.304791 + 0.952419i $$0.401413\pi$$
$$314$$ 0 0
$$315$$ −8.92820 −0.503047
$$316$$ 0 0
$$317$$ 3.12436 0.175481 0.0877406 0.996143i $$-0.472035\pi$$
0.0877406 + 0.996143i $$0.472035\pi$$
$$318$$ 0 0
$$319$$ 12.0000 0.671871
$$320$$ 0 0
$$321$$ −15.4641 −0.863122
$$322$$ 0 0
$$323$$ 3.46410 0.192748
$$324$$ 0 0
$$325$$ −2.73205 −0.151547
$$326$$ 0 0
$$327$$ 39.3205 2.17443
$$328$$ 0 0
$$329$$ 25.8564 1.42551
$$330$$ 0 0
$$331$$ 22.2487 1.22290 0.611450 0.791283i $$-0.290587\pi$$
0.611450 + 0.791283i $$0.290587\pi$$
$$332$$ 0 0
$$333$$ 30.0526 1.64687
$$334$$ 0 0
$$335$$ −6.73205 −0.367811
$$336$$ 0 0
$$337$$ −17.2679 −0.940645 −0.470323 0.882495i $$-0.655862\pi$$
−0.470323 + 0.882495i $$0.655862\pi$$
$$338$$ 0 0
$$339$$ −34.3923 −1.86793
$$340$$ 0 0
$$341$$ 5.07180 0.274653
$$342$$ 0 0
$$343$$ 20.0000 1.07990
$$344$$ 0 0
$$345$$ −9.46410 −0.509530
$$346$$ 0 0
$$347$$ −31.1769 −1.67366 −0.836832 0.547459i $$-0.815595\pi$$
−0.836832 + 0.547459i $$0.815595\pi$$
$$348$$ 0 0
$$349$$ 20.9282 1.12026 0.560131 0.828404i $$-0.310751\pi$$
0.560131 + 0.828404i $$0.310751\pi$$
$$350$$ 0 0
$$351$$ 10.9282 0.583304
$$352$$ 0 0
$$353$$ 1.60770 0.0855690 0.0427845 0.999084i $$-0.486377\pi$$
0.0427845 + 0.999084i $$0.486377\pi$$
$$354$$ 0 0
$$355$$ 2.53590 0.134592
$$356$$ 0 0
$$357$$ −18.9282 −1.00179
$$358$$ 0 0
$$359$$ 8.53590 0.450507 0.225254 0.974300i $$-0.427679\pi$$
0.225254 + 0.974300i $$0.427679\pi$$
$$360$$ 0 0
$$361$$ 1.00000 0.0526316
$$362$$ 0 0
$$363$$ −2.73205 −0.143395
$$364$$ 0 0
$$365$$ −0.535898 −0.0280502
$$366$$ 0 0
$$367$$ −3.85641 −0.201303 −0.100651 0.994922i $$-0.532093\pi$$
−0.100651 + 0.994922i $$0.532093\pi$$
$$368$$ 0 0
$$369$$ −26.7846 −1.39435
$$370$$ 0 0
$$371$$ 21.4641 1.11436
$$372$$ 0 0
$$373$$ −16.5885 −0.858918 −0.429459 0.903086i $$-0.641296\pi$$
−0.429459 + 0.903086i $$0.641296\pi$$
$$374$$ 0 0
$$375$$ −2.73205 −0.141082
$$376$$ 0 0
$$377$$ −9.46410 −0.487426
$$378$$ 0 0
$$379$$ −14.9282 −0.766810 −0.383405 0.923580i $$-0.625249\pi$$
−0.383405 + 0.923580i $$0.625249\pi$$
$$380$$ 0 0
$$381$$ 56.2487 2.88171
$$382$$ 0 0
$$383$$ −6.33975 −0.323946 −0.161973 0.986795i $$-0.551786\pi$$
−0.161973 + 0.986795i $$0.551786\pi$$
$$384$$ 0 0
$$385$$ −6.92820 −0.353094
$$386$$ 0 0
$$387$$ 22.0000 1.11832
$$388$$ 0 0
$$389$$ 18.0000 0.912636 0.456318 0.889817i $$-0.349168\pi$$
0.456318 + 0.889817i $$0.349168\pi$$
$$390$$ 0 0
$$391$$ −12.0000 −0.606866
$$392$$ 0 0
$$393$$ −51.7128 −2.60857
$$394$$ 0 0
$$395$$ −2.92820 −0.147334
$$396$$ 0 0
$$397$$ −19.4641 −0.976875 −0.488438 0.872599i $$-0.662433\pi$$
−0.488438 + 0.872599i $$0.662433\pi$$
$$398$$ 0 0
$$399$$ −5.46410 −0.273547
$$400$$ 0 0
$$401$$ 38.7846 1.93681 0.968405 0.249381i $$-0.0802271\pi$$
0.968405 + 0.249381i $$0.0802271\pi$$
$$402$$ 0 0
$$403$$ −4.00000 −0.199254
$$404$$ 0 0
$$405$$ −2.46410 −0.122442
$$406$$ 0 0
$$407$$ 23.3205 1.15595
$$408$$ 0 0
$$409$$ −14.3923 −0.711654 −0.355827 0.934552i $$-0.615801\pi$$
−0.355827 + 0.934552i $$0.615801\pi$$
$$410$$ 0 0
$$411$$ −47.3205 −2.33415
$$412$$ 0 0
$$413$$ 13.8564 0.681829
$$414$$ 0 0
$$415$$ −3.46410 −0.170046
$$416$$ 0 0
$$417$$ 31.3205 1.53377
$$418$$ 0 0
$$419$$ 12.0000 0.586238 0.293119 0.956076i $$-0.405307\pi$$
0.293119 + 0.956076i $$0.405307\pi$$
$$420$$ 0 0
$$421$$ −34.0000 −1.65706 −0.828529 0.559946i $$-0.810822\pi$$
−0.828529 + 0.559946i $$0.810822\pi$$
$$422$$ 0 0
$$423$$ −57.7128 −2.80609
$$424$$ 0 0
$$425$$ −3.46410 −0.168034
$$426$$ 0 0
$$427$$ −24.7846 −1.19941
$$428$$ 0 0
$$429$$ 25.8564 1.24836
$$430$$ 0 0
$$431$$ 33.4641 1.61191 0.805955 0.591977i $$-0.201653\pi$$
0.805955 + 0.591977i $$0.201653\pi$$
$$432$$ 0 0
$$433$$ −22.3397 −1.07358 −0.536790 0.843716i $$-0.680363\pi$$
−0.536790 + 0.843716i $$0.680363\pi$$
$$434$$ 0 0
$$435$$ −9.46410 −0.453769
$$436$$ 0 0
$$437$$ −3.46410 −0.165710
$$438$$ 0 0
$$439$$ 31.7128 1.51357 0.756785 0.653664i $$-0.226769\pi$$
0.756785 + 0.653664i $$0.226769\pi$$
$$440$$ 0 0
$$441$$ −13.3923 −0.637729
$$442$$ 0 0
$$443$$ −13.6077 −0.646521 −0.323261 0.946310i $$-0.604779\pi$$
−0.323261 + 0.946310i $$0.604779\pi$$
$$444$$ 0 0
$$445$$ −15.4641 −0.733069
$$446$$ 0 0
$$447$$ 12.0000 0.567581
$$448$$ 0 0
$$449$$ −3.46410 −0.163481 −0.0817405 0.996654i $$-0.526048\pi$$
−0.0817405 + 0.996654i $$0.526048\pi$$
$$450$$ 0 0
$$451$$ −20.7846 −0.978709
$$452$$ 0 0
$$453$$ −22.9282 −1.07726
$$454$$ 0 0
$$455$$ 5.46410 0.256161
$$456$$ 0 0
$$457$$ 34.7846 1.62716 0.813578 0.581456i $$-0.197517\pi$$
0.813578 + 0.581456i $$0.197517\pi$$
$$458$$ 0 0
$$459$$ 13.8564 0.646762
$$460$$ 0 0
$$461$$ −21.7128 −1.01127 −0.505633 0.862749i $$-0.668741\pi$$
−0.505633 + 0.862749i $$0.668741\pi$$
$$462$$ 0 0
$$463$$ −4.53590 −0.210801 −0.105401 0.994430i $$-0.533612\pi$$
−0.105401 + 0.994430i $$0.533612\pi$$
$$464$$ 0 0
$$465$$ −4.00000 −0.185496
$$466$$ 0 0
$$467$$ 29.3205 1.35679 0.678396 0.734697i $$-0.262676\pi$$
0.678396 + 0.734697i $$0.262676\pi$$
$$468$$ 0 0
$$469$$ 13.4641 0.621714
$$470$$ 0 0
$$471$$ −64.1051 −2.95381
$$472$$ 0 0
$$473$$ 17.0718 0.784962
$$474$$ 0 0
$$475$$ −1.00000 −0.0458831
$$476$$ 0 0
$$477$$ −47.9090 −2.19360
$$478$$ 0 0
$$479$$ 22.3923 1.02313 0.511565 0.859244i $$-0.329066\pi$$
0.511565 + 0.859244i $$0.329066\pi$$
$$480$$ 0 0
$$481$$ −18.3923 −0.838617
$$482$$ 0 0
$$483$$ 18.9282 0.861263
$$484$$ 0 0
$$485$$ −16.5885 −0.753243
$$486$$ 0 0
$$487$$ 12.1962 0.552660 0.276330 0.961063i $$-0.410882\pi$$
0.276330 + 0.961063i $$0.410882\pi$$
$$488$$ 0 0
$$489$$ 19.3205 0.873704
$$490$$ 0 0
$$491$$ −18.9282 −0.854218 −0.427109 0.904200i $$-0.640468\pi$$
−0.427109 + 0.904200i $$0.640468\pi$$
$$492$$ 0 0
$$493$$ −12.0000 −0.540453
$$494$$ 0 0
$$495$$ 15.4641 0.695060
$$496$$ 0 0
$$497$$ −5.07180 −0.227501
$$498$$ 0 0
$$499$$ −23.4641 −1.05040 −0.525199 0.850980i $$-0.676009\pi$$
−0.525199 + 0.850980i $$0.676009\pi$$
$$500$$ 0 0
$$501$$ −29.3205 −1.30994
$$502$$ 0 0
$$503$$ −15.4641 −0.689510 −0.344755 0.938693i $$-0.612038\pi$$
−0.344755 + 0.938693i $$0.612038\pi$$
$$504$$ 0 0
$$505$$ −16.3923 −0.729448
$$506$$ 0 0
$$507$$ 15.1244 0.671696
$$508$$ 0 0
$$509$$ −5.32051 −0.235827 −0.117914 0.993024i $$-0.537621\pi$$
−0.117914 + 0.993024i $$0.537621\pi$$
$$510$$ 0 0
$$511$$ 1.07180 0.0474135
$$512$$ 0 0
$$513$$ 4.00000 0.176604
$$514$$ 0 0
$$515$$ −13.6603 −0.601943
$$516$$ 0 0
$$517$$ −44.7846 −1.96962
$$518$$ 0 0
$$519$$ −10.3923 −0.456172
$$520$$ 0 0
$$521$$ −14.7846 −0.647726 −0.323863 0.946104i $$-0.604982\pi$$
−0.323863 + 0.946104i $$0.604982\pi$$
$$522$$ 0 0
$$523$$ 37.3731 1.63421 0.817105 0.576489i $$-0.195578\pi$$
0.817105 + 0.576489i $$0.195578\pi$$
$$524$$ 0 0
$$525$$ 5.46410 0.238473
$$526$$ 0 0
$$527$$ −5.07180 −0.220931
$$528$$ 0 0
$$529$$ −11.0000 −0.478261
$$530$$ 0 0
$$531$$ −30.9282 −1.34217
$$532$$ 0 0
$$533$$ 16.3923 0.710030
$$534$$ 0 0
$$535$$ 5.66025 0.244714
$$536$$ 0 0
$$537$$ 56.7846 2.45044
$$538$$ 0 0
$$539$$ −10.3923 −0.447628
$$540$$ 0 0
$$541$$ −29.1769 −1.25441 −0.627207 0.778853i $$-0.715802\pi$$
−0.627207 + 0.778853i $$0.715802\pi$$
$$542$$ 0 0
$$543$$ −38.2487 −1.64141
$$544$$ 0 0
$$545$$ −14.3923 −0.616499
$$546$$ 0 0
$$547$$ −6.73205 −0.287842 −0.143921 0.989589i $$-0.545971\pi$$
−0.143921 + 0.989589i $$0.545971\pi$$
$$548$$ 0 0
$$549$$ 55.3205 2.36102
$$550$$ 0 0
$$551$$ −3.46410 −0.147576
$$552$$ 0 0
$$553$$ 5.85641 0.249040
$$554$$ 0 0
$$555$$ −18.3923 −0.780710
$$556$$ 0 0
$$557$$ 5.32051 0.225437 0.112719 0.993627i $$-0.464044\pi$$
0.112719 + 0.993627i $$0.464044\pi$$
$$558$$ 0 0
$$559$$ −13.4641 −0.569471
$$560$$ 0 0
$$561$$ 32.7846 1.38417
$$562$$ 0 0
$$563$$ −44.1962 −1.86265 −0.931323 0.364195i $$-0.881344\pi$$
−0.931323 + 0.364195i $$0.881344\pi$$
$$564$$ 0 0
$$565$$ 12.5885 0.529600
$$566$$ 0 0
$$567$$ 4.92820 0.206965
$$568$$ 0 0
$$569$$ −29.3205 −1.22918 −0.614590 0.788847i $$-0.710678\pi$$
−0.614590 + 0.788847i $$0.710678\pi$$
$$570$$ 0 0
$$571$$ −18.3923 −0.769694 −0.384847 0.922980i $$-0.625746\pi$$
−0.384847 + 0.922980i $$0.625746\pi$$
$$572$$ 0 0
$$573$$ 18.9282 0.790737
$$574$$ 0 0
$$575$$ 3.46410 0.144463
$$576$$ 0 0
$$577$$ −6.78461 −0.282447 −0.141223 0.989978i $$-0.545104\pi$$
−0.141223 + 0.989978i $$0.545104\pi$$
$$578$$ 0 0
$$579$$ 21.3205 0.886050
$$580$$ 0 0
$$581$$ 6.92820 0.287430
$$582$$ 0 0
$$583$$ −37.1769 −1.53971
$$584$$ 0 0
$$585$$ −12.1962 −0.504249
$$586$$ 0 0
$$587$$ −43.1769 −1.78210 −0.891051 0.453903i $$-0.850031\pi$$
−0.891051 + 0.453903i $$0.850031\pi$$
$$588$$ 0 0
$$589$$ −1.46410 −0.0603273
$$590$$ 0 0
$$591$$ −2.53590 −0.104313
$$592$$ 0 0
$$593$$ 31.8564 1.30819 0.654093 0.756414i $$-0.273051\pi$$
0.654093 + 0.756414i $$0.273051\pi$$
$$594$$ 0 0
$$595$$ 6.92820 0.284029
$$596$$ 0 0
$$597$$ 73.5692 3.01099
$$598$$ 0 0
$$599$$ 20.7846 0.849236 0.424618 0.905373i $$-0.360408\pi$$
0.424618 + 0.905373i $$0.360408\pi$$
$$600$$ 0 0
$$601$$ 24.6410 1.00513 0.502564 0.864540i $$-0.332390\pi$$
0.502564 + 0.864540i $$0.332390\pi$$
$$602$$ 0 0
$$603$$ −30.0526 −1.22383
$$604$$ 0 0
$$605$$ 1.00000 0.0406558
$$606$$ 0 0
$$607$$ 39.9090 1.61985 0.809927 0.586530i $$-0.199506\pi$$
0.809927 + 0.586530i $$0.199506\pi$$
$$608$$ 0 0
$$609$$ 18.9282 0.767010
$$610$$ 0 0
$$611$$ 35.3205 1.42891
$$612$$ 0 0
$$613$$ 6.39230 0.258183 0.129091 0.991633i $$-0.458794\pi$$
0.129091 + 0.991633i $$0.458794\pi$$
$$614$$ 0 0
$$615$$ 16.3923 0.661002
$$616$$ 0 0
$$617$$ 1.60770 0.0647234 0.0323617 0.999476i $$-0.489697\pi$$
0.0323617 + 0.999476i $$0.489697\pi$$
$$618$$ 0 0
$$619$$ 2.39230 0.0961549 0.0480774 0.998844i $$-0.484691\pi$$
0.0480774 + 0.998844i $$0.484691\pi$$
$$620$$ 0 0
$$621$$ −13.8564 −0.556038
$$622$$ 0 0
$$623$$ 30.9282 1.23911
$$624$$ 0 0
$$625$$ 1.00000 0.0400000
$$626$$ 0 0
$$627$$ 9.46410 0.377960
$$628$$ 0 0
$$629$$ −23.3205 −0.929850
$$630$$ 0 0
$$631$$ −11.4641 −0.456379 −0.228189 0.973617i $$-0.573281\pi$$
−0.228189 + 0.973617i $$0.573281\pi$$
$$632$$ 0 0
$$633$$ 52.7846 2.09800
$$634$$ 0 0
$$635$$ −20.5885 −0.817028
$$636$$ 0 0
$$637$$ 8.19615 0.324743
$$638$$ 0 0
$$639$$ 11.3205 0.447832
$$640$$ 0 0
$$641$$ −24.9282 −0.984605 −0.492302 0.870424i $$-0.663845\pi$$
−0.492302 + 0.870424i $$0.663845\pi$$
$$642$$ 0 0
$$643$$ 14.3923 0.567577 0.283789 0.958887i $$-0.408409\pi$$
0.283789 + 0.958887i $$0.408409\pi$$
$$644$$ 0 0
$$645$$ −13.4641 −0.530148
$$646$$ 0 0
$$647$$ −15.4641 −0.607957 −0.303978 0.952679i $$-0.598315\pi$$
−0.303978 + 0.952679i $$0.598315\pi$$
$$648$$ 0 0
$$649$$ −24.0000 −0.942082
$$650$$ 0 0
$$651$$ 8.00000 0.313545
$$652$$ 0 0
$$653$$ 27.4641 1.07475 0.537377 0.843342i $$-0.319415\pi$$
0.537377 + 0.843342i $$0.319415\pi$$
$$654$$ 0 0
$$655$$ 18.9282 0.739586
$$656$$ 0 0
$$657$$ −2.39230 −0.0933327
$$658$$ 0 0
$$659$$ −8.78461 −0.342200 −0.171100 0.985254i $$-0.554732\pi$$
−0.171100 + 0.985254i $$0.554732\pi$$
$$660$$ 0 0
$$661$$ 5.21539 0.202855 0.101428 0.994843i $$-0.467659\pi$$
0.101428 + 0.994843i $$0.467659\pi$$
$$662$$ 0 0
$$663$$ −25.8564 −1.00418
$$664$$ 0 0
$$665$$ 2.00000 0.0775567
$$666$$ 0 0
$$667$$ 12.0000 0.464642
$$668$$ 0 0
$$669$$ −26.3923 −1.02039
$$670$$ 0 0
$$671$$ 42.9282 1.65722
$$672$$ 0 0
$$673$$ −50.7321 −1.95558 −0.977788 0.209594i $$-0.932786\pi$$
−0.977788 + 0.209594i $$0.932786\pi$$
$$674$$ 0 0
$$675$$ −4.00000 −0.153960
$$676$$ 0 0
$$677$$ 16.9808 0.652624 0.326312 0.945262i $$-0.394194\pi$$
0.326312 + 0.945262i $$0.394194\pi$$
$$678$$ 0 0
$$679$$ 33.1769 1.27321
$$680$$ 0 0
$$681$$ 22.3923 0.858075
$$682$$ 0 0
$$683$$ 17.6603 0.675751 0.337875 0.941191i $$-0.390292\pi$$
0.337875 + 0.941191i $$0.390292\pi$$
$$684$$ 0 0
$$685$$ 17.3205 0.661783
$$686$$ 0 0
$$687$$ −47.7128 −1.82036
$$688$$ 0 0
$$689$$ 29.3205 1.11702
$$690$$ 0 0
$$691$$ −51.1769 −1.94686 −0.973431 0.228981i $$-0.926460\pi$$
−0.973431 + 0.228981i $$0.926460\pi$$
$$692$$ 0 0
$$693$$ −30.9282 −1.17487
$$694$$ 0 0
$$695$$ −11.4641 −0.434858
$$696$$ 0 0
$$697$$ 20.7846 0.787273
$$698$$ 0 0
$$699$$ 2.53590 0.0959165
$$700$$ 0 0
$$701$$ −26.5359 −1.00225 −0.501124 0.865376i $$-0.667080\pi$$
−0.501124 + 0.865376i $$0.667080\pi$$
$$702$$ 0 0
$$703$$ −6.73205 −0.253904
$$704$$ 0 0
$$705$$ 35.3205 1.33025
$$706$$ 0 0
$$707$$ 32.7846 1.23299
$$708$$ 0 0
$$709$$ −30.7846 −1.15614 −0.578070 0.815987i $$-0.696194\pi$$
−0.578070 + 0.815987i $$0.696194\pi$$
$$710$$ 0 0
$$711$$ −13.0718 −0.490231
$$712$$ 0 0
$$713$$ 5.07180 0.189940
$$714$$ 0 0
$$715$$ −9.46410 −0.353937
$$716$$ 0 0
$$717$$ −37.8564 −1.41377
$$718$$ 0 0
$$719$$ −17.3205 −0.645946 −0.322973 0.946408i $$-0.604682\pi$$
−0.322973 + 0.946408i $$0.604682\pi$$
$$720$$ 0 0
$$721$$ 27.3205 1.01747
$$722$$ 0 0
$$723$$ 32.3923 1.20468
$$724$$ 0 0
$$725$$ 3.46410 0.128654
$$726$$ 0 0
$$727$$ −0.143594 −0.00532559 −0.00266279 0.999996i $$-0.500848\pi$$
−0.00266279 + 0.999996i $$0.500848\pi$$
$$728$$ 0 0
$$729$$ −43.7846 −1.62165
$$730$$ 0 0
$$731$$ −17.0718 −0.631423
$$732$$ 0 0
$$733$$ 10.7846 0.398339 0.199169 0.979965i $$-0.436176\pi$$
0.199169 + 0.979965i $$0.436176\pi$$
$$734$$ 0 0
$$735$$ 8.19615 0.302320
$$736$$ 0 0
$$737$$ −23.3205 −0.859022
$$738$$ 0 0
$$739$$ 28.0000 1.03000 0.514998 0.857191i $$-0.327793\pi$$
0.514998 + 0.857191i $$0.327793\pi$$
$$740$$ 0 0
$$741$$ −7.46410 −0.274201
$$742$$ 0 0
$$743$$ −20.8756 −0.765853 −0.382927 0.923779i $$-0.625084\pi$$
−0.382927 + 0.923779i $$0.625084\pi$$
$$744$$ 0 0
$$745$$ −4.39230 −0.160922
$$746$$ 0 0
$$747$$ −15.4641 −0.565802
$$748$$ 0 0
$$749$$ −11.3205 −0.413642
$$750$$ 0 0
$$751$$ 25.4641 0.929198 0.464599 0.885521i $$-0.346198\pi$$
0.464599 + 0.885521i $$0.346198\pi$$
$$752$$ 0 0
$$753$$ −65.5692 −2.38948
$$754$$ 0 0
$$755$$ 8.39230 0.305427
$$756$$ 0 0
$$757$$ −10.0000 −0.363456 −0.181728 0.983349i $$-0.558169\pi$$
−0.181728 + 0.983349i $$0.558169\pi$$
$$758$$ 0 0
$$759$$ −32.7846 −1.19001
$$760$$ 0 0
$$761$$ 19.6077 0.710778 0.355389 0.934718i $$-0.384348\pi$$
0.355389 + 0.934718i $$0.384348\pi$$
$$762$$ 0 0
$$763$$ 28.7846 1.04207
$$764$$ 0 0
$$765$$ −15.4641 −0.559106
$$766$$ 0 0
$$767$$ 18.9282 0.683458
$$768$$ 0 0
$$769$$ −30.5359 −1.10115 −0.550576 0.834785i $$-0.685592\pi$$
−0.550576 + 0.834785i $$0.685592\pi$$
$$770$$ 0 0
$$771$$ 41.3205 1.48812
$$772$$ 0 0
$$773$$ 22.0526 0.793175 0.396588 0.917997i $$-0.370194\pi$$
0.396588 + 0.917997i $$0.370194\pi$$
$$774$$ 0 0
$$775$$ 1.46410 0.0525921
$$776$$ 0 0
$$777$$ 36.7846 1.31964
$$778$$ 0 0
$$779$$ 6.00000 0.214972
$$780$$ 0 0
$$781$$ 8.78461 0.314338
$$782$$ 0 0
$$783$$ −13.8564 −0.495188
$$784$$ 0 0
$$785$$ 23.4641 0.837470
$$786$$ 0 0
$$787$$ 12.1962 0.434746 0.217373 0.976089i $$-0.430251\pi$$
0.217373 + 0.976089i $$0.430251\pi$$
$$788$$ 0 0
$$789$$ 23.3205 0.830232
$$790$$ 0 0
$$791$$ −25.1769 −0.895188
$$792$$ 0 0
$$793$$ −33.8564 −1.20228
$$794$$ 0 0
$$795$$ 29.3205 1.03989
$$796$$ 0 0
$$797$$ −5.66025 −0.200496 −0.100248 0.994962i $$-0.531964\pi$$
−0.100248 + 0.994962i $$0.531964\pi$$
$$798$$ 0 0
$$799$$ 44.7846 1.58437
$$800$$ 0 0
$$801$$ −69.0333 −2.43917
$$802$$ 0 0
$$803$$ −1.85641 −0.0655112
$$804$$ 0 0
$$805$$ −6.92820 −0.244187
$$806$$ 0 0
$$807$$ −28.3923 −0.999456
$$808$$ 0 0
$$809$$ 9.71281 0.341484 0.170742 0.985316i $$-0.445383\pi$$
0.170742 + 0.985316i $$0.445383\pi$$
$$810$$ 0 0
$$811$$ −15.6077 −0.548060 −0.274030 0.961721i $$-0.588357\pi$$
−0.274030 + 0.961721i $$0.588357\pi$$
$$812$$ 0 0
$$813$$ −6.53590 −0.229224
$$814$$ 0 0
$$815$$ −7.07180 −0.247714
$$816$$ 0 0
$$817$$ −4.92820 −0.172416
$$818$$ 0 0
$$819$$ 24.3923 0.852336
$$820$$ 0 0
$$821$$ −16.1436 −0.563415 −0.281708 0.959500i $$-0.590901\pi$$
−0.281708 + 0.959500i $$0.590901\pi$$
$$822$$ 0 0
$$823$$ 39.5692 1.37930 0.689648 0.724145i $$-0.257765\pi$$
0.689648 + 0.724145i $$0.257765\pi$$
$$824$$ 0 0
$$825$$ −9.46410 −0.329498
$$826$$ 0 0
$$827$$ 29.6603 1.03139 0.515694 0.856773i $$-0.327534\pi$$
0.515694 + 0.856773i $$0.327534\pi$$
$$828$$ 0 0
$$829$$ 8.24871 0.286490 0.143245 0.989687i $$-0.454246\pi$$
0.143245 + 0.989687i $$0.454246\pi$$
$$830$$ 0 0
$$831$$ −50.2487 −1.74311
$$832$$ 0 0
$$833$$ 10.3923 0.360072
$$834$$ 0 0
$$835$$ 10.7321 0.371398
$$836$$ 0 0
$$837$$ −5.85641 −0.202427
$$838$$ 0 0
$$839$$ −18.9282 −0.653474 −0.326737 0.945115i $$-0.605949\pi$$
−0.326737 + 0.945115i $$0.605949\pi$$
$$840$$ 0 0
$$841$$ −17.0000 −0.586207
$$842$$ 0 0
$$843$$ −2.53590 −0.0873410
$$844$$ 0 0
$$845$$ −5.53590 −0.190441
$$846$$ 0 0
$$847$$ −2.00000 −0.0687208
$$848$$ 0 0
$$849$$ 50.2487 1.72453
$$850$$ 0 0
$$851$$ 23.3205 0.799417
$$852$$ 0 0
$$853$$ −44.6410 −1.52848 −0.764240 0.644932i $$-0.776886\pi$$
−0.764240 + 0.644932i $$0.776886\pi$$
$$854$$ 0 0
$$855$$ −4.46410 −0.152669
$$856$$ 0 0
$$857$$ 3.80385 0.129937 0.0649685 0.997887i $$-0.479305\pi$$
0.0649685 + 0.997887i $$0.479305\pi$$
$$858$$ 0 0
$$859$$ −47.7128 −1.62794 −0.813970 0.580907i $$-0.802698\pi$$
−0.813970 + 0.580907i $$0.802698\pi$$
$$860$$ 0 0
$$861$$ −32.7846 −1.11730
$$862$$ 0 0
$$863$$ 37.2679 1.26862 0.634308 0.773081i $$-0.281285\pi$$
0.634308 + 0.773081i $$0.281285\pi$$
$$864$$ 0 0
$$865$$ 3.80385 0.129335
$$866$$ 0 0
$$867$$ 13.6603 0.463927
$$868$$ 0 0
$$869$$ −10.1436 −0.344098
$$870$$ 0 0
$$871$$ 18.3923 0.623199
$$872$$ 0 0
$$873$$ −74.0526 −2.50630
$$874$$ 0 0
$$875$$ −2.00000 −0.0676123
$$876$$ 0 0
$$877$$ 0.980762 0.0331180 0.0165590 0.999863i $$-0.494729\pi$$
0.0165590 + 0.999863i $$0.494729\pi$$
$$878$$ 0 0
$$879$$ 15.4641 0.521591
$$880$$ 0 0
$$881$$ −0.679492 −0.0228927 −0.0114463 0.999934i $$-0.503644\pi$$
−0.0114463 + 0.999934i $$0.503644\pi$$
$$882$$ 0 0
$$883$$ 22.0000 0.740359 0.370179 0.928960i $$-0.379296\pi$$
0.370179 + 0.928960i $$0.379296\pi$$
$$884$$ 0 0
$$885$$ 18.9282 0.636265
$$886$$ 0 0
$$887$$ −23.4115 −0.786083 −0.393041 0.919521i $$-0.628577\pi$$
−0.393041 + 0.919521i $$0.628577\pi$$
$$888$$ 0 0
$$889$$ 41.1769 1.38103
$$890$$ 0 0
$$891$$ −8.53590 −0.285963
$$892$$ 0 0
$$893$$ 12.9282 0.432626
$$894$$ 0 0
$$895$$ −20.7846 −0.694753
$$896$$ 0 0
$$897$$ 25.8564 0.863320
$$898$$ 0 0
$$899$$ 5.07180 0.169154
$$900$$ 0 0
$$901$$ 37.1769 1.23854
$$902$$ 0 0
$$903$$ 26.9282 0.896114
$$904$$ 0 0
$$905$$ 14.0000 0.465376
$$906$$ 0 0
$$907$$ −7.41154 −0.246096 −0.123048 0.992401i $$-0.539267\pi$$
−0.123048 + 0.992401i $$0.539267\pi$$
$$908$$ 0 0
$$909$$ −73.1769 −2.42713
$$910$$ 0 0
$$911$$ −14.5359 −0.481596 −0.240798 0.970575i $$-0.577409\pi$$
−0.240798 + 0.970575i $$0.577409\pi$$
$$912$$ 0 0
$$913$$ −12.0000 −0.397142
$$914$$ 0 0
$$915$$ −33.8564 −1.11926
$$916$$ 0 0
$$917$$ −37.8564 −1.25013
$$918$$ 0 0
$$919$$ −44.4974 −1.46783 −0.733917 0.679239i $$-0.762310\pi$$
−0.733917 + 0.679239i $$0.762310\pi$$
$$920$$ 0 0
$$921$$ −21.3205 −0.702535
$$922$$ 0 0
$$923$$ −6.92820 −0.228045
$$924$$ 0 0
$$925$$ 6.73205 0.221348
$$926$$ 0 0
$$927$$ −60.9808 −2.00287
$$928$$ 0 0
$$929$$ −47.5692 −1.56070 −0.780348 0.625346i $$-0.784958\pi$$
−0.780348 + 0.625346i $$0.784958\pi$$
$$930$$ 0 0
$$931$$ 3.00000 0.0983210
$$932$$ 0 0
$$933$$ −4.39230 −0.143798
$$934$$ 0 0
$$935$$ −12.0000 −0.392442
$$936$$ 0 0
$$937$$ 51.1769 1.67188 0.835938 0.548823i $$-0.184924\pi$$
0.835938 + 0.548823i $$0.184924\pi$$
$$938$$ 0 0
$$939$$ −29.4641 −0.961525
$$940$$ 0 0
$$941$$ 52.6410 1.71605 0.858024 0.513610i $$-0.171692\pi$$
0.858024 + 0.513610i $$0.171692\pi$$
$$942$$ 0 0
$$943$$ −20.7846 −0.676840
$$944$$ 0 0
$$945$$ 8.00000 0.260240
$$946$$ 0 0
$$947$$ −6.67949 −0.217054 −0.108527 0.994093i $$-0.534613\pi$$
−0.108527 + 0.994093i $$0.534613\pi$$
$$948$$ 0 0
$$949$$ 1.46410 0.0475267
$$950$$ 0 0
$$951$$ −8.53590 −0.276795
$$952$$ 0 0
$$953$$ 60.5885 1.96265 0.981326 0.192350i $$-0.0616110\pi$$
0.981326 + 0.192350i $$0.0616110\pi$$
$$954$$ 0 0
$$955$$ −6.92820 −0.224191
$$956$$ 0 0
$$957$$ −32.7846 −1.05978
$$958$$ 0 0
$$959$$ −34.6410 −1.11862
$$960$$ 0 0
$$961$$ −28.8564 −0.930852
$$962$$ 0 0
$$963$$ 25.2679 0.814248
$$964$$ 0 0
$$965$$ −7.80385 −0.251215
$$966$$ 0 0
$$967$$ 45.3205 1.45741 0.728705 0.684828i $$-0.240123\pi$$
0.728705 + 0.684828i $$0.240123\pi$$
$$968$$ 0 0
$$969$$ −9.46410 −0.304031
$$970$$ 0 0
$$971$$ 14.5359 0.466479 0.233240 0.972419i $$-0.425067\pi$$
0.233240 + 0.972419i $$0.425067\pi$$
$$972$$ 0 0
$$973$$ 22.9282 0.735044
$$974$$ 0 0
$$975$$ 7.46410 0.239043
$$976$$ 0 0
$$977$$ 32.1962 1.03005 0.515023 0.857176i $$-0.327783\pi$$
0.515023 + 0.857176i $$0.327783\pi$$
$$978$$ 0 0
$$979$$ −53.5692 −1.71208
$$980$$ 0 0
$$981$$ −64.2487 −2.05130
$$982$$ 0 0
$$983$$ 2.44486 0.0779790 0.0389895 0.999240i $$-0.487586\pi$$
0.0389895 + 0.999240i $$0.487586\pi$$
$$984$$ 0 0
$$985$$ 0.928203 0.0295750
$$986$$ 0 0
$$987$$ −70.6410 −2.24853
$$988$$ 0 0
$$989$$ 17.0718 0.542852
$$990$$ 0 0
$$991$$ 8.39230 0.266590 0.133295 0.991076i $$-0.457444\pi$$
0.133295 + 0.991076i $$0.457444\pi$$
$$992$$ 0 0
$$993$$ −60.7846 −1.92894
$$994$$ 0 0
$$995$$ −26.9282 −0.853681
$$996$$ 0 0
$$997$$ 30.3923 0.962534 0.481267 0.876574i $$-0.340177\pi$$
0.481267 + 0.876574i $$0.340177\pi$$
$$998$$ 0 0
$$999$$ −26.9282 −0.851971
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1520.2.a.l.1.1 2
4.3 odd 2 380.2.a.d.1.2 2
5.4 even 2 7600.2.a.bf.1.2 2
8.3 odd 2 6080.2.a.z.1.1 2
8.5 even 2 6080.2.a.bj.1.2 2
12.11 even 2 3420.2.a.h.1.2 2
20.3 even 4 1900.2.c.e.1749.4 4
20.7 even 4 1900.2.c.e.1749.1 4
20.19 odd 2 1900.2.a.d.1.1 2
76.75 even 2 7220.2.a.h.1.1 2

By twisted newform
Twist Min Dim Char Parity Ord Type
380.2.a.d.1.2 2 4.3 odd 2
1520.2.a.l.1.1 2 1.1 even 1 trivial
1900.2.a.d.1.1 2 20.19 odd 2
1900.2.c.e.1749.1 4 20.7 even 4
1900.2.c.e.1749.4 4 20.3 even 4
3420.2.a.h.1.2 2 12.11 even 2
6080.2.a.z.1.1 2 8.3 odd 2
6080.2.a.bj.1.2 2 8.5 even 2
7220.2.a.h.1.1 2 76.75 even 2
7600.2.a.bf.1.2 2 5.4 even 2